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Abstract. We study the dynamics of a population subject to selective pressures,
evolving either on RNA neutral networks or on toy fitness landscapes. We discuss
the spread and the neutrality of the population in the steady state. Different
limits arise depending on whether selection or random drift is dominant. In the
presence of strong drift we show that the observables depend mainly on Mμ,
M being the population size and μ the mutation rate, while corrections to this
scaling go as 1/M : such corrections can be quite large in the presence of selection
if there are barriers in the fitness landscape. Also we find that the convergence
to the large-Mμ limit is linear in 1/Mμ. Finally we introduce a protocol that
minimizes drift; then observables scale like 1/M rather than 1/(Mμ), allowing
one to determine the large-M limit more quickly when μ is small; furthermore
the genotypic diversity increases from O(ln M) to O(M).
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1. Introduction

In evolutionary biology, populations are subject to a number of forces that shape their
genetic composition [1]. Amongst these, mutations, selection and drift play a central role.
Drift becomes dominant for small populations, while for large populations one reaches a
steady state where mutations balance effects of selection. The landscape paradigm [2, 3]
provides a relation between genotype/phenotype and fitness, allowing for quantitative
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studies of evolving populations, while at the same time giving a qualitative picture. This
has been particularly developed in the absence of drift using quasi-species theory [4]–
[6], be it on general landscapes or on neutral networks [7, 8]. Unfortunately, in most
realistic systems drift is not negligible, and so it is necessary to go beyond the quasi-
species framework.

Consider a population of M individuals evolving in a static fitness landscape. We can
define its steady-state distribution from the average number of individuals with a given
genotype, averaged over a long stretch of time. One can also consider how the population
is spread out in genotype space. If all genotypes have the same fitness (flat landscape),
the steady-state distribution is independent of M , while the spread of the population
depends mainly on the product Mμ, where μ is the mutation rate [9]. In the limit of an
infinite population at μ fixed, the generation-to-generation fluctuations vanish and the
instantaneous population distribution coincides with the steady-state one. This is the
quasi-species framework for which the steady-state distribution is given by the leading
eigenvector of the evolution operator [10]. When the population is finite, no general
analytic solution for the steady-state distribution is known. If the population size is much
greater than the number of genotypes, then the so-called diffusion approximation [11] can
be used. In yet another context, namely Moran processes in which individuals do not
mutate, some finite-M results can also be derived [12]–[17]. However, in most realistic
cases, the number of possible genotypes is much greater than the population size, and so
none of those approaches are pertinent.

To unravel the consequences of mutation, selection and drift in evolutionary dynamics,
we shall consider situations in which some of these processes may be present or not.
Most of this study is conducted in the framework of RNA neutral networks [18, 8],
the archetypes of genotype to phenotype mappings, but we also consider toy fitness
landscapes. After specifying our systems and population dynamics in sections 2–4, we
examine the dependence on the mutation rate μ and on M of the different features of
the steady-state population. We begin with the case of neutral evolution in section 5,
focusing on the effects of drift alone. In section 6 we allow for selection in the usual way
that leads to significant drift. As a general rule, drift in these situations leads to Mμ
scaling; this same scaling was previously known to arise in the absence of selection [9].
Then in section 7 we introduce a particular dynamics with selection but low drift. There
the Mμ scaling is replaced by a smooth large-M limit even when μ → 0; furthermore, the
genotypic diversity becomes proportional to M rather than being nearly constant. The
corrections to all these scalings generically go as O(1/M), with large effects when there
are barriers in the landscape, as we exhibit in section 8. Section 9 is devoted to some final
considerations.

2. RNA neutral networks as fitness landscapes

In studies of genotype to phenotype mappings, one often focuses on biological molecules
because the corresponding mapping is relatively well defined. The genotype is simply the
sequence of the biomolecule, while the phenotype is its shape, as specified for instance by
the minimum free-energy structure it folds into. Using either protein or secondary RNA
structures, it has been found [8], [18]–[20] that neutral genotypes (genotypes that have a
given phenotype) which are connected via single mutational steps form extended networks
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Figure 1. The target RNA secondary structure (cf van Nimwegen et al [10]).

that permeate large regions of genotype space. These are known as ‘neutral networks’.
Via the neutral network, a population can move in genotype space without crossing
unfavourable low-fitness regions, in contrast to what happens in many rugged fitness
landscapes [2], [21]–[23]. However, because of the huge dimensionality of our genotype
space, large neutral (or nearly neutral) networks can be argued to be inevitable [3].

Here we shall work with an RNA neutral network, i.e., all RNA sequences which fold
into a given target RNA secondary structure. The genotype of an RNA molecule is given
by its base sequence: there are four bases, A, C, G, and U, and thus 4L genotypes for
molecules of L bases. The molecule’s phenotype is given by its secondary structure, i.e.,
by which bases are paired with which as occur in its folded form. To every genotype one
associates just one phenotype (the secondary structure of minimum free energy), while
in general there will be many genotypes compatible with a given phenotype. This many-
to-one genotype to phenotype mapping has been widely studied [8, 10, 18, 20], [24]–[26].
Standard computational tools are available on the web to fold given sequences; see for
instance the fold subroutine from the Vienna package [27] which we used for all of this
work’s computations. Two sequences are nearest neighbours (connected on the neutral
network) if and only if they differ by a single nucleotide substitution. In general, RNA
neutral networks are heterogenous graphs, so for instance the local connectivity varies
quite a lot from site to site.

