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Abstract

When DNA molecules are heated they undergo a denaturation transition by which the two
strands of the molecule are separated and become unbound. Experimental studies strongly indicate
that the denaturation transition is 0rst order. The main theoretical approach to study this transition,
introduced in the early 1960s, considers microscopic con0gurations of a DNA molecule as given
by an alternating sequence of non-interacting bound segments and denaturated loops. Studies of
this model usually neglect the repulsive, self-avoiding, interaction between di6erent loops and
segments and have invariably yielded continuous denaturation transitions. It is shown that the
excluded volume interaction between denaturated loops and bound segments may be taken into
account using recent results on the scaling properties of polymer networks of arbitrary topology.
These interactions are found to drive the transition 0rst order, compatible with experimental
observations. The unzipping transition of DNA which takes place when the two strands are
pulled apart by an external force acting on one end may also be considered within this approach,
again yielding a 0rst-order transition. Although the denaturation and unzipping transitions are
thermodynamically 0rst order, they do exhibit critical 8uctuations in some of their properties.
This appears, for example, in the algebraic decay of the loop size distribution at the thermal
denaturation and in the divergence of the length of the end segment as the transition is approached
in both thermal- and force-induced transitions. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Melting, or thermal denaturation of DNA has been a subject of extensive experimen-
tal and theoretical studies since the early 1960s [1]. In this process, the two complemen-
tary strands of the DNA molecule which are bound to each other by
hydrogen bonds detach upon increasing the temperature until they fully separate. Be-
low the melting temperature the DNA is composed of a series of open loops separated
by bound segments. The typical size of open loops increases with temperature, as the
melting point is approached. The primary experimental tool for studying this process
is the measurement of UV light absorption at a wavelength of about 270 nm. Light
at this wavelength is preferentially absorbed by the single strands and it thus provides
a measure for the fraction of the bounded pairs, �(T ), at any given temperature T .
This is known as the optical melting curve of the DNA. One expects � to decrease
with temperature, and to vanish at the melting temperature TM. Typically, the melting
curve exhibits a series of plateaus and sharp steps whose size and temperature position
depend on the sequence of the particular molecule under study. This is a result of
the fact that the two types of base pairs composing a DNA molecule, AT and CG
have di6erent binding energies, with the AT bond being somewhat weaker than the
CG one. The steps thus correspond to the melting of various segments of the DNA
which are characterized by di6erent local sequences with a di6erent average binding
energy. Thus, a segment containing relatively high concentration of AT bonds melts
at a lower temperature than a segment of a similar length but with high concentration
of CG bonds. The regions in the DNA chain which correspond to steps in the melt-
ing curve are usually referred to as cooperatively melting regions (CMR). The melt-
ing curve thus provides statistical information on the DNA sequence. It exhibits strong
hysteresis e6ects. This is interpreted as an indication that denaturation (upon heating)
and renaturation (upon cooling) of the CMRs take place at di6erent temperatures (for
a review see [1]). Direct observation of the DNA denaturated loop structure is pro-
vided by electron microscopy studies [2]. Experimentally, the steps in the melting curve
(which correspond to the melting of a 0nite region) are found to be rather sharp with
some rounding, usually attributed to 0nite size e6ects. This indicates that the melting
transition is 0rst order.
More recently, the introduction of new techniques such as optical tweezers and

atomic force microscopy [3,4] has allowed the manipulation of single biological
molecules. This made it possible to study a wider variety of physical properties of
the DNA molecule. For example, optical tweezers have been used to apply a force
and pull apart the two strands at one end of the molecule. It is found that a phase
transition takes place at a critical force where the molecule is unzipped and the two
strands are separated [5].
Thermal denaturation has been studied theoretically since the early 1960s. The early

