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Thermodynamics and
Information



From Maxwell’s demon to Szilard’s engine

Maxwell’s demon:

Image credit: J. Torchinsky
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From Maxwell’s demon to Szilard’s engine

Szilard’s engine:

W = kBT log 2 per cycle

3



From Maxwell’s demon to Szilard’s engine

Feynman’s engine:

H = −
∑

i pi log pi: Shannon entropy

W ≤ N kBT (Hout −Hin)
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Landauer’s Principle

Reconciling Szilard’s demon with the Second Law:
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Landauer’s Principle

Any logically irreversible manipulation of information,
such as the erasure of a bit or the merging of two
computation paths, must be accompanied by a
corresponding entropy increase in non-information bearing
degrees of freedom of the information processing
apparatus or its environment.

Bennett, 2003

In particular, error correction is logically irreversible, thus implies
dissipation

4



Kelly’s Horse Races

Kelly, 1953

Kelly’s horse races:

• There are n horses in a race, the i-th horse can win with
probability pi and yields oi times the bet

• What is the best betting strategy (b∗ = (b∗i )) if the race is
indefinitely repeated?

Results:

1. Maximize the expected growth rate of the capital:
Λ(b) = limN→∞ ⟨log(SN/S0)⟩ /N =

∑n
i=1 pi log(oibi)

2. If the bet is “fair”, oi = (pi)
−1, ∀i, then Λmax = 0

3. If the “true” probabilities are pi(y), the optimal strategy is
b∗i = pi(y)

4. Then Λ(b∗) =
∑

i pi(y) log(pi(y)/pi) = DKL(p(y)∥p) ≥ 0

5. Thus DKL(p(y)∥p) measures the value of the extra information y
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Kelly vs. Szilard

Vinkler, Permuter and Merhav, 2014

Horse races Szilard engine

Xk ∈ {1, . . . , n}: k-th res. Xk ∈ {L,R}: k-th cycle location
y: extra info yk : (noisy) measure result
pX : prob. vector for X pX : prob. vector of location
pX(y): prob. with extra info pX(y): prob. after measure
oX : odds vector oX : vtot/v0(x), x ∈ {L,R}
bX(y): bet on X , given y vf(x)/v

tot: normalized final volume
log(oXk

bXk
): log capital incr. Wk = kBT

∑
x px(y) log(vf(x)/v0(x))

N.B.: We take the liberty to choose the initial and final locations of
the barrier v0(x), vf(x)

max ⟨WN ⟩ = N kBT

⟨
log

pX(Y )

pX

⟩
= N kBT I(X;Y )
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Generalized Second Law



A generalized Clausius inequality

• System described by a hamiltonian Hx(λ),
peqx (λ) := e−(Hx(λ)−F (λ))/T

• Information content: I(p|λ) := DKL(p∥peq) :=
∑

x px log(px/p
eq
x )

• Manipulation: λ = λ(t), λ(0) = λ0, λ(tf) = λf

• Work: W :=
∫ tf
0

dt λ̇(t) ∂λHx(t)

• Wirr := W − (Fλf
− Fλ0)

⟨Wirr⟩ ≥ T [I(p(tf)|λf)− I(p(0)|λ0)]

Esposito and van den Broeck, 2011
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Optimal Protocol for Work Extraction

Equilibrium: U = U0
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Optimal Protocol for Work Extraction

Measurement: U = Uλ = −T log pmeas(x|λ)
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Optimal Protocol for Work Extraction

Quench: U −→ Uλ, Wirr = ⟨(Uλ − Fλ)− (U0 − F0)⟩

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

U
λ
(x

)

x

8



Optimal Protocol for Work Extraction

Slow relaxation: Uλ −→ U0
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Dissipation-Speed-Accuracy
Trade-off



Enzyme-assisted assembly process

s ∈ {r “right”,w “wrong”}
Examples:

• tRNA aminoacylation: tRNA + aa −→ activated tRNA
• DNA transcription: ssDNA + nucleotide −→ DNA + RNA

Error rate:
ξ :=

rate of wrong catalysis: Jw
total rate of catalysis: Jr + Jw
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The problem

• Physiological error rates are much smaller than
thermodynamically expected

• Kinetic (non-equilibrium) mechanisms have been suggested to
explain this fact (Ninio 1974, Hopfield 1975, Bennett 1979)

• Correction entails thermodynamic expense
• Can we characterize the thermodynamic efficiency of
proofreading?

