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Abstract. We introduce and discuss a minimal individual based model for
influenza dynamics. The model takes into account the effects of specific
immunization against viral strains, but also infectivity randomness and the
presence of a short lived strain-transcending immunity recently suggested in the
literature. We show by simulations that the resulting model exhibits substitution
of viral strains along the years, but that their divergence remains bounded. We
also show that dropping any of these features results in a drastically different
behaviour, leading either to the extinction of the disease, to the proliferation of
the viral strains or to their divergence.
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1. Introduction

Influenza [1] exhibits two apparently contradictory features: on the one hand, any given
individual can get infected with the disease over and over again, since the virus mutates
fast enough to escape acquired immunity; on the other hand, in any given epidemic season,
the viral strain is sufficiently well defined that an effective vaccine can be identified.
The fact that circulating viral strains are closely related is also exhibited by the shape
of the phylogenetic trees [2, 3]. Influenza A, the most relevant epidemiologically, can
be distinguished in several subtypes, according to the nature of the capsid proteins
haemagglutinin (H) and neuroaminidase (N). The currently prevailing strains belong to
the H3N2 subtype. The phylogenetic relationships of different strains within a subtype
are usually reconstructed from the haemagglutinin (HA) sequences, since this protein
appears to be highly prone to substitutions. The resulting tree has a characteristic comb-
like shape, with a well-defined backbone and several short lived side branches. This has
been contrasted with the trees of other viruses, like HIV or the measles virus, which show
more ramified patterns [4].

This problem has been recently addressed by Ferguson et al [5], who identified a
short term strain-transcending immunity as the essential factor for avoiding the dichotomy
between extinction and strain proliferation, and obtained phylogenetic trees quite similar
to the one observed. However, the model proposed in [5] contains a very high number
of parameters, including a nontrivial source of heterogeneity among individuals in the
geographic pattern of transmission.

We build up in this paper what we believe is a minimal model explaining this feature
of influenza epidemiology within a subtype. The model takes into account the genetic
drift of the virus and the effects of specific immunization. It also features a short term
cross-immunity effective against all viral strains (short immunity), introduced in [5], and
the competition between viral strains, not previously considered, due to their different
infectivities. The possible relevance of such an effect is supported by a recent study [6]
which shows that single-nucleotide substitutions can lead to large fitness changes in RNA
viruses. The removal of any of these features from the model would impair its viability.
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In section 2 we provide a brief review of recent models describing the dynamics of
influenza. In section 3 we describe the model that we propose. An analysis of its behaviour
and the simulation results are expounded in section 4. We close with a discussion of our
results and an outlook on further research.

2. Models of influenza dynamics

Recent models of influenza dynamics combine the classical ideas of mathematical
epidemiology with aspects of evolutionary genetics. In a class of models, represented,
e.g., by [7]–[10], one assumes the existence of a single preferred strain in each season, at a
given genetic distance from the previously preferred one. These models show how the virus
population can drift fast enough to remain close to the preferred strain: however, they
do not address the crucial question mentioned above, namely the quasi-one-dimensional
structure of the phylogenetic tree.

In a second class of models [11]–[13] the genetic drift of the virus is assumed to take
place in a low dimensional space (d = 1, 2) with only one viable mutation resolving
the compromise of maintaining the effectiveness of the HA protein and escaping the
detection by the immune system. These models can be studied quite deeply with combined
analytical and numerical methods. They exhibit a regime with travelling waves, describing
a persisting genetic drift of the virus with a bounded diversity. Although from a pragmatic
point of view these models provide a reasonable representation of the observations,
directionality in evolution is assumed rather than derived. This has different problems:
simple stochastic variations of the model do not lead to the desired behaviour. A stochastic
process that has on average only one escape direction at a given time would face extinction
after a finite number of steps. Moreover, a detailed analysis of HA sequences in [14, 15]
identifies a nontrivial structure of clusters that succeed one another in time with abrupt
jumps in protein Hamming distance from one cluster to another. This gives circumstantial
evidence that a larger than one-dimensional manifold in genomic space is involved in the
process.

The most structured attempt to derive a working model of interaction between viral
strain evolution and epidemiological dynamics is represented by Ferguson et al [5]. In
this model a complex spatial structure of the host population as well as a detailed
parametrization of the dynamics of infection and recovery is introduced, and the viral
evolution takes place in a high dimensional genomic space. The main result of the
authors is that in order to avoid the proliferation of strains it is necessary to assume
that infection with a given virus, in addition to conferring long term specific immunity to
close strains, also elicits a short immunity against all possible variants. Unfortunately the
model contains a large number of parameters and it is difficult to isolate this mechanism
from the different details of the model.

3. Building up the model

We use an individual-based model generalizing the bit-string model introduced in [11]. We
consider a population of N individuals, which can be hosts to the virus. The antigenic
features of the virus are summarized in a binary string σ of length L. Each host can be
in one of the following states:
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Healthy : The host can be infected by suitable strains of the virus, depending on its
acquired immunity.

Infected : The host is infected by a unique viral strain σ.

Recovered : The host is not infected and cannot be infected by any viral strain. This
state represents those individuals which are protected by the short immunity against
infection by any influenza strain.