models, which we refer to as Poland–Scheraga (PS) type, or non-interacting loops
models [6,7] consider the molecule as being composed of an alternating sequence of
independent bound and denaturated segments. A bound segment is energetically favored
over an unbound one, while a denaturated segment (a loop) is entropically favored.
Within this approach the interaction between the di6erent segments of the molecule is
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not taken into account. This assumption simpli0es the analysis considerably. The order
of the transition is found to be determined by a parameter c which characterizes the
statistical weight of a loop. The number of con0gurations of a loop of length ‘ behaves
as s‘=‘c for large ‘. Here s is a non-universal constant. It has been shown [8] that
the phase transition is 0rst order if c¿ 2 and second order if 1¡c6 2. For c¡ 1 no
transition takes place and the strands are always bound. Using either a random walk [8]
or self-avoiding random walk [9,10] 1 models for the loops has yielded a continuous
transition in both d = 2 and 3 dimensions. It was suggested [9] that self-avoiding
interactions between the various parts of the chain (and not just within loops) would
further sharpen the transition even possibly making it 0rst order. However, theoretical
tools for carrying out this analysis had not been available at the time.
Numerical simulations of 0nite chains where excluded volume interactions are fully

taken into account strongly suggest that the transition is indeed 0rst order [11].
Recently, an approach has been introduced within which self-avoiding interactions both
within a loop and between a loop and the rest of the chain may be accounted for
[12,13]. To carry out the analysis of this model one has to enumerate the con0gu-
rations of a loop embedded in a chain with self-avoiding interactions. This has been
done by taking advantage of recent results obtained by Duplantier et al. [14,15] for the
number of con0guration of a general polymer network. It is found that the statistical
weight of a loop embedded in a chain has the same general form as before, namely
s‘=‘c. However, the parameter c is now modi0ed and becomes larger than two in
d¿ 2 dimensions. Thus, self-avoiding interactions make the transition 0rst order in two
dimensions and above. However, the transition is found to be accompanied by critical
8uctuations in some properties of the chain. For example, the loop size distribution
is found to decay algebraically at the transition. Indeed, the probability distribution
for loops of length ‘, P(‘), behaves as P(‘) ∼ 1=‘c at the transition. This behavior
was recently con0rmed in numerical simulations of the model where the excluded
volume interactions have been fully taken into account. The value of the mea-
sured exponent c agrees well with the theoretical predictions. It is also found that
when the boundary conditions are such that the chain is open at one end the length
of the end segment diverges as 1=|T − TM| when the melting temperature TM is
approached.
The model may be extended to consider the unzipping transition which takes place

when a force of magnitude f is applied to separate the two strands. The model yields
a 0rst-order unzipping transition with the end segment length diverging as 1=|f −
fU| near the unzipping critical force fU. These results has previously been found in
non-interacting loops models [17–21]. In calculating the critical force near the melting
transition it is found that fU ∼ |T−TM| at variance with predictions of non-interacting
loops models which yield fU ∼ |T − TM|1=2 [20]. Here  is the correlation length
exponent of a self-avoiding walk.

1 This estimate is for all con0gurations, including knotted ones. However, it has been shown that in d=3
the number of unknotted con0gurations is given by a formula of the same form but with a slightly smaller
s and with an exponent c which is practically unmodi0ed.
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Fig. 1. Schematic representation of a microscopic con0guration of the DNA molecule.

In a di6erent class of models of denaturation [22–25] and unzipping [17–21], the
two strands of the DNA are modeled by directed polymers. In this approach excluded
volume interaction is not accounted for and the denaturation transition is invariably
found to be continuous. A recent numerical study suggests that by incorporating the
bending energies of the single and double strands into the model the denaturation
transition becomes rather sharp, possibly 0rst order [25] . However, it has been argued
that as long as the attractive binding interaction between the two strands is short range,
the transition is in fact continuous and the sharpness observed is a crossover e6ect
[13]. Recently, studies in which the self-avoiding interaction is partially taken into
account have been carried out. In one study it has been argued that taking into account
excluded-volume interactions between the two strands while neglecting them within
each strand leads to an e6ective long-range potential between the strands making the
transition 0rst order [26]. A di6erent approach which takes into account the excluded
volume interactions within each strand while neglecting the inter-strand interactions
yields a continuous transition [16].
In this paper, the PS approach to thermal denaturation is reviewed and extended

to include self-avoiding interactions. This approach is then extended to consider the
unzipping transition.