The secondary structure (phenotype) chosen in this study is the one used by
van Nimwegen et al [10, 23]: it has 18 nucleotides with six base pairs and is depicted
in figure 1. By single-nucleotide substitutions, purine–pyrimidine base pairs (G–C, G–
U, A–U) can mutate into each other, but not into pyrimidine–purine (C–G, U–G, U–A)
base pairs. Hence we considered only the purine–pyrimidine base pairs. Given the base
pairing rules for this system, the number of a priori ‘compatible’ sequences for such a
structure is 46×36 = 2985 884. At 30 ◦C, 37 963 of these fold into the target structure; this
number depends a bit on the choice of temperature since the fold algorithm computes free
energies. We find these genotypes to be organized into three neutral networks (connected
components), of sizes 489, 5784 and 31 484 respectively. This will allow us to investigate
the effect of neutral network size on our observables.

To define the fitness landscape, we consider that individuals with the ‘correct’
phenotype (residing on the neutral network) are viable, i.e., have maximal fitness, while
all other phenotypes are non-viable, i.e., have minimal fitness. We take these extreme
values to be 1 and 0, corresponding to the strong selection limit; then any mutation that
takes one off the neutral network is lethal.

doi:10.1088/1742-5468/2007/05/P05011 4

http://dx.doi.org/10.1088/1742-5468/2007/05/P05011


J.S
tat.M

ech.
(2007)

P
05011

Population size effects in evolutionary dynamics

3. Population spread, Hamming distances and neutrality

We now ask how drift and selection affect observables associated with the steady-state
population. A first observable quantifies how much the population is ‘spread out’ in
genotype space, namely how individuals at a given generation differ from one another
in genotype space. One defines the ‘Hamming distance’, h, between two genotypes as
the number of positions where the two associated sequences have different nucleotides.
Following Derrida and Peliti [9], we shall study the distribution P (h) of distances when
two genotypes are taken at random in the population, averaged over generations. If P (h)
is broad, then the population is spread out in genotype space.

A second observable is ‘neutrality’ [28]. Let g0 be a genotype (a sequence of L bases)
belonging to the neutral network; examine its 3L possible single-nucleotide substitutions
and let d be the number of these mutants that belong to the neutral network. The
‘neutrality’ of g0 is then d, the coordination (degree) of g0 on the neutral network. A
related notion is the mutational robustness Rμ of g0. It is defined as the survival probability
of its mutant offspring. In the context of neutral networks with fitness values 0 and 1, we
see that in fact

Rμ =
d

3L
, (1)

where d is the neutrality of g0. These definitions can be straightforwardly extended
to the neutrality or robustness of any collection of genotypes. Thus one defines the
‘network neutrality’ of a neutral network as the mean of d when considering all of its
nodes. Similarly, when one has a population of genotypes, the ‘population neutrality’
is simply the average of d over that population, each individual being counted once.
The population neutrality depends on both the neutral network properties and on the
evolutionary dynamics [10]. Furthermore, we immediately see that the neutrality of a
population is 3L times the mean mutational robustness of its individuals.

4. The model

Many processes affect the genetic makeup of natural populations. In this work, we focus
on the effects of mutation, selection and drift. We will study the consequences of selection
and drift while considering the effects of the population size M or of the mutation rate μ.
The evolutionary processes we shall consider will be tailored to emphasize one or other of
these aspects at a time.

We consider a population evolving with nonoverlapping generations, with a population
size kept at a fixed value in the usual way. Other less standard choices could have been
made without affecting the quasi-species limit; however, when M is finite, the detailed
procedures used in the evolutionary dynamics can lead to small differences in the steady
state. Nevertheless, such differences are typically small, in agreement with the standard
lore.

Given the M individuals at the current generation, we must produce M viable
offspring to form the next generation. Each offspring is produced from a parent and given
a chance to mutate: with probability 1− μ, no mutation is applied, and with probability
μ one base at random is changed. Then selection is applied: the child is kept if and
only if it is viable. More generally, on an arbitrary fitness landscape, we let it survive
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stochastically according to its fitness. Of course if there is no selection, the offspring is
always kept. The process of producing offspring is repeated until the new generation has
size M . Drift comes in via the way the parents are chosen to produce candidate offspring.
In the standard method, the parents are chosen randomly with replacement : clearly this
allows for drift as by bad luck some parents will not produce any offspring. In the presence
of selection, drift cannot be turned off completely but it can be significantly lowered.

Indeed, let us consider the following process. First, each individual of the population
produces one offspring which mutates with probability μ: if a mutation is lethal, the
corresponding offspring is killed. In this step there is no replacement and the resulting
offspring population size will generally be smaller than M . Second, one chooses individuals
randomly from this offspring population and replicates them. This is done until the
population size reaches M again. Note that when μ is small, the new generation will be
nearly identical to the previous one, even for small M , so there is very little drift. Because
of selection, a small amount of drift does occur, but its intensity is proportional to μ.

In all our runs, we initialize the population arbitrarily and let it evolve for a large
number of generations until initial conditions are forgotten: this is the steady-state limit.
All the data presented in this work are time averages taken from this regime. We are now
ready to see how M , μ, drift and selection affect the spread, neutrality and the genotypic
diversity of the steady-state population.

5. Dynamics without selection

In this section, we consider a population evolving without being subject to selection.
We investigate the effects of allowing drift or not, first on regular networks and then on
heterogeneous ones.

