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The debate on Boltzmann’s equation

I Maxwell’s distribution
I Boltzmann’s equation
I Loschmidt’s argument
I Boltzmann’s answer
I Poincaré’s theorem and Zermelo’s argument
I Boltzmann’s answer



Maxwell’s distribution

I Velocity distribution: f (v) =
∑N

i=1 δ(v − vi)

I Maxwell distribution: f eq(v) ∝ e−λ(
1
2 mv2)

I Via the Bernouilli argument, λ−1 = 2
3(E/N) = kBT

Maxwell’s argument (1867):
I Collisions change (v1,v2) to (w1,w2)

I At equilibrium, as many collisions should go from (v1,v2)
to (w1,w2) as viceversa (detailed balance)

I The corresponding rates are proportional to f eq(v1)f eq(v2)
and f eq(w1)f eq(w2) respectively, so these products must be
equal

I The only connection between the two pairs is that they
correspond to the same value of total kinetic energy

I This can only be satisfied if log f eq(v) ∝ kinetic energy



Approach to equilibrium
How does f (v , t) approach Maxwell’s distribution?

Boltzmann’s 1872 memoir:

∂f (v , t)
∂t

= gain(v , t)− loss(v , t)

gain(v , t) =

∫
dv ′ dw dw ′ Ω(v ,v ′|w ,w ′)f (2)(w ,w ′, t)

loss(v , t) =

∫
dv ′ dw dw ′ Ω(w ,w ′|v ,v ′)f (2)(v ,v ′, t)

Symmetry of the collision kernel (time reversal & space
inversion):

Ω(v ,v ′|w ,w ′) = Ω(w ,w ′|v ,v ′)

Molecular chaos hypothesis (Stoßzahlansatz):

f (2)(v1,v2, t) = f (v1, t)f (v2, t)



Boltzmann’s equation and the H-theorem

∂f (v , t)
∂t

=

∫
dv ′ dw dw ′ Ω

[
f (w , t)f (w ′, t)− f (v , t)f (v ′, t)

]
H-theorem:

I Definition:
H(t) =

∫
dv f (v , t) log f (v , t)

I If f (v , t) satisfies Boltzmann’s equation

dH
dt
≤ 0

I H is minimal for the Maxwell distribution:

δ

δf

[
H + λ

〈
1
2

mv2
〉]

= log f (v) + λ
1
2

mv2 + const.



Observations

I Boltzmann initially assumed the molecular chaos
hypothesis tacitly

I In the 1872 memoir, he used the kinetic energy distribution
rather than the velocity distribution

I He also treated the more general nonuniform case with
f (r ,v , t)—which is the most useful for applications

I One also finds a discussion of polyatomic molecules
I Boltzmann identifies H with the gas entropy (he used the

symbol E in the manuscript)
I He introduces in this memoir his energy discretization

(having to grasp functional equations and the like)



Proof of dH/dt ≤ 0

I Consider the effect of (v ,v ′) −→ (w ,w ′) collisions:

df (v) = −dt Ω f (v)f (v ′)
df (v ′) = −dt Ω f (v)f (v ′)
df (w) = dt Ω f (v)f (v ′)

df (w ′) = dt Ω f (v)f (v ′)

I Overall effect on H: since dH ' log f df ,

dH = dt Ω f (v)f (v ′) log
f (w)f (w ′)
f (v)f (v ′)

I Considering also the reverse collision

dH = dt
∫

Ω
[
f (v)f (v ′)− f (w)f (w ′)

]
log

f (w)f (w ′)
f (v)f (v ′)

≤ 0



Loschmidt’s objection

I Hamilton’s equations are time-reversal invariant
I What happens if we reverse all velocities?

Low’s argument (cf. Huang, Statistical Mechanics):
I Assume that at t = 0 the system exhibits molecular chaos

and f (v ,0) is non-Maxwellian, but depends only on |v |:
then dH/dt < 0 for t = ε > 0

I Consider a system with all velocities reversed: also for it
dH/dt < 0 for t = ε

I The future of the second system is the past of the first one:
hence dH/dt > 0 for t = −ε

I Thus H is at a local peak whenever molecular chaos is
satisfied

http://mw.concord.org/modeler1.3/mirror/thermodynamics/loschmidt.html


The behavior of H(t)

K. Huang, Statistical Mechanics



The behavior of H(t)

K. Huang, Statistical Mechanics



Boltzmann’s answer

Introduces the probability of obtaining the distribution f (r ,v , t):

One therefore cannot prove that, whatever may be
the positions and velocities of the spheres at the
beginning, the distribution must become uniform after
a long time; rather we can only prove that infinitely
many more initial states will lead to a uniform one after
a definite length of time than to a non-uniform one.