2. Thermal denaturation of DNA

2.1. Non-interacting loops model

The PS model, introduced in the early 1960s [6,7], considers two strands, each
composed of a sequence of monomers. Each monomer represents one persistence length
of a single unbound strand. Typically, this is about ∼ 40 MA [27], or roughly 8 bases.
The persistence length of double-stranded DNA is at least an order of magnitude larger
[28]. Monomers on one chain can be either unbound or bound to a speci0c matching
monomer on the other chain. The interactions between a monomer and other monomers
on the second strand or on the same strand are ignored. The monomers at one end
of the molecule are assumed to be always bound. The binding energy E0¡ 0 between
matching monomers is taken to be the same for all monomer pairs.
A typical DNA con0guration is shown in Fig. 1. It is made of an alternating sequence

of bound segments and denaturated loops. The con0guration ends with two denaturated
strands. The statistical weight of a bound sequence of length ‘ is given by w‘ =
exp(−‘E0=T ), where T is the temperature and the Boltzmann constant kB is set to
1. On the other hand, a denaturated loop does not carry an energy and its statistical
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weight is derived from its degeneracy. In this model, it is assumed that the loop is
fully 8exible, and thus it is described by a random walk which returns to the origin
after 2‘ steps. Considering all possible such walks the statistical weight for large ‘
has the form �(2‘) = s‘=‘c, where s is a non-universal constant and the exponent c is
determined by the properties of the loop con0gurations. 2 Finally, the statistical weight
of the end segment, which consists of two denaturated strands each of length ‘, takes
the form �(2‘) = s‘=‘ Nc for large ‘, where Nc is in general not equal to c.2 The values
of the exponents c and Nc depend on the speci0c model used for the loops and the
end-segments, respectively (see below).
Using the weights assigned to each segment of the chain the total weight of any given

con0guration may be calculated. For example the weight of a chain which consists of a
bound segment of length ‘1, a denaturated loop of length ‘2, a bound segment of length
‘3, and a pair of denaturated strands of length ‘4, is given by w‘1�(2‘2)w‘3�(2‘4).

The model is most easily studied within the grand canonical ensemble where the
total chain length L is allowed to 8uctuate. The grand canonical partition function, Z,
is given by

Z=
∞∑
L=0

Z(L) zL =
V0(z)Q(z)

1− U (z)V (z)
; (1)

where Z(L) is the canonical partition function of a chain of length L, z is the fugacity,
and the functions U (z), V (z) and Q(z) are de0ned by

U (z) =
∞∑
‘=1

�(2‘)z‘ =
∞∑
‘=1

s‘

‘c
z‘ ; (2)

V (z) =
∞∑
‘=1

w‘z‘ ; (3)

Q(z) = 1 +
∞∑
‘=1

�(2‘)z‘ = 1 +
∞∑
‘=1

s‘

‘ Nc z
‘ (4)

with V0(z)=1+V (z). Eq. (1) can be veri0ed by expanding the partition function as a
series in U (z)V (z). The factors V0(z) and Q(z) properly account for the boundaries. To
set the average chain length, L, one has to choose a fugacity such that L=@ lnZ=@ ln z.
This implies that the thermodynamic limit L→ ∞ is obtained by letting z approach
the lowest fugacity z∗ for which the partition function (1) diverges. This can arise
either from the divergence of the numerator or from the vanishing of the denominator.
The relevant situation, at low temperature, is the second one, which corresponds to z∗

satisfying U (z∗)V (z∗) = 1. Above the transition, namely in the denaturated phase, the
numerator diverges. Moreover, when one considers the problem of DNA unzipping by
applying an external force on the strands, a divergence arising from a boundary factor
will play an important role.