5.1. Homogeneous networks

Consider the space of sequences of length L; if we take these to all be viable, then we
get a homogeneous network in which all 1-mutant neighbours of each genotype belong
to the network. Derrida and Peliti [9] studied the evolution of a population on such a
flat fitness landscape. Using the fact that there is no selection, it is easy to show that
the steady-state distribution is uniform. Thus the population neutrality is trivial, being
given by the degree of the network, i.e., 3L, for all population sizes. In contrast to this
simple result, the distribution of Hamming distances between genotypes in the population
is generally non-trivial. Depending on the nature of the dynamics, we have the following
behaviours:

(a) Drift off—The offspring are produced from parents without replacement : since each
individual has exactly one offspring, each lineage acts like an independent random
walk. Thus the Hamming distances between the genotypes in the population are
completely random: the mean of h lies at 3L/4 (at each position along the sequence;
one has a 3/4 chance of having different bases when comparing two random sequences)
and its variance is equal to 3L/16.

(b) Drift on—Here the offspring are produced from parents with replacement : the number
of offspring of an individual is variable, leading to tree genealogies. This situation
incorporating drift was studied by Derrida and Peliti [9] and leads to a non-trivial
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P (h) which depends on M and μ. At any given generation, the individuals have
mutual distances that reflect the fact that they descend from a common ancestor,
giving rise to a clustering of the population that fluctuates from one generation to
the next. For our purposes here, we focus on the result [9] that the relevant parameter
when M is large is Mμ: in particular, P (h) depends only on the product Mμ at large
M , a property that we call Mμ scaling.

5.2. RNA neutral networks

We now consider a population evolving on an RNA neutral network, defined as the
subspace of sequences which fold (at 30 ◦C) into the target secondary structure shown
in figure 1. RNA neutral networks are generally heterogenous. Evolutionary dynamics
without selection can be implemented by simply ‘forbidding’ attempts to apply lethal
mutations. There are two natural ways to do this, referred to as blind and myopic ant
dynamics [29]. In myopic ant dynamics, also called adaptive random walks [21, 22, 30], an
offspring that mutates is forced to choose a single point mutation that is non-lethal (all
non-lethal choices are equiprobable). In blind ant dynamics (also called gradient random
walks), a point mutation is chosen at random (lethal or not): if it is non-lethal, it is
accepted, while if it is lethal, it is refused and the offspring is taken to be non-mutant.
Both the blind and myopic dynamics can be implemented with or without drift, according
to the method sketched in section 4. Although these dynamical processes may appear to
be somewhat artificial, they do provide solvable cases. Furthermore, van Nimwegen et
al [10] have shown that in the limit of small Mμ, the standard evolutionary dynamics
converges to the blind ant dynamics.

Consider first the case without drift, in which the sampling of the parents takes
place without replacement. Then each lineage performs an independent random walk
on the whole neutral network. As shown by van Nimwegen et al [10], the steady-state
distribution for blind ants is uniform on the neutral network, while for myopic ants the
probability of being at a node of the neutral network that has degree d is a constant times
d. (Note that if d is the same for all nodes as in regular networks, we obtain the uniform
distribution, as expected.) Given the steady-state distribution, the histogram P (h) of
Hamming distances is determined from the fact that the lineages are independent. At
large L, one expects it to become peaked, neutral networks being widely spread out in
genotype space. Furthermore, the steady-state distribution and the P (h) are M and μ
independent.

Let us now allow for drift. The sampling of the parents takes place with replacement.
Interestingly, the steady-state distribution of the population is not affected by the drift:
this is due to the fact that the heterogeneity of the neutral network does not affect the
chances of appearance of an offspring. However, the lineages are no longer independent
since the population typically shares a recent common ancestor. As a consequence, the
Hamming distance distribution P (h) is not determined from the steady-state distribution:
it is non-trivial and depends on Mμ at large M . Since this result holds in a far more general
context which includes selection, we postpone its proof to the next section. Corrections
to the Mμ scaling are O(1/M), with typically a rather small prefactor. In the Mμ → 0
limit, just as in the general population dynamics [10], one recovers the blind ant dynamics.

For illustration, we show in figures 2 and 3 the distribution of Hamming distances h
for a population with myopic ant moves in the presence of drift on a neutral network. We
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Figure 2. Distribution of Hamming distances h for different values of μ for the
myopic ant dynamics in the presence of drift. The population size is M = 20.

Figure 3. Distribution of Hamming distances h for different values of Mμ for the
myopic ant dynamics in the presence of drift. For each Mμ we studied M = 20
and M = 40. The data with the same Mμ superimpose perfectly, exhibiting the
Mμ scaling.

see that in spite of the heterogeneity of the network, the Mμ scaling holds just as for a
homogeneous network.

6. Dynamics with selection and drift

6.1. The infinite-population (quasi-species) limit

In the infinite-population limit, M → ∞ (with μ fixed), drift is absent and only the
effects of mutation and selection show up; this is called the quasi-species regime [4]–[6].
As shown by van Nimwegen et al [10], the steady-state distribution is given in this limit
by the dominant eigenvector Ψ0 of a linear operator defined by the adjacency matrix of
the network. This eigenvector does not depend on μ, but its eigenvalue λ0 does. If each
individual in the population produced only one offspring, and the unviable ones were
eliminated without replacement, then the population size would decay by a factor λ0 at
each generation. Relating this decay to the mutational robustness Rμ of the steady-state
population, we immediately obtain

λ0 = (1 − μ) + μRμ, (2)
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which yields the population’s average neutrality 〈d〉∞ via equation (1): both Rμ and 〈d〉∞
are μ independent.