• Can we characterize how different proofreading mechanisms
fare in efficiency, speed and accuracy?
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Description

• Enzyme-substrate complexes identify states i
• Dynamics described by master equation:

dpi
dt

=
∑
j (̸=i)

′
(kijpj − kjipi)

• Irreversible catalysis rate: F
• Kramers’ form for the reaction rates (kBT = 1):

k = Ωe−∆

• Entropy production Ṡi and entropy flow Ṡe (steady state: p̄i):

Ṡi := 1
2

∑
i ̸=j

′
(kij p̄j − kjip̄i) log

kij p̄j

kjip̄i

Ṡe := −1
2

∑
i ̸=j

′
(kij p̄j − kjip̄i) log

kij

kji
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Observables

Entropy balance in the steady state:

− d

dt

∑
k

pk log pk = Ṡi + Ṡe −ṠF︸︷︷︸
catalysis

= 0

• Mean step duration:

τ := (total catalysis rate:Jr + Jw)
−1

• Entropy production per step: ∆iS := τ Ṡi ≥ 0

• Entropy flow per step: ∆eS := τ Ṡe ≤ 0

• Free-energy dissipation in the final catalysis:
∆SF := τ ṠF = τF

∑
s p̄final state(s) ∆µfinal step

• Efficiency: η := ∆SF /∆eS = 1 +∆iS/∆eS, 0 ≤ η ≤ 1
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Michaelis-Menten model

k+r = ωeδ+ϵ, k−r = ωeδ

k+w = ωeϵ, k−w = ωeγ

After Sartori & Pigolotti, 2013
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Michaelis-Menten model

ξ =
F p̄w

F p̄w + F p̄r
=

eδω + F

(eγ + 1) eδω + (eδ + 1)F

≥ 1

emax{δ,γ} + 1
≃ e−max{δ,γ}

Two regimes (Sartori & Pigolotti, 2013):

Energetic discrimination: γ > δ; ξmin is reached for F → 0

Kinetic discrimination: γ < δ; ξmin is reached for F → ∞
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Michaelis-Menten model

γ = 3, ϵ = 10, ω = 1 and
δ = 0 (green), δ = 6 (light blue), δ = 12 (dark blue)
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Michaelis-Menten model

Efficiency-error trade-off in the purely kinetic regime of
discrimination (scale change!)
γ = 3, ϵ = 10, ω = 1 and
δ = 6 (grey), δ = 8 (light blue), δ = 10 (dark blue)
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The Ninio-Hopfield model
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The Ninio-Hopfield model

ϵ = 10, ω = 1, γ = 3 and
(δ, δp) = (0, 0) (green: energetic-energetic)
(δ, δp) = (6, 0) (grey: kinetic-energetic)
(δ, δp) = (0, 6) (light blue: energetic-kinetic)
(δ, δp) = (6, 6) (dark blue: kinetic-kinetic)
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The Ninio-Hopfield model

• Kinetic and energetic discrimination regimes can cooperate in
the proofreading pathway reducing the error rate

• faster, more dissipative and more efficient process obtains when
the kinetic discrimination predominates on the first pathway

• Minimum error rate (Hopfield 1975: ξmin = e−2γ):

ξmin ≃ e−(max(γ,δ)+γ+δp)

• ξmin is reached in the F → 0 limit
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The Murugan-Huse-Leibler model

Energetic discrimination: δ = 0, γ = 3, ϵu = 8, ϵf = 8, ϵb = 8

grey: N = 1; light blue: N = 2; dark blue: N = 3
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The Murugan-Huse-Leibler model

Dissipation per step in the kinetic discrimination regime:

γ = 0, ω = 1, ϵ = 10, δ = 3, N = 1, 2, 3
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Summary



Summary

• We analyzed accuracy vs. speed trade-off for several proposed
models of kinetic proofreading

• The kinetic vs. energetic discrimination concept plays an
essential role

• We introduced and evaluated an efficiency measure for the
process

• Outlook
• We have also considered processes with short-time memory: the
results are very similar

• The analysis can be extended to other kinds of information
processing (e.g., sensing)
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