2 In fact the number of con0gurations is only proportional to the expression given. For simplicity the
proportionality constant taken to be 1.
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The fraction of bound monomer pairs � is the experimentally measured quantity and
the order parameter of the transition. Its temperature dependence in the thermodynamic
limit L → ∞ can be calculated from the behavior of z∗(w). The average number of
bound pairs in a chain is given by 〈m〉= @ lnZ=@ lnw, so that

�= lim
L→∞

〈m〉
L

=
@ ln z∗

@ lnw
: (5)

Detailed analysis of z∗(w) shows that the nature of the transition is determined by
the exponent c as follows: (a) c6 1—no phase transition; (b) 1¡c6 2—continuous
phase transition; (c) c¿ 2—0rst-order phase transition. The nature of the phase transi-
tion is thus directly related to the number of con0gurations of long denaturated loops
within the chain. In the case of a continuous transition, the order parameter � behaves
near the melting point as � ∼ |T − TM|(2−c)=(c−1).
In the early studies of this problem the exponent c was evaluated by enumerating all

random walks of a given length which return to the origin [8]. It is easy to show that in
d dimensions the model yields c=d=2. This implies that there is no transition for d6 2,
a continuous transition for 2¡d6 4 and a 0rst-order phase transition for d¿ 4. The
model was subsequently extended to include the repulsive short range interaction which
exists between the strands constituting a loop. In this approach the loop is modeled as
a self-avoiding walk [9]. This yields c = d, where  is the exponent associated with
the radius of gyration RG of a self-avoiding walk. For a walk of length L one has
RG ∼ L, with  = 3

4 in d = 2 and  ≈ 0:588 in d = 3. This yields c = 3
2 in d = 2

and c = 1:766 in d= 3. Thus the transition is continuous in both cases, although it is
sharper than when the repulsive interaction is neglected altogether.
The two estimates of the exponent c described above treat the loop as an isolated ob-

ject and thus neglect its interaction with the rest of the chain. This simpli0cation is es-
sential for carrying out the analysis. In the next section, an approach is described within
which the repulsive interaction between a loop and the rest of the chain may be ac-
counted for. Although these interactions are treated only in an approximate way, this ap-
proach yields insight into the unbinding mechanism and on the nature of the transition.

2.2. Interacting loops approach

To account for the excluded volume interactions between a loop and the rest of the
chain one notes that a microscopic con0guration of the DNA molecule is composed
of many bound and unbound segments of various length. In evaluating the number of
available con0gurations of a loop the interactions with all these bound and unbound
segments have to be taken into account. This problem is simpli0ed by neglecting the
internal structure of the rest of the chain. One thus considers a loop embedded in a
8exible chain (see Fig. 2) and studies the number of con0gurations of a chain endowed
with this topology, assuming that it is self avoiding [35]. One can show that in the
limit where the loop length, 2‘, is much smaller than the length of the rest of the chain,
2L, the statistical weight of this topology can be written as a product of the statistical
weight of the loop with that of the chain. The weight of the loop is found to be of the
same form as that of a free loop but with a di6erent exponent c. This exponent is found
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Fig. 2. The topology of the loop embedded in a chain. The length of the chain from a vertex of type V1 to
the nearest vertex of type V3 is L. The length of each of the two strands connected to the V3 vertices is ‘.

to be larger than two in dimensions 2 and above, yielding a 0rst-order denaturation
transition.
To carry out this analysis one uses results obtained by Duplantier et al. [14,15] for

the number of con0gurations of polymer networks of arbitrary topology. This repre-
sents an extension of the well known results for the number of con0gurations of a
simple self-avoiding random walk [29]. In that case it is known that the number of
con0gurations scales as �linear ∼ sLL�−1, where L is the length of the polymer, s is a
non-universal geometrical constant and � is a universal exponent. The exponent � is
known exactly in d=2, numerically in d=3 and via an � expansion in d=4−�. Above
d= 4 self-avoiding interactions becomes irrelevant and thus the number of con0gura-
tions of self-avoiding random walks scales as that of ordinary random walks, yielding
�=1. The generalization of this result to an arbitrary polymer network goes as follows
[14,15]: Consider a branched self-avoiding polymer G of arbitrary topology. The poly-
mer is made of N chains of lengths ‘1; ‘2; : : : ; ‘N . These are tied together at vertices
with di6erent number of legs. A vertex with k legs is said to be of order k (k¿ 1).
The number of vertices of order k is denoted by nk . The number of con0gurations of
the network, �G, is then given by