These results can be compared to the population neutrality in the case of blind/myopic
ant moves, in which there is no explicit fitness-based removal of individuals. In the case
of blind ants, the probability of residing on any node of the network is uniform. The
average neutrality seen by such a walker is just equal to the average network neutrality.
For a myopic ant, the probability of choosing any node on the network is proportional to
the degree of the node. Neutrality is slightly higher in this case, and is given by the ratio
of second and first moments of the node degrees. A standard variational principle [31]
shows that the population neutrality is always at least as large as the network neutrality,
defined as the average degree of the neutral network. Of course on a homogenous graph,
population neutrality, blind ant neutrality and myopic ant neutrality are all equal to the
network neutrality. We refer the reader to the work of van Nimwegen et al [10] for a
thorough discussion.

6.2. Case of an infinite population at fixed Mμ

In biological situations, the mutation rate is very small, making the large-M limit of
little use: indeed to get to the infinite-M limit just discussed, the quantity Mμ must
be large. When Mμ is finite, drift occurs, and it is of interest to consider the large-M
limit at fixed Mμ. In the absence of selection, the Mμ scaling law has been derived by
Derrida and Peliti [9]. In the presence of selection, it has been exhibited from numerical
simulations by van Nimwegen et al [10]. It turns out that this scaling follows from the
dynamical equations, whether or not there is selection: these equations are invariant under
a simultaneous rescaling of time, M and μ, as long as Mμ is fixed, as we now show.

Let Ni(g) denote the number of individuals in the population residing at the neutral
network node i at generation g. To go to the next generation, let us choose M individuals
at random with replacement, and let them mutate with probability μ. One then has

Ni(g + 1) =
∑

〈ij〉

Pj(Mpj) + Gi(Mqi, Mqi), (3)

where
∑

〈ij〉 denotes the sum over the nodes j which are nearest neighbours of node i.

Also, pj = μNi/(3LM) is the probability to choose an individual of genotype j and to have
it mutate to node i; Pj(Mpj) is a Poisson random variable of mean Mpj ; qi = (1−μ)Ni/M
is the probability to choose an individual of genotype i and to leave it without mutation;
Gi(Mqi, Mqi) is the sum of M 0–1 random variables of mean qi, and thus at large M it
is a Gaussian whose mean and variance are both given by Mqi.

Since we are interested in the large-M limit with Mμ fixed, let us define xi = Ni/M
to be the fraction of individuals residing on node i. If we average equation (3), we recover
the deterministic (quasi-species) evolution equations for the xi. But fluctuations do not
go away at large M if Mμ is fixed; instead the intensity of drift goes to a limit. Extracting
the mean from the Gaussian of equation (3), the stochastic evolution equations for the xi

take the form

xi(g + 1) = (1 − μ)xi(g) +
∑

〈ij〉

Pj(Mpj)/M + Gi(0, Mqi)/M. (4)
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Figure 4. Distribution of Hamming distances at Mμ = 0.2 when M = 10, 20, 40
and 100. The data superpose perfectly.

Summing this expression over M steps we obtain in the limit of large M (and thus μ → 0):

Δxi ≡ xi(g + M) − xi(g) = −Mμxi +
∑

〈ij〉

(Mμ)xj/3L + Gi(0, xi), (5)

where we have used the fact that the sum of the M Poisson variables contributes via its
mean but its variance (equal to pj) becomes negligible. Clearly, the steady-state behaviour
of these stochastic equations depends only on the scaling parameter Mμ. As expected,
by averaging these equations, we recover the quasi-species evolution dynamics. Strictly
speaking, we have shown that there is a limit when evolving M individuals, neglecting the
decrease in the population size. But restoring the population to a fixed size M involves no
mutations and so falls into the standard case of drift for a single genotype; that stochastic
process also reaches a limit at large M when Mμ is fixed, so we can conclude that the
full process (which maintains the population size at M) also depends only on the scaling
variable Mμ as M → ∞. Note that, within this scaling framework, we recover the μ
fixed, M → ∞ case of equation (2) by taking Mμ → ∞: we shall see that the corrections
to this limit are linear in 1/Mμ. One can also consider the limit Mμ → 0: there, the
population structure typically collapses to just one genotype at a time, and as shown by
van Nimwegen et al [10], the effective dynamics reduces to a random walk on the neutral
network, so the population neutrality is given by the network neutrality.

6.3. Hamming distances in a finite population

We studied the distribution of Hamming distances between individuals in the steady-state
population evolving on our three RNA neutral networks. Here we report our results only
for the largest network (of size 31 484), as qualitatively similar results were obtained with
the two other sizes.

If we fix Mμ, we obtain M-independent results when M is large, in agreement with
the scaling law derived in the previous section. However, the value of M at which this
scaling arises depends on Mμ. As shown in figures 4–7, the scaling sets in for larger and
larger values of M as the value of Mμ grows. For instance, when Mμ = 10, one needs
M ≥ 100 to really see the Mμ scaling convincingly (cf figure 7). Moreover, corrections to
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Figure 5. Distribution of Hamming distances at Mμ = 2 when M = 10, 20, 40
and 100. The data collapse is excellent when M ≥ 20.

Figure 6. Distribution of Hamming distances at Mμ = 5 when M = 20, 40 and
100. Here the data collapse requires M ≥ 40.

this scaling go as O(1/M), i.e., they are of the same form as we found in section 5 in the
absence of selection. This is a generic property that will be further studied in section 8.

