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Range expansion reduces genetic diversity
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Gene surfing

Hallatschek and Nelson, 2007
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Gene surfing
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Experiments on a Petri dish
Haploid CFP and RFP-marked S. Cerevisiae

Hallatschek and Nelson, 2007



The question

» How does range expansion interfere with selection?

» If a mutant arises with an offset x wrt an advancing Fisher
wave, what is the probability u(x) that it eventually fixes?

» How does u(x) depend on the growth rate r;, of the mutant
and on the local carrying capacity of the environment?



The stepping-stone model
Kimura and Weiss, 1964

deme
v

N

o/ojo[ee[e[ee/0[0]0
oeoojo0o0eoee
oooj0eoeeoee
oeooj0oeooeeeoee
oooj0o0o0eeoe
oeooj00oee
eeoeo

T~
7

At each step:
» Replication in a deme: prp, x K — W

» Death: Pdeath X (1 — rw)prep
» Diffusion



The ancestor location in the neutral case
Hallatschek and Nelson, 2007

Two competing effects:
» The fixation probability u(x) increases as x increases
» The population density n(x) decreases as x increases



Introducing the mutants
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A single mutant is added at location x wrt the center of the wave
W: number of wildtypes, M number of mutants

» Replication in a deme: prp x K — (W + M)
» Death: pgean < (1 — fm)Prep (N0 advantage in a full deme)



Possible outcomes

N.B.: The window is placed so that the total number of
individuals is kept roughly constant

Fixation: The window is filled by mutants
Extinction: All the mutants die off in the window

Failure: At least one mutant crosses the left boundary (but
they disappear from the window)



A stochastic reaction-diffusion system
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Can be made adimensional (depending only on K. = K/, and
a = hy/ry) by setting

X = /ryXx T =ryt



The Fisher wave

v = 2v/ Dr (Fisher, 1937)
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The fixation probability u(x)
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Fixation and failure
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» u(x): probability of fixation
» v(x): probability of failure
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Limit behavior of u(x)
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» For x — —oo, u(x) — 0: neutral dynamics “against” an
infinite population

» For x — +o0, u(x) — ny: fixation provided the mutant
survives sampling fluctuations



Dependence on K
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Dependence of L on K and «
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The basic scenario

» Mutants are established when their population is large
enough for its advantage to be felt

» In an empty deme, this requires m > m.(K., «)

» In a full deme, the mutant’s offspring undergoes neutral
“drift” against an “infinite” wild-type population: fixation
probability vanishes u(x) ~ 0 for x < 0

» For x ~ 0 the mutant population can get established, but is
rapidly surrounded by the wild-types: it will disappear on a
much longer time scale: thus u(x) ~ 0, but v(x) > 0

» For x > L, the mutant population can get established
before the wildtype population reaches it: thus u(x) > 0 for
X — +00



The large-x limit

» For x — +o0, it only matters if the mutant population
avoids stochastic death at the beginning, and the wave of
advancing wildtypes is irrelevant

» In a well-mixed population with growth rate r,,, this
probability equals r,, (Moran model)

» This also holds true in our model with spatial structure and
local logistic growth



The argument

» The only relevant dynamical variable is my, = >, m;
» Diffusion events do not change m,

» Death events are (1 — r,) less likely than birth events
» Thus the survival probability Pp,,, satisfies
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Po = ——mp oy L
Mot 2_rm Mot 1+2_rm

Mhor+1

with boundary conditions
Py=0 Po=1

» Thus
Pmlot =1- (1 - rm)mml

and
P1 =Im



The length L

Can we estimate the behavior of L?

>

Speed of the advancing wildtype wave: v ~ 2,/r,, (diffusion
constant D = 1)

Time available for a mutant to grow: fH = xp/Vv

Assume free exponential growth on average for the mutant
population: (Niy,) ~ e/m!

Thus (Np,) = exp(fint)/ M

Success requires Ni(fh) > mcK/\/Im

Thus survival may take place if

Xo > L~ rl In(MeK /) = \ﬁ In(K /) f(cr, K.)

Actually this is just an upper bound (one can check that
liMy_ oo L < OO)



A differential equation for the survival probability u(x)?

The survival probability u(x) apparently satisfies
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with the boundary conditions

lim u(x)=0 lim u(x) =t
X——00 X—r+00

where (w(x)) is the average profile of the wildtype wave



A heuristic derivation

Assumptions:

» The fate of the mutant population is settled when m is still
very small (does not hold for nearly neutral, neutral, or
disadvantageous mutations)

» We consider a local average growth rate r,(1 — (w(x)))

Define p(x, t|¢, T) as the probability to find a mutant at x at time
t, given that one was introduced at £ at time 7

» Assume t > 7, but very close: then

w(x,t) ~ w(Xx,T) = Wiir(X)
» Then u(x) is the probability that the mutant in x fixes
» If all events are independent, u(x) satisfies

+oo
u(e) = / dx u(x) p(x, tE, 7)
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Differentiating wrt t we obtain
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Comparison with the data

The lines correspond to the solution of the differential equation
The differential equation “correctly” evaluates L



The substitution rate

» Substitution rate R vs. the beneficial mutation rate U,:
R— Ub/dx WO)W(X)) = Uy G

» For K> 1, (u(x)W(x)) ~ (u(x)) (W(x))
» Since W(x) = Kw(x), we expect G x K
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Results for G




Effects of finite density

By exploiting the analogy with travelling waves (s = ry/ry — 1)

1—m/y/sIn? 2
N27TKe w/V sIn® Ko+

G .
\/<772/ In2 Ke) +s
G
o -
// -
— -
) / ////
100 /// 7
- //// ]
_— //
_ -
1k
/// L L L L K
100 1000 10 10° 10° 107 108

Asymptotics is reached very slowly!



Summary

» Range expansion “suffocates” beneficial mutations, unless
they arise enough far ahead of the expanding waves

» The substitution rate is strongly decreased for weakly
beneficial mutations

» However, even a small amount of drift substantially
increases the substitution rate

» A similar phenomenon favors individuals with larger D (but
equal fitness) (Pigolotti and Benzi, 2014)

» The moral:
Rather than the “fittest” or “most deserving”
Evolution favors those who are in the right place at the
right moment!!
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