�G ∼ sLL�G−1g
(
‘1
L
;
‘2
L
; : : : ;

‘N
L

)
; (6)

where L =
∑

i ‘i is the total length of the network and g is a scaling function. This
expression is valid asymptotically as L → ∞. The function g is smooth when its
arguments are 0nite. However, it may be singular when at least one of its arguments
approaches zero (which amounts to a crossover to a di6erent topology of the network).
Thus, when the thermodynamic limit is taken such that all lengths ‘i scale in the same
way, the number of con0gurations is simply given by �G ∼ sLL�G−1. Note that this
relation is valid even when the persistence length of each of the chains composing the
graph is di6erent. The exponent �G depends only on the topology of the network and
is given by

�G = 1− dL+
∑
k¿1

nk%k : (7)

Here L is the number of independent loops in the network, d the spatial dimension and
 is the exponent related to the radius of gyration of a self-avoiding random walk. The
scaling dimensions %k , de0ned for k¿ 1, are known exactly in d= 2 from conformal
invariance

%k = (2− k)(9k + 2)=64 ; (8)

and to order �2 in d= 4− �.

%k = (�=8)(2− k)k=2 + (�=8)2k(k − 2)(8k − 21)=8 + O(�3) : (9)
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Also, estimates for the values of the exponents in d = 3 are available through PadPe
and PadPe–Borel approximants. Clearly, %2 = 0 as one would expect and above d= 4,
where the self-avoiding interaction is irrelevant, all the exponents %k are zero.
Consider now the topology depicted in Fig. 2. The quantity of interest is the number

of con0gurations of the network in the limit ‘�L, when the loop size is much smaller
than the length of the rest of the chain. Using the results by Duplantier (see Eq. (6)),
the number of con0gurations can be written as

� ∼ sL+‘(L+ ‘)�loop−1g(‘=L) (10)

for large L and ‘. Here, g(x) is a scaling function and �loop can be evaluated using
Eq. (7). For the topology considered above of a loop embedded in two segments
(Fig. 2) one has

�loop = 1− d+ 2%1 + 2%3 : (11)

The limit of interest is that of a loop size much smaller than the length of the chain,
‘=L�1. Clearly, in the limit ‘=L → 0, the number of con0gurations should reduce to
that of a single self-avoiding open chain, which, to leading order in L, is given by
sLL�−1, where �= 1 + 2%1. This implies that in the limit x�1

g(x) ∼ x�loop−� : (12)

Thus the number of con0gurations is given by

� ∼ s‘‘�loop−�sLL�−1 : (13)

It is therefore evident that, for large ‘ and L and in the limit ‘=L�1, the partition sum
is decomposed into a product of the partition sums of the loop and that of the rest of
the chain. The excluded volume interaction between the loop and the rest of the chain
is re8ected in the value of the e6ective exponent c. This result is very helpful since it
enables one to extend the Poland–Scheraga approach described in the previous section
to the case of interacting loops. From Eq. (13) one sees that the appropriate e6ective
exponent c is given by

c = �− �loop = d− 2%3 : (14)

In d=2, %3 =− 29
64 [14] and = 3

4 , yielding c=2+ 13
32 . In d=4− � to O(�2), one has

%3=−3�=16+9�2=512 and = 1
2(1+�=8+15=4(�=8)2), yielding c=2+�=8+5�2=256. In

d= 3, one may use PadPe and PadPe–Borel approximations to obtain %3 ≈ −0:175 [15]
which with the value  ≈ 0:588 [15] yields c ≈ 2:115. The value of the exponent c is
una6ected by the di6erent persistence length of a bound and unbound DNA segment.
This is since as stated above Eq. (6) is valid also when the persistence length of
di6erent polymers composing the network are di6erent.
The fact that the exponent c is found to be larger than 2 in d = 2, 4 − � and 3

strongly suggests that the transition is =rst order for any d¿ 2. The analysis assumes
that the size of the loops in the system is much smaller than the total chain length.
The fact that the transition is 0rst order implies that the loops size remain 0nite as
the transition is approached from below. This makes the analysis self-consistent. Note
that the loop size distribution, P(‘), is rather broad at the transition and behaves, for