Within the Mμ scaling, we see the population spread increases monotonically with
Mμ. In particular, as Mμ → 0, the spread goes to 0, while as Mμ → ∞, the population
spreads across the whole neutral network.

6.4. Neutrality in a finite population

We first examine the population neutrality 〈d〉M . We are interested in seeing how large
M should be for the Mμ scaling to set in, considering in particular the dependence on
the neutral network size.

6.4.1. Small neutral network. Figures 8(a) and (b) show the average neutrality 〈d〉M as a
function of M and Mμ respectively, for μ = 0.01, 0.1 and 0.25.

The average population neutrality depends both on M and Mμ. If μ is fixed and we
take M → ∞, we recover the quasi-species limit which is μ-independent. Similarly, for
fixed Mμ, we obtain the Mμ scaling regime by taking large M , just as in van Nimwegen
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Figure 7. Distribution of Hamming distances at Mμ = 10 when M =
20, 40, 100, 200. The Mμ scaling is good only for M ≥ 100.

Figure 8. Population neutrality 〈d〉M as a function of 1/M and 1/Mμ for
μ = 0.01, 0.1 and 0.25 in our small size network. One can see the Mμ scaling with
small corrections due to finite M ; note also the linear behaviour at the origin.

et al [10]. Furthermore, we see that the corrections to the large-Mμ limit of population
neutrality are linear in 1/(Mμ) (cf the linear behaviour at the origin in figure 8(b)).
Finally, the approach to the large-M limit at fixed Mμ has measurable 1/M corrections.
(We also find that the value of Mμ affects the time taken to approach the steady state.)
At fixed Mμ, the dependence on M of the population neutrality or of the distribution
of d is rather mild, though more marked than in the myopic or blind ant dynamics. For
several values of Mμ, we show these 1/M corrections in figure 9. From all these data, we
conclude that the population neutrality has the form

〈d〉M = f(Mμ)

(
1 +

A(Mμ)

M
+ · · ·

)
, (6)

where f(Mμ) = 〈d〉∞ is the M → ∞ limit of 〈d〉M at given Mμ and

f(Mμ) = f(∞)

(
1 +

B

Mμ
+ · · ·

)
, (7)
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Figure 9. 1/M law for the corrections to Mμ scaling.

Figure 10. Average neutrality as a function of 1/Mμ for different values of μ on
our medium-size and large-size networks.

describes how the large-Mμ limit converges to the quasi-species case. Finally, as shown
by van Nimwegen et al [10], f(Mμ) tends to the network neutrality as Mμ → 0.

6.4.2. Medium and large networks. Similar results are found for our medium and large
networks. Figure 10 shows the population neutrality as a function of 1/Mμ, exhibiting
good Mμ scaling. However, the corrections to this scaling are larger than those found in
the small network; in fact, to see the asymptotic 1/M law for the corrections to the Mμ
scaling, one has to go to quite large values of M . Finally, as before, the quasi-species limit
is reached with corrections O(1/(Mμ)).

Other results that seems to apply generally is that, for fixed μ, the population
neutrality (and thus the population robustness) increases with M , but it decreases at
fixed Mμ. Mathematically, this means that A > 0 in equation (6) while B < 0 in
equation (7).

7. Dynamics with selection but low drift

7.1. Framework

Random drift reduces the population spread and thus delays the approach to the large-
M limit at fixed μ. Lowering the drift would thus allow one to reach the large-M limit
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more easily. Furthermore, one would have a higher mutational robustness of the steady-
state population for a given population size; this higher survival probability suggests that
biological mechanisms for reducing drift [32] could be selected for in natural populations.
(In fact, in numerous eukaryotes there are well documented mechanisms for avoiding
inbreeding; this is understandable from an evolutionary perspective because cosanguinity
effects in populations are deleterious.) In this section we study dynamics in which selective
pressures are high but the drift is particularly low.

Our dynamics on a neutral network is defined as follows so that drift effects are
minimized:

• For a given population of size M and mutation probability per individual μ, we have
Mμ of the individuals in the population hopping to any of their 3L neighbours; the
others are unchanged. If a mutation brings an individual off the neutral network, we
kill it; otherwise we keep it.

• We find the number of individuals that were killed and replace them by randomly
cloning individuals from the remaining population.

Note that in these dynamics we perform a random sampling only for a part of the
population; in fact, in the absence of selection, there is no drift at all.

To understand the essential difference from the usual dynamics, we use a branching
process representation of the evolution and the cloning. An individual is represented by
a point; at a given time there are M points for M individuals (note that as always M
represents the number of individuals, not the number of different genotypes). From one
generation (time) to the next, Mμ points are replicated, leading to branchings, while the
other points just proceed without branching. The time evolution generates branching
processes in which each individual is represented by a point and is connected to its parent
at the previous time by an edge. Following this branching process, we obtain the descen-
dants of a given individual; one can also consider two individuals, and follow their edges
backwards until one reaches their most recent common ancestor. Because of the drift, at
large enough times the whole population belongs to just one connected component.