The immunity acquired by any host i in its lifetime is described by the temporally ordered
set Σi of strains which have infected it in the past. A viral strain σ cannot infect a host i if
the set Σi contains one or more strains σ′ such that the Hamming distance dH(σ, σ′) ≤ r,
where r is the immunity range. Individuals are removed with rate λ−1, independently
of their state (where λ is the average lifetime), and replaced by healthy individuals with
a virgin immune state (Σ = ∅). Similarly, the duration of the illness and that of the
recovered state are exponentially distributed with averages τ and η respectively. The
memory set Σi has a maximal length �0. If an individual has been infected by more
than �0 strains, only the most recent �0 ones are remembered. Since at any given time
‘too old’ variants are completely extinct and out of the immunity range relative to the
active ones, the dynamics of the model is independent of �0 if this parameter is large
enough. We have used �0 = 50 in the simulations, but independence is already reached
for �0 � 20. The recovered state represents the short immunity introduced by Ferguson
et al [5]. The disease is transmitted through random encounters between infected and
healthy individuals, assuming homogeneous mixing, in the dynamical process that we
now describe.

At each time step (representing a duration dt/N) an individual i is picked up at
random. If the individual is infected, one first checks for possible mutations of the
virus: with probability µ dt the state of one of the bits of its strain σi is changed. Then
one picks up at random ν different individuals in the population, where ν is Poisson
distributed with average β(σi) dt/τ , where β(σi) is the infectivity of the viral strain σi. If
one of these individuals is healthy, and its immune memory does not elicit immunity, it
becomes infected with strain σi. Then, with probability dt/τ , the individual i goes to the
recovered state, and the strain σi is added to its immune memory Σi. If the individual i is
recovered, then it moves to the healthy state with probability dt/η. The infectivities β(σ)
are assumed to be independent, identically distributed random variables for each strain
σ, with a gamma distribution of average β0 and parameter k:

p(β; k, β0) ∝
(

kβ

β0

)k−1

e−kβ/β0. (1)

The gamma distribution has the advantage of being easy to implement and of being
naturally defined only for nonnegative values of β.

The values of the parameters are chosen to be close to realistic estimates. One of the
problems we meet is considering populations large enough for avoiding extinctions due to
stochastic fluctuations, and for reasonably implementing the immune memory. We could
simulate in reasonable time systems of size up to N = 500 000. We choose the year as
unit of time and set the average duration τ of the illness to 0.02 (i.e., roughly one week).
We set the average duration η of the recovered state as 0.75 (i.e., after six months one
has ∼50% probability of being no longer immune).
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Figure 1. Simulation of the bit-string model with 500 000 individuals.
Parameters: duration of the illness τ = 0.02, lifetime λ = 50, infectivity
β = β0 = 3, immunity range r = 1. Left: continuous line (left axis): number
of infected individuals as a function of time. Dashed line (right axis): effective
number of strains versus time. Right: continuous line: average Hamming distance
of the active strains from the origin. Dashed line: average Hamming distance
between active strains.

According to Drake [16], the spontaneous genomic mutation rate µg for influenza A
viruses equals roughly one mutation per genome per replication. Taking into account the
duration of a viral generation (a few hours) and the fact that we are looking at a small
portion of the genome (L = 32 in the simulations that follow) we can set µ � 1 per strain
per year as a good order of magnitude.

We implemented two versions of this model, that differ in the duration of the
elementary time step. This difference affects the details of the dynamics, but not the
overall behaviour of the model. In the slow version, the elementary time step dt was taken
as small as 0.001, i.e., about 8 h. In the fast version, we took dt = τ (the duration of the
illness), i.e., at the end of the infection process, the infected individual was systematically
moved to the recovered state. The fast version was used to explore the phase space of
the model, and the behaviour of the system in the interesting regime was then analysed
in detail with the slow version.

4. Results

We first look at the simple version of the model, in which the duration of the recovered
state is negligible, and the infectivity β is not random. This model coincides with the bit-
string model introduced by Girvan et al [11], and exhibits only two possible behaviours:
extinction of the viral disease, or proliferation of the viral strains. We show in figure 1
the results of the simulation of the model with a population of 500 000 individuals.

All results quoted in this explorative stage were obtained with the fast version of the
dynamics.

An important parameter characterizing the viral population at a given time is the
effective number of circulating strains n, defined as the inverse participation ratio of the
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numbers νσ of individuals infected by strain σ, namely

n =

(∑
σ

νσ

)2 /(∑
σ

ν2
σ

)
. (2)

Since due to mutations one can have many different strains, each infecting only a small
number of individuals, the effective number of strains can be much smaller than the total
one. We also monitored some quantities which could give us some insight into the way the
viral strains explore sequence space. The system is initialized with a single viral strain
σ = σ0 = (0, 0, . . . , 0), and mutations set to 1 some of these zeros. We could thus evaluate,
at least initially, the drift of the strain, by computing the average of the Hamming distance
of the active strains from the initial point:

∆H =
1

I

∑
σ

dH(σ, σ0) νσ. (3)

Here I is the incidence of the disease, i.e., the total number of infected individuals:

I =
∑

σ

νσ. (4)

We call ‘active’ strains those for which νσ > 0. On the other hand, the cloud of active
viral strains broadens as it drifts. Its width can be estimated by evaluating the average
mutual Hamming distance between active strains, weighted by their incidence:

δH =
2

I(I − 1)

∑
(σ,σ′