Y. Kafri et al. / Physica A 306 (2002) 39–50 47

large ‘, as P(‘) ∼ 1=‘c. Thus, high enough moments of the loop size distribution
always diverge. Thus, although the transition is 0rst order for c¿ 2 it exhibits some
critical properties. Since c is found to satisfy 2¡c¡ 3 the variance of the loops size
is predicted to diverge. A recent numerical study of the loop size distribution, where
the excluded volume interactions have been fully taken into account, has veri0ed this
prediction with a measured value of c = 2:10± 0:02 [16].
In the approach described above, the rest of the chain is approximated by a bound

segment. In reality, it is composed of an alternating sequence of loops and bound
segments. To test the validity if this approximation one may consider the other extreme
whereby the rest of the chain is taken to be a macroscopic loop. The exponent c for
this case is found to be larger but very close to the one obtained above [12,13].
To evaluate the length of the end-segment near the transition one needs both

exponents c and Nc. Using the methods described above one 0nds Nc = −(%1 + %3).
This yields Nc = 9

32 in d = 2, Nc 
 0:092 in d = 3, and Nc = �=8 + O(�2) in d = 4 − �,
while above four dimensions clearly Nc=0. This suggests that the exponent Nc is smaller
than one for any d¿ 2. Using these results one can show [13] that near the melting
transition the end segment length, (, diverges like

( ∼ 1
|T − TM| : (15)

3. The unzipping transition

Inspired by the development of experimental techniques in which a single molecule
can be accurately manipulated (see e.g. [30]), the DNA unzipping transition has become
a subject of extensive theoretical studies [17–21,31–34]. Many of these studies use a
directed polymer approach to model the DNA, where self-avoiding interactions are
not accounted for. The e6ect of chain heterogeneity has also been considered in some
of these studies [18,19]. In this section, the analysis of the PS model is extended to
consider the unzipping of homopolymers with self-avoiding interactions. It is shown
that the unzipping transition is 0rst order. The dependence of the critical unzipping
force on the temperature at low forces, namely near the melting temperature, is also
calculated.
Consider a con0guration where the corresponding monomers at one end of the chain

are bound together, while a force f̃ is applied on the two monomers at the other end
of the chain, pulling the two strands apart. In this setup, the grand canonical partition
function takes the form

Z =
V0(z)O(z)

1− U (z)V (z)
; (16)

where the factor O(z) is the grand partition function of the open tail under force. One
has

O(z) = 1 +
∞∑
‘=1

Zend(‘)z‘ ; (17)
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where Zend(‘) is the canonical partition function of an open end composed of two
strands, each of length ‘.
To evaluate Zend(‘) note that when no force is applied the partition sum takes the

form Zend(‘) = �(2‘) ∼ s‘=‘ Nc, where, as discussed above, Nc can be evaluated and is
smaller than one. When a force f̃ is applied, one has

Zend(‘) = �(2‘)
∫

d̃r p‘(r) exp(f̃ · r̃=T ) ; (18)

where p‘(r) is the probability distribution of the end-to-end distance in the absence of
a force. It is assumed that p‘(r) has the same scaling form as that of linear polymers
p‘(r) = R−dp̂(r=R). Here, R is a scaling length related to ‘ by R 
 R0‘, where  is
the correlation length exponent of a linear polymer. For x�1p̂(x) takes the form [34]

p̂(x) = P x, exp(−Dx.) ; (19)

where P and D are constants, .= 1=(1− ) and the exponent , is given by

, = (d=2 + d− Nc)=(1− ) : (20)