Following Derrida and Peliti [9], let us investigate the genealogy of individuals going
back in generations. For a subset of k individuals in the population, let wk(t) be the
probability that their ancestors t generations ago were all different. To calculate this
quantity, we first determine the probability xk that k individuals have k distinct immediate
ancestors (parents). Define q = μ(1 − 〈Rμ〉M), where 〈Rμ〉M is the mean robustness of
the population. Then assuming q is small and neglecting node to node fluctuations in
neutrality, we have

xk ≈ 1 − k(k − 1)q

(1 − q)M
. (8)

Taking the generation-to-generation processes to be independent, one has wk(t) = xt
k,

which can be approximated to leading order in q by

wk(t) ≈ exp

(
−k(k − 1)q

M
t

)
. (9)

Hence, unlike the random drift case, the time scale is proportional to M/q. We thus define
a rescaled dimensionless time variable

τ = qt/M. (10)
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The probability that the two individuals shared a common ancestor at most t generations
back is given by 1 − w2(t) = 1 − exp(−2τ). Thus the probability density p(τ) that the
most recent common ancestor of the two individuals arose between τM/q and (τ +dτ)M/q
generations ago is given by

p(τ) =
d(1 − w2(τ))

dτ
= 2 exp(−2τ). (11)

Therefore the characteristic time for the most recent common ancestor scales as M/μ,
while it scales as M in the usual dynamics with drift of section 6.

The distribution of times to the most recent common ancestor can be used to obtain
the Hamming distance distribution of the steady-state population. Let φν(t) be the
probability that two random walkers in genotype space find themselves at a Hamming
distance ν given that they coincided t generations before. We have

φν(t) =
Γ[L + 1]

2νΓ[ν + 1]Γ[L − ν + 1]
(1 − exp−2μt)ν , (12)

where L is the genome length. Then Pν , the probability that the Hamming distance
between two individuals in the steady-state population is equal to ν, is given by

Pν =

∫ ∞

0

dτ p(τ)φν(t). (13)

Using the expression of φν(t) from equation (12), one sees that Pν depends on M but not
much on μ; in particular, one has a well defined μ → 0 limit at fixed M . This is to be
contrasted with the random drift case where Pν depends mainly on Mμ.

7.2. Consequence for the genotypic diversity

A high level of genotypic diversity in a population is usually advantageous for survival.
Here we study how low drift can greatly enhance this diversity by examining two measures
of the number of different genotypes, namely the actual number gM (which is frequency
independent), and the inverse participation ratio GM of the genotypic abundances.
Explicitly, for a population of size M , if the number of individuals with genotype i is
mi, we define

GM =
(
∑

mi)
2

∑
m2

i

, (14)

where the sum runs over all the different genotypes present in the population.
We show in figure 11 the two different measures of genotypic diversity for dynamics

with selection and drift. The bottom curve corresponds to GM , the top one to gM . We find
that the ‘absolute’ genotypic diversity gM (taking into account genotypes of arbitrarily
low frequencies) grows logarithmically (and thus rather slowly) with M at fixed Mμ. On
the other hand, the rare genotypes contribute less to the inverse participation ration GM ,
and we find that this measure of genotypic diversity saturates in the large-M limit at
fixed Mμ.

In figure 12 we display the same quantities for our low-drift dynamics. We now see
that both measures of diversity grow linearly with M at fixed Mμ; thus each genotype in
the population arises just a few times as M → ∞ if Mμ is fixed. Clearly the reduction of
drift in this dynamics allows for a high genotypic diversity.
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Figure 11. Plot of genotypic diversity (gM and GM ) for dynamics with selection
and drift as function of ln M at Mμ = 0.4.

Figure 12. Plot of genotypic diversity (gM and GM ) as a function of population
size M for dynamics with selection but low drift at Mμ = 0.4.

7.3. Hamming distances

We can study Hamming distances as was done in section 6.3 for our low-drift dynamics.
We find that the distribution of Hamming distances depends strongly on M but not much
on μ and approaches a μ-independent limit as M grows large (figures 13 and 14). This
is consistent with the above calculation for the scaling laws. As expected, for fixed M ,
there is a non-trivial limit distribution as μ → 0.

7.4. Population neutrality

In the infinite-population limit, the value of population neutrality is independent of
drift effects, and it is also independent of μ. Consider first our small neutral network
with 489 nodes and network neutrality 10.4499; we determined the largest eigenvalue
of the adjacency matrix (via Mathematica [33]), obtaining 〈d〉∞ = 11.5107. In a finite
population we find that 〈d〉M approaches 〈d〉∞, with 1/M corrections that do not depend
much on the mutation rate. In particular, we find

〈d〉M = 〈d〉∞
(

1 +
A(μ)

M

)
, (15)
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Figure 13. Distribution of Hamming distances for evolutionary dynamics with
low drift. The distributions depend strongly on M and only very weakly on μ.

Figure 14. Distribution of Hamming distances for two different values of
population size (20 and 40) when Mμ = 0.4, showing the absence of Mμ scaling
when the dynamics has low drift.

where A = −0.328 ± 0.002 for μ = 0.1 and A = −0.317 ± 0.005 for μ = 0.25. The
corresponding fits are shown in figure 15.

On our medium-size neutral network (with 5784 nodes), we find that the network
average neutrality is equal to 10.6888, while 〈d〉∞ = 12.592 ± 0.0002. We again find
a 1/M convergence as in equation (15) with A = −0.752 ± 0.035 for μ = 0.05 and
A = −0.662± 0.02 for μ = 0.25 (figure 16). Just as for the small neutral network, A does
not depend much on μ.

Finally, on the large neutral network (with 31 484 nodes), we find the network
neutrality to be 12.116, whereas 〈d〉∞ = 15.434. Figure 17 confirms the 1/M convergence
with A = −0.927 ± 0.045 for μ = 0.05 and A = −0.944 ± 0.044 for μ = 0.25.