[Approach to equilibrium] is in fact a consequence
of probability theory, for any non-uniform distribution of
states, no matter how improbable it may be, is still not
absolutely impossible.



A new research program

I Consider an ensemble of systems, with the same initial
value of f (v , t)

I Define f̄ (v , t) as the ensemble average of f (v , t)
I Will it obey Boltzmann’s equation and satisfy the

H-theorem?



Developments

Carleman, 1933: Existence and uniqueness of f̄ (v , t) for a
hard-sphere gas, is special conditions

Grad, 1949: Definition of the Boltzmann-Grad limit: N →∞,
σ → 0, Nσ2 = const.

Cercignani, 1972: Conjecture about the convergence to the
Boltzmann equation in the Boltzmann-Grad limit

Lanford, 1973: Proof of the convergence to the solution of the
Boltzmann equation for a finite (and short!) time
interval

DiPerna and Lions, 1989: Existence and weak stability for the
Boltzmann equation (Field medal)

Villani, 2003: Cercignani’s conjecture is sometimes true and
sometimes almost true (Field medal)



Poincaré’s theorem and Zermelo’s argument

Poincaré’s theorem (1890):

If a system obeys the canonical equations of
motion, and is bound to evolve in a limited region of
space and with bounded values of the velocity, for
almost all initial conditions the system will visit an
infinite number of times any arbitrary neighborhood of
the initial condition.

Zermelo’s argument:

From this it follows directly that there can be no
single-valued continuous function S = S(x1, x2, . . . , xn)
of the states that always increases for all initial states
in some region, no matter how small the region.



Boltzmann’s answer

. . . I have also emphasized that the second law of
thermodynamics is from the molecular viewpoint
merely a statistical law. Zermelo’s paper shows that
my writings have been misunderstood; nevertheless it
pleases me for it seems to be the first indication that
these writings have been paid any attention in
Germany.



Boltzmann’s answer

It should indeed be obvious that if a trillion tiny
spheres, each with a high velocity, are initially
collected together in one corner of a container with
absolutely elastic walls, then in a very short time they
will be uniformly distributed through the container; and
that the time required for all their collisions to have
compensated each other in such a way that they all
come back to the same corner, must be so large that
no one will be present to observe it.



The nature of the second law

The second law will be explained mechanically by
means of the assumption A (which is of course
improvable) that the universe, considered as a
mechanical system—or at least a very large part of it
which surrounds us—started from a very improbable
state and still is in an improbable state.



The nature of the second law

. . . if we do not make any assumption about the
present state of the universe, then of course we
cannot expect to find that a system isolated from the
universe, whose initial state is completely arbitrary, will
be in an improbable state initially rather than later.



The nature of the second law

An answer to the question—how does it happen
that at present the bodies surrounding us are in a very
improbable state—cannot be given, any more than
one can expect science to tell us why phenomena
occur at all and take place according to certain laws.



Is the “arrow of time” absolute?

[An alternative hypothesis is that] there must then
be in the universe, which is in thermal equilibrium as a
whole and therefore dead, here and there relatively
small regions of the size of our galaxy [. . . ] which
during the relatively short time of eons deviate from
equilibrium. [. . . ] For the universe as a whole the two
directions of time are indistinguishable, just as in
space there is no up or down. However, just as at a
certain place on the earth’s surface we can call “down”
the direction towards the centre of the earth, so a
living being that finds itself in such a world at a certain
period of time can define the time direction as going
from less probable to more probable states. . .



Entropy vs. probability

The “great memoir” of 1877:
I In an isolated system of bodies, the probability of a

(macroscopic) state cannot but increase
I On the other hand, the same applies for the entropy
I Thus the entropy must be a monotonically increasing

function of the probability
Questions:

I What does B. understand for state? and for probability?
I How does he evaluate this relation?



Energy repartition
A first example:

I Single particle energies:

E ∈ {0, ε,2ε, . . . ,pε}

I Repartition: (w0,w1,w2, . . . ,wp): wk is the number of
particles with energy equal to kε

I Complexion: i −→ Ei , i = 1, . . . ,n, Ei ∈ {0, . . . ,pε}
I Number of complexions

P =
n!

w0!wi ! · · ·wp!

