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From Maxwell’'s demon to Szilard’s engine

Maxwell's demon:

Image credit: J. Torchinsky



From Maxwell’'s demon to Szilard’s engine

Szilard's engine:
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From Maxwell’'s demon to Szilard’s engine

Feynman's engine:

H = -3, pilogp;: Shannon entropy

WSNkBT (Hout_Hi )



Landauer’s Principle

Reconciling Szilard’s demon with the Second Law:
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Landauer’s Principle

Any logically irreversible manipulation of information,
such as the erasure of a bit or the merging of two
computation paths, must be accompanied by a
corresponding entropy increase in non-information bearing
degrees of freedom of the information processing
apparatus or its environment.

Bennett, 2003

In particular, error correction is logically irreversible, thus implies
dissipation



Kelly’s Horse Races

Kelly, 1953

Kelly’s horse races:

- There are n horses in a race, the ¢-th horse can win with
probability p; and yields o; times the bet

- What is the best betting strategy (b* = (b7)) if the race is
indefinitely repeated?



Kelly’s Horse Races

Kelly, 1953

Kelly’s horse races:

- There are n horses in a race, the ¢-th horse can win with
probability p; and yields o; times the bet

- What is the best betting strategy (b* = (b7)) if the race is
indefinitely repeated?

Results:

1. Maximize the expected growth rate of the capital:
A(b) = limy—,o0 (log(Sn/S0)) /N = 37, pilog(oibi)
2. If the bet is “fair”, o; = (p;) ™1, Vi, then Apax =0
3. If the “true” probabilities are p;(y), the optimal strategy is
b = pi(y)
4. Then A(b*) = 3, pi(y) log(pi(y)/pi) = Dxw(p(y)llp) = 0
5. Thus Dkr(p(y)||p) measures the value of the extra information y



Kelly vs. Szilard

Vinkler, Permuter and Merhav, 2014

Horse races Szilard engine

X, €{l,...,n}: k-th res. X, € {L,R}: k-th cycle location

y: extra info yi: (noisy) measure result

px: prob. vector for X px: prob. vector of location

px(y): prob. with extra info  px(y): prob. after measure

ox: odds vector ox: v /ug(x), z € {L,R}

bx(y): beton X, given y ve(z) /v*°t: normalized final volume

log(ox,bx, ): log capital incr. Wi = kgT >, pa(y) log(ve(z) /vo(z))
N.B.: We take the liberty to choose the initial and final locations of
the barrier vo(x), ve(x)

max (Wy) = N kgT <log pX(Y)> = NkgTI(X;Y)
Px



Generalized Second Law




A generalized Clausius inequality

- System described by a hamiltonian H,(\),
peA(N) 1 = e~ (Ha()=F(N)/T
- Information content: I(p|\) := Dk (p||p°?) := >, pe log(ps/pSY)
- Manipulation: A = A(¢), A(0) = Ao, A(t) = At
- Work: W : f dt A(t (t) OnHy(p)
c Wi :=W = (F), — Fy,)

[(Wiee) > T L(p(ts) M) — 1(p(0) [ A0)] |

Esposito and van den Broeck, 2011



Optimal Protocol for Work Extraction

Equilibrium: U = Uy
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Optimal Protocol for Work Extraction

Measurement: U = Uy = —T log p™?s(z|\)

2




Optimal Protocol for Work Extraction

Quench: U — Uy, Wiy = (Ux — Fy) — (Uy — Fp))
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Optimal Protocol for Work Extraction

Slow relaxation: Uy — U,
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Dissipation-Speed-Accuracy
Trade-off




Enzyme-assisted assembly process
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s € {rright”,w“wrong”"}
Examples:

- tRNA aminoacylation: tRNA + aa — activated tRNA
- DNA transcription: ssDNA + nucleotide — DNA + RNA
Error rate:

€= rate of wrong catalysis: J,
" total rate of catalysis: J, + J,




The problem

- Physiological error rates are much smaller than
thermodynamically expected

- Kinetic (non-equilibrium) mechanisms have been suggested to
explain this fact (Ninio 1974, Hopfield 1975, Bennett 1979)

- Correction entails thermodynamic expense

- Can we characterize the thermodynamic efficiency of
proofreading?

- Can we characterize how different proofreading mechanisms
fare in efficiency, speed and accuracy?



- Enzyme-substrate complexes identify states ¢
- Dynamics described by master equation:

dp; !
& > (kigp; — kjipi)
3 (F#1)

- Irreversible catalysis rate: I

- Kramers' form for the reaction rates (kgT = 1):
k=Qe?

- Entropy production S; and entropy flow S, (steady state: j;):
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Si = %217’57/ (kuﬁj kJLpL> 1Og

Se 1= =32z (kisPj — kjibs) log T
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Observables

Entropy balance in the steady state:

d L
— logpr = S+ Se —Sp =0
- §k prlogpy, = S5 + /

catalysis

- Mean step duration:
7 := (total catalysis rate: J, + JW)’1

- Entropy production per step: A;S :=75; >0
- Entropy flow per step: AgS :=75, <0
- Free-energy dissipation in the final catalysis:
ASp := 7'SF =7F Zspﬁnalstate(s) A,Uﬁnalstep
- Efficiency: n:= ASp/AS =1+ AiS/AS, 0<n <1



Michaelis-Menten model
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reaction coordinate

kt = wedte, k- = we®
+ _ € = __ ~
ky,, = we’, k, = we

After Sartori & Pigolotti, 2013



Michaelis-Menten model
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Two regimes (Sartori & Pigolotti, 2013):

Energetic discrimination: v > §; £, IS reached for FF — 0
Kinetic discrimination: ~ < 6; &, IS reached for F — oo



Michaelis-Menten model
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Michaelis-Menten model
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Efficiency-error trade-off in the purely kinetic regime of
discrimination (scale change!)

~v=3,e=10,w =1 and

5 =6 (grey), 6 = 8 (light blue), 6 = 10 (dark blue)



The Ninio-Hopfield model

Gibbs free energy, G

reaction coordinate
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The Ninio-Hopfield model
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e=10,w=1,~v=3and

(6,8,) = (0,0) (green: energetic-energetic)
(6,6,) = (6,0) (grey: kinetic-energetic)
(6,6,) = (0,6) (light blue: energetic-kinetic)
(6,9,) = (6,6) (dark blue: kinetic-kinetic)
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The Ninio-Hopfield model

- Kinetic and energetic discrimination regimes can cooperate in
the proofreading pathway reducing the error rate

- faster, more dissipative and more efficient process obtains when
the kinetic discrimination predominates on the first pathway

- Minimum error rate (Hopfield 1975: &nin = e~ 27):

.~ o (max(y,8)+v+0p)
gmln ~e

+ &nin IS reached in the FF — 0 limit
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The Murugan-Huse-Leibler model
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The Murugan-Huse-Leibler model

Dissipation per step in the kinetic discrimination regime:
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Summary




- We analyzed accuracy vs. speed trade-off for several proposed
models of kinetic proofreading

- The kinetic vs. energetic discrimination concept plays an
essential role

- We introduced and evaluated an efficiency measure for the
process

- Outlook

- We have also considered processes with short-time memory: the
results are very similar

- The analysis can be extended to other kinds of information
processing (e.g., sensing)
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