A saddle point evaluation of Eq. (18) yields that for fR=T�1

O(z) 
 1 +
∞∑
‘=1

[
zs exp

(
A(fR0=T )1=

)]‘
: (21)

According to Eq. (21) at temperatures below the melting temperature TM the end
segment partition sum O(z) diverges at a critical, unzipping force fU, given by
exp(−A(fUR0=T )1=) = sz∗(w), for forces which are not too small. Here, z∗(w) is
the solution of U (z∗)V (z∗) = 1 (corresponding to an in0nitely long polymer). At this
point the average length of a loop in the bulk is 0nite. Hence, the unzipping transition
is 0rst order.
Near the transition, the length ( of the end segment diverges like |z∗− zU|−1, where

zU=exp(−0(fU=T )1=)=s. Since z∗ is regular in f, one has ( ∼ |f−fU|−1 or ( ∼ |T−
TU(f)|−1. Thus, the two strands separate gradually from the end as the critical force is
approached. Nonetheless, the unzipping transition is 0rst order. The reason is that the
transition takes place at a temperature below the denaturation melting temperature TM
where the loop size distribution in the interior of the chain decays exponentially with
the loop size. Thus, at this point the average loop size in the interior of the chain is
0nite. On the other hand the length of the end segment is 0nite as long as f¡fU and
its contribution to the order parameter � and to the entropy is negligible. Therefore,
both the order parameter and the entropy exhibit a discontinuity in their values in the
unzipped state at the transition. Note that an analysis of Eq. (21) shows that the critical
force fU behaves like

fU ∼ |T − TM| (22)

as T → TM, at least as long as the forces are not too small (i.e., fR=T�1). This result
is independent of the value of c.
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4. Summary

In this paper, the Poland–Scheraga type (i.e., non-interacting loops) models of DNA
denaturation are extended to fully (though approximately) account for the self-avoiding
interaction within the molecule. This analysis is made possible by the scaling theory
developed over the last 15 years for polymer networks with arbitrary topology. It is
shown that the self-avoiding interaction drives the denaturation transition 0rst order. It
is also found that the model exhibits critical behavior in some of its properties, such
as its loop size distribution and the length of the end segment. Experimental study of
these properties would be of great interest. The model is also extended to study the
unzipping transition induced by an external force.

References

[1] R.M. Wartell, A.S. Benight, Phys. Rep. 126 (1985) 67;
O. Gotoh, Adv. Biophys. 16 (1983) 1.

[2] V.M. Pavlov, J.L. Lyubchenko, A.S. Borovik, Y. Lazurkin, Nucl. Acids. Res. 4 (1977) 4052;
A.S. Borovik, Y.A. Kalambet, Y.L. Lyubchenko, V.T. Shitov, E. Golovanov, Nucl. Acids. Res. 8 (1980)
4165.

[3] K. Svoboda, S.M. Block, Ann. Rev. Biophys. Biomol. Structure 23 (1994) 247;
A. Ashkin, Proc. Natl. Acad. Sci. USA 94 (1997) 4853.

[4] H.G. Hansma, J. Vac. Sci. Technol. B 14 (1995) 1390.
[5] U. Bockelmann, B. Essevaz-Roulet, F. Heslot, Phys. Rev. Lett. 79 (1997) 4489;

B. Essevaz-Roulet, U. Bockelmann, F. Heslot, Proc. Natl. Acad. Sci. USA 94 (1997) 11 935.
[6] D. Poland, H.A. Scheraga (Eds.), Theory of Helix-Coil Transitions in Biopolymers, Academic Press,

New York, 1970;
F.W. Wiegel, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 7,
Academic Press, New York, 1983, p. 101.

[7] T.L. Hill, J. Chem. Phys. 30 (1959) 383;
B.H. Zimm, J. Chem. Phys. 33 (1960) 1349;
S. Lifson, J. Chem. Phys. 40 (1964) 3705;
M.Ya. Azbel, Phys. Rev. A 20 (1979) 1671.