I Probability:

W =
P

J
; J = number of all complexions



Maximal probability

I Asymptotic expression:

logP ' n log n − w0 log w0 − w1 log w1 − · · · − wp log wp

I Constraints: ∑
k

wk = n;
∑

k

kwk = λ

I Constrained extremum (via Lagrange multipliers) (for
p →∞)

log wk = −(µ+ kν)



A comment

Boltzmann’s calculation of the asymptotic behavior of
multinomial probabilities in terms of relative entropy
was carried out in 1877 as a key component of his
paper that gave a probabilistic interpretation of the
Second Law of Thermodynamics. This fundamental
calculation represents a revolutionary moment in
human culture during which both statistical mechanics
and the theory of large deviations were born.

R. S. Ellis, 1999



Generalization
Point-like particles: divides velocity space into cells of volume
εζη and obtains

Ω = logP = n log n − (p + q + r + 1) log 2π − n log(εζη)

−
+p∑

a=−p

+q∑
b=−q

+r∑
c=−r

(εζη)f (aε,bζ, cη) log f (aε,bζ, cη)

= const.−
∫∫∫

dvx dvy dvz f (vx , vy , vx ) log f (vx , vy , vx )

Polyatomic molecules and external forces: phase space
(pαi ,q

α
i ) (α is the kind of particle)

Ω = −

[∑
α

∫∫
· · · f (pα1 ,p

α
2 , . . . ,q

α
r ) log f (pα1 ,p

α
2 , . . . ,q

α
r )

dpα1 dpα2 · · · dqαr

]



Relation between P and the entropy
Ideal gas: Ω = logP

Ω = −
∫∫∫∫∫∫

f (x , y , z,u, v ,w) log f (x , y , z,u, v ,w)

dxdydzdudvdw

N.B.: Boltzmann’s T corresponds to 3
2kBT :

f (x , y , z,u, v ,w) =
N

V
(4πT

3m

) 3
2

e−
3m
4T (u2+v2+w2)

Ω =
3N
2

+ N log

[
V
(

4πT
3m

) 3
2
]
− N log N

dΩ = N
dV
V

+
3N
2

dT
T

dQ = NdT +
2N
3V

T dV =
2
3

T dΩ



Comments

I B. associates entropy to the macroscopic state of a
complex, isolated system

I Entropy is proportional to the logarithm of the probability of
this macroscopic state: the “Gibbs paradox” does not apply
(−N log N term!)

I B.’s entropy is an observable, i.e., a function of the
microstate: it can fluctuate, and surely does not obey
Liouville’s theorem

I B. explicitly evaluates entropy only for an aggregate of
independent particles, but can also (in principle) consider
interacting systems (equation for polyatomic molecules)

I He does not attempt the generalization to other
aggregation states because “the nature of these
aggregation states is too little known and their theory has
not yet been worked out mathematically”



Boltzmann’s vs. Gibbs entropies

I Boltzmann: X is the microstate; M(X ) the corresponding
macrostate; W (M) its probability (ratio of phase space to
the whole available phase space)

SB(X ) = log W (M(X ))

I Gibbs: ensemble distribution ρ(X )

SG[ρ] = −
∫
ρ(X ) log ρ(X ) dX

I At equilibrium, if M is a macrostate and ρ(X ) is its
corresponding microcanonical ensemble

Seq
B = Seq

G

I Out of equilibrium: SG is constant, while SB will typically
increase



Approach to equilibrium in the ideal gas

Frisch, Swendsen
I Free expansion: An ideal gas is initially at equilibrium in a

cylinder of length L0 and section S; the available volume is
suddenly extended to length L

I One-dimensional model: Expansion in the x direction,
independence of the y and z directions

I Initial distribution factorizes: each particle evolves
independently

Solution of the dynamics:
I Let x ∈ [−L,+L]; when the particle hits the boundary at

x = +L it reenters (with the same velocity) at x = −L (and
viceversa); crossing x = 0 corresponds to impact at the
origin

I We set the mass m = 1, kBT = 1



Dynamics
Initial condition:

ρ(x ,p,0) =
e−p2/2
√

2π
θ(L0 − |x |)

Distribution at time t :

[x ]L = 2L
[

frac
(

L + x
2L

)
− 1

2

]

-4 -2 2 4

x

-2

-1

1

2

@xDL

ρ(x ,p, t) =
e−p2/2
√

2π
θ(L0 − [x − pt ]L)



Evolution of the phase-space distribution
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Evolution of the phase-space distribution
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Evolution of the phase-space distribution
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Evolution of the phase-space distribution
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Evolution of the phase-space distribution
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Evolution of the phase-space distribution

t = 2.5

-1 -0.5  0  0.5  1

x

-4

-2

 0

 2

 4

p



Evolution of the phase-space distribution

t = 3
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Evolution of the p-distribution at x = 0
t = 0
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I The distribution never reaches equilibrium
I Observables reach equilibrium pretty fast!