The overall pattern is thus that the data are well represented by equation (15), with
an A(μ) that grows with increasing network size and depends slowly on μ. We have
also checked directly that 〈d〉M is rather insensitive to the value of μ (cf figure 18).
Furthermore, in all cases, there is no Mμ scaling (cf figure 19), in contrast with what
happens for the case of standard drift (see section 6).
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Figure 15. Population neutrality versus 1/M on the small size network. The
dotted line is a linear fit as in equation (15).

Figure 16. Population neutrality versus 1/M on the medium-size network. The
dotted line is a linear fit as in equation (15).

Figure 17. Population neutrality versus 1/M on the large-size network. The
dotted line is a linear fit as in equation (15).
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Figure 18. Population neutrality 〈d〉M versus M for μ = 0.01, 0.05, 0.1 and 0.25
on the large neutral network, showing the insensitivity to μ.

Figure 19. Population neutrality 〈d〉M versus Mμ for μ = 0.01, 0.05, 0.1 and 0.25
on the large neutral network, showing the absence of Mμ scaling.

7.5. Distribution of neutrality

As a last point, let us consider the whole distribution PM(d) rather than just the average
population neutrality 〈d〉M . In figure 20 we display several cases of interest for our largest
neutral network. The leftmost curve is for genotypes chosen randomly and uniformly
from the neutral network. The next curve on the right is for a population of size M = 50
undergoing selection with low drift; there are in fact two data sets displayed: one for
μ = 0.1 and one for μ = 0.25. The last curve is for the same algorithm at M = 1000 for
three values of μ, namely μ = 0.1, 0.25 and 0.5.

Several comments are in order. First, as M increases, the overall trend is for PM(d) to
shift to larger d; this is in agreement with the general property that mutational robustness
grows with increasing genotypic diversity. Second, there is hardly any dependence of these
data on μ, a feature particular to dynamics having reduced drift.

8. Reaching the large-M limit and barriers in the fitness landscape

8.1. Motivation

For large populations in the presence of drift, the relevant parameter appears to be Mμ,
as we have seen in sections 5 and 6. When one wishes to evaluate the large-M limit at
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Figure 20. The continuous line shows the distribution of the number of
neighbours for random nodes on the largest network (with 31 484 nodes). The
curve closest to it shows the steady-state distribution for two data sets, with
μ = 0.1 and 0.25 when the population size is 50: they superpose extremely well.
The third curve corresponds to M = 1000 and μ = 0.1, 0.25 and 0.5, again with
excellent superposition. Superposition (independence on μ) becomes exact when
M = ∞.

given μ, it is better to minimize drift as in section 7, especially when μ is small, since
μ plays little role in this modified dynamics. We also saw that the corrections to the
M = ∞ limit go like O(1/M) on neutral networks. Simple arguments [34] suggest that
this is a generic property of growth with diffusion phenomena, and we shall now confirm
this on toy landscapes: the O(1/M) corrections are not an artefact of the fitness being
0 and 1 as we have assumed so far. Furthermore, we wish to get some insight into the
size of this correction. For our three neutral networks, we found that the factor A of the
A/M correction grows with increasing neutral network size; however, barriers (entropic
or fitness) in the landscape are likely to affect A, as we will now illustrate using a few toy
landscapes.

8.2. Evolution in a toy fitness landscape

To build up our intuition, we will consider a space where genotypes are parameterized by
a real number, and mutations correspond to small changes of this number. Evolution in
low-dimensional fitness landscapes has been considered by several authors in the recent
years and has led to a number of insights (see, e.g., [35]–[38]). In this case, it is convenient
to consider a continuous-time limit because this allows for a Fokker–Planck formulation.
We can start with all individuals at the same position or place them randomly in the
landscape. After some time, the population reaches a well defined steady state. For the
numerical simulation of such evolutionary dynamics, we discretize time using a time step
Δt; this then gives the following update rules:

• At each step (small) mutations arise; this means that the genotype x is changed by

Δx where Δx is a Gaussian random variable of standard deviation
√

2DΔt [39].

• Given the new positions of the individuals, we allow for replication according to
fitness given by a function −V (x) in the Fokker–Planck language. V (x) is low (or
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even negative) if the genotype has a high fitness; it is large and positive for an unfit
genotype. Then for an interval Δt of time, an individual of genotype x will be killed
with probability 1 − exp(−V (x)Δt) if V (x) > 0; if instead V (x) < 0, a clonal birth
will be produced with probability exp(−V (x)Δt) − 1. Following standard practice,
if one wants to keep the population size fixed on average near some target value M ,
one simply shifts V (x) additively so that the expected population size is precisely M .

In the M → ∞ limit, the details associated with keeping the population at its target
value no longer matter and the overall process can be formulated as a rate equation. Up
to the rescaling of the population to keep its size fixed, the density of genotypes ρ(x)
follows the deterministic equation

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
− V (x)ρ(x, t). (16)

This is a linear evolution law that is the continuum analogue of the quasi-species dynamics.
At large times the shape of ρ(x) converges to the eigenfunction of the linear operator on
the right-hand side whose eigenvalue is largest. One can recognize (16) as being an
(imaginary-time) Schrödinger equation. The problem of the steady-state distribution is
thus mathematically a simple one that can be solved analytically for particular choices of
the function V (x). Now we can address the question of how the large-M limit is reached.