[8] D. Poland, H.A. Scheraga, J. Chem. Phys. 45 (1966) 1456;
D. Poland, H.A. Scheraga, J. Chem. Phys. 45 (1966) 1464.

[9] M.E. Fisher, J. Chem. Phys. 45 (1966) 1469.
[10] A.L. Kholodenko, T.A. Vilgis, Phys. Rep. 298 (1998) 251.
[11] M.S. Causo, B. Coluzzi, P. Grassberger, Phys. Rev. E 62 (2000) 3958.
[12] Y. Kafri, D. Mukamel, L. Peliti, Phys. Rev. Lett. 85 (2000) 4988.
[13] Y. Kafri, D. Mukamel, L. Peliti, cond-mat=0108323.
[14] B. Duplantier, Phys. Rev. Lett. 57 (1986) 941;

B. Duplantier, J. Stat. Phys. 54 (1989) 581.
[15] L. SchTafer, C. von Ferber, U. Lehr, B. Duplantier, Nucl. Phys. B 374 (1992) 473.
[16] E. Carlon, E. Orlandini, L. Stella, cond-mat=0108308.
[17] S.M. Bhattacharjee, J. Phys. A 33 (2000) L423;

S.M. Bhattacharjee, Erratum: 33 (2000) 9003.
[18] D.K. Lubensky, D.R. Nelson, Phys. Rev. Lett. 85 (2000) 1572;

D.K. Lubensky, D.R. Nelson, cond-mat=0107423.
[19] N. Hatano, D.R. Nelson, Phys. Rev. Lett. 77 (1996) 570;

N. Hatano, D.R. Nelson, Phys. Rev. B 56 (1997) 8651.
[20] D. Marenduzzo, A. Trovato, A. Maritan, Phys. Rev. E 64 (2001) 031901.



50 Y. Kafri et al. / Physica A 306 (2002) 39–50

[21] S. Cocco, R. Monasson, J.F. Marko, Proc. Natl. Acad. Sci. USA 98 (2001) 8608.
[22] M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62 (1989) 2755.
[23] D. Cule, T. Hwa, Phys. Rev. Lett. 79 (1997) 2375.
[24] S. Cocco, R. Monasson, Phys. Rev. Lett. 84 (1999) 5178.
[25] N. Theodorakopoulos, T. Dauxois, M. Peyrard, Phys. Rev. Lett. 85 (2000) 6.
[26] T. Garel, C. Monthus, H. Orland, Europhys. Lett. 55 (2001) 132.
[27] M.T. Record, S.J. Mazur, P. Melanon, J.H. Roe, S.L. Shaner, L. Unger, Ann. Rev. Biochem. 50 (1981)

997.
[28] V.A. Bloom0eld, D.M. Crothers, I. Tinoco, Nucleic Acids - Structure, Properties, and Function,

University, Sausalito, 2000.
[29] P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell, Ithaca, 1979.
[30] B. Smith, L. Finzi, C. Bustamante, Science 258 (1992) 1122;

T.R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon, V. Croquette, Science 271 (1996) 1835;
J.-F. LPeger, G. Romano, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J.F. Marko, Phys. Rev. Lett.
83 (1999) 1066.

[31] S.M. Bhattacharjee, D. Marenduzzo, cond-mat=0106110.
[32] D. Marenduzzo, S.M. Bhattacharjee, A. Maritan, E. Orlandini, F. Seno, cond-mat=0103142.
[33] E.A. Mukamel, E.I. Shakhnovich, cond-mat=0108447.
[34] J. des Cloiseaux, G. Jannink, Les polymUeres en solution: leur modPelisation et leur structure, Les PEditions

de Physique, Les Ulis, 1987.
[35] Y. Kafri, D. Mukamel, L. Peliti, cond-mat=0112179.


	Denaturation and unzipping of DNA:statistical mechanics of interacting loops
	Introduction
	Thermal denaturation of DNA
	Non-interacting loops model
	Interacting loops approach

	The unzipping transition
	Summary
	References