Evolution of the p-distribution at x = 0
t = 0.5
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I Observables reach equilibrium pretty fast!



Evolution of the p-distribution at x = 0
t = 1
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Evolution of the p-distribution at x = 0
t = 1.5
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I Observables reach equilibrium pretty fast!



Evolution of the p-distribution at x = 0
t = 2
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I The distribution never reaches equilibrium
I Observables reach equilibrium pretty fast!



Evolution of the p-distribution at x = 0
t = 2.5
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I The distribution never reaches equilibrium
I Observables reach equilibrium pretty fast!



Evolution of the p-distribution at x = 0
t = 3
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I The distribution never reaches equilibrium
I Observables reach equilibrium pretty fast!



Evolution of the densities

Particle density
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Evolution of the densities

Particle density

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0



Evolution of the densities

Energy density
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Evolution of the densities
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Evolution of the densities

Energy density

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0



Evolution of the densities

Energy density

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0



Evolution of the densities

Energy density

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0



Evolution of the densities
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Kac’s Ring Model

I A ring contains N sites: in each there is a particle that can
be white (σ = +1) or black (σ = −1)

I M “barriers” are disposed on fixed bonds in the ring
I At each time step, all the particles move counterclockwise

by one site
I If a particle crosses a barrier, it changes color

Properties of the dynamics:
Reversibility: Just turn the particles clockwise
Recurrence: After 2N steps (N if M is even) the system goes

back to the initial state



Approximate analysis
I W (t): number of white particles at time t
I B(t): number of black particles at time t
I w(t): number of white particles before a barrier
I b(t): number of black particles before a barrier
I Exact evolution equation:

W (t + 1) = W (t) + b(t)− w(t)

I “Molecular chaos”: w(t) = W (t)M/N, b(t) = B(t)M/N
I ∆(t) = W (t)− B(t), µ = M/N, B(t) = N −W (t)

∆(t + 1) = (1− 2µ)∆(t)

I 0 < µ < 1
2 , τ = −1/ log(1− 2µ)

∆(t) = ∆(0) e−t/τ



Simulations
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Microscopic Analysis
I σ = (σ1, . . . , σN), σi = ±1
I ε = (ε1, . . . , εN), εi = ±1,

εi =

{
−1, if ∃ barrier between i and i + 1
1, otherwise

I Liouville operator

σ(t + 1) = Lεσ(t)
(Lεσ)i+1 = εiσi

I Expression for ∆(t) (i ’s are taken modulo N):

∆(t) =
N∑

i=1

σi(t) =
N∑

i=1

εi−1σi−1(t − 1)

=
N∑

i=1

εi−1 · · · εi−tσi−t (0)



ε averages

I Averages over ε:

〈∆(t)〉 =
N∑

i=1

〈εi−1 · · · εi−t〉σi−t (0)

I For t < N, all ε factors are independent:

〈εi−1 · · · εi−t〉 =
∑

k

(−1)kpk

pk =

(
t
k

)
µk (1− µ)t−k

〈εi−1 · · · εi−t〉 = (1− 2µ)t

I 〈∆(t)〉 = (1− 2µ)t ∆(0)



Recurrence

I For N ≤ t ≤ 2N, some ε’s occur twice (ε2 = 1)
I Only N − (t − N) = 2N − t are independent
I Thus 〈∆(t)〉 = (1− 2µ)2N−t ∆(0)

I “Anti-Boltzmann” behavior!
I Variance:

Var[∆(t)] ≤ NV (t)

V (t) grows from 0 to (1− (1− 2µ)2N)∆2(0)) as t grows
from 0 to N
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Initial conditions

W (0) = N/2
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Conclusions

I It is worthwhile to go back to Boltzmann’s original writings,
and not to rely on the Ehrenfests’ Encyclopaedia article

I The concept of entropy in B.’s writing is more subtle than
the caricature we are accustomed to; it is hard to evaluate,
but can be helpful (Swendsen, Lebowitz)

I The link between irreversibility and cosmology was first
envisaged by B., and is still under investigation
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