8.3. Harmonic well

We first consider the case where V (x) = x2, which corresponds in the Schrödinger
equation framework to diffusion in a harmonic well, a case with no barriers. In the
M → ∞ limit, the probability distribution of the population in this landscape is
P (x) = exp(−x2/2)/

√
2π.

For a finite population of size M , we evaluate the steady-state distribution PM(x)
numerically. We see a clear convergence of this distribution to its large-M limit, with
1/M corrections:

PM(x) = P (x)

(
1 +

K(x)

M

)
+ O(M−2). (17)

The 1/M nature of the convergence clearly appears in figure 21, where we see that the
amplitude of these corrections is small. This kind of convergence has been justified
before [34] in the context of population algorithms for solving linear evolution operators.
Furthermore, it is possible to show that the correction function K(x) goes to a constant
at large x. When we obtain such a data collapse, we know that M is large enough for one
to extract P (x).

8.4. Symmetric double well

We now consider the case of a landscape with two degenerate optima separated by a
barrier (passage of low fitness). For that we take V (x) to be an even polynomial of degree
4 in x: V (x) = V (−x). Since P (x) is not analytically known, we examine instead the
quantity M1M2(PM1(x) − PM2(x))/(M1 − M2) for different population sizes M1 and M2.
If the convergence goes as O(1/M), then, provided M1 and M2 are sufficiently large,
the data should collapse onto a limit function. This is indeed what we find; the case
V (x) = x2 + 0.1x4 is used for illustration in figure 22.
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Figure 21. (a) Relative deviation PM (x)/P (x)−1 versus x for M = 6, 8, 10, 12, 15
and 20. (b) Data collapse plot: M(PM (x)/P (x) − 1) for M = 6, 8, 10, 12, 15 and
20.

Figure 22. Data collapse plot for M1M2(PM1(x)−PM2(x))/(M1 −M2) versus x,
for several population sizes M1 and M2, in the case of a symmetric double well.
We have taken (M1,M2) = (6, 10), (10, 20), (6, 20), (20, 50).

8.5. Case of an asymmetric double well

To go from one fitness peak to another, one has to cross a barrier. The previous double
well has a symmetric steady state, and even with a small population, this symmetry is
realized. However, when the well is asymmetric, the finite-population effects will be quite
larger. Indeed, in the M → ∞ limit, even a small non-symmetric part (V (x) not even
in x) will lead to a distribution practically concentrated in one well. (This is called the
‘flea and elephant phenomenon’, well known in quantum mechanics: when the barrier
between the two wells is high, even a tiny difference in V between the two sides leads to
a big effect, just as when a little itching on an elephant’s shoulder leads it to put all of
its weight onto one side.) When the population is finite, this effect is not so evident, and
the two wells remain nearly symmetrically populated. One has to go to large population
sizes M in order to come closer to the M → ∞ limit.

To investigate this effect quantitatively, we consider the asymmetric potential V (x) =
−x2 + bx4 + cx with b = 0.05 and c = 0.002, corresponding to an asymmetry of roughly
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Figure 23. Data collapse plot for M1M2(PM1(x) − PM2(x))/(M1 − M2) versus
x, for several population sizes M1 and M2, in the case of an asymmetric well.
M = 200, 250, 300, 400, 500.

0.1%. We found the 1/M convergence law, but had to go to M ≈ 100 to observe the data
collapse. This is shown in figure 23; note the large scale of the y axis compared to the
symmetric double-well case: the 1/M corrections are much larger here. When the barrier
height is increased, one needs even larger M values to see the M = ∞ limit: the proper
balance of population on each side of the barrier sets in very slowly in M . In landscapes
with more than one dimension, there can also be entropic barriers, that is passages that
are narrow but not of particularly low fitness; such cases are relevant for general neutral
networks.

9. Summary and conclusions

In general, an evolving population undergoes mutation, selection and random drift. In
this work we quantified the effect of these processes to untangle the different effects,
using neutral networks and toy fitness landscapes for illustration. In the case of infinite
populations, there have been many studies. If Mμ → ∞ (M being the population size
and μ the mutation rate) drift is absent and one recovers the quasi-species limit [4]–
[6], with results that developed by van Nimwegen et al [10] in the context of neutral
networks. For finite Mμ (M → ∞), drift effects are important; there, in the absence
of selection, Derrida and Peliti [9] derived a number of important results. In this work
we have considered the case Mμ finite with selection, for both M finite and infinite. We
derived the Mμ scaling even in the presence of selection. The (finite-M) corrections to
this Mμ scaling are O(1/M), be there selection or not. When M = ∞, we find that
the quasi-species limit is reached via 1/Mμ corrections. In all cases, Mμ plays the role
of an effective population size. These laws are summarized in equations (6) and (7).
We also found that the amplitude of the correction terms showed a slow increase with
neutral network size. In practice, the Mμ scaling sets in at relatively small values of M .
Furthermore, at fixed Mμ we showed that the genotypic diversity gM of the population
increases only logarithmically as a function of M .

Finally, we considered a dynamics with low drift in section 7. Drift is effectively
reduced by a factor μ and thus genotypic diversity always grows linearly with population
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size even if Mμ is fixed. One thereby avoids the Mμ scaling law, a useful property if one
wishes to evaluate the large-M limit at small μ. Nevertheless, reaching this limit can be
seriously hindered by fitness or entropic barriers in the fitness landscape, as we saw in
section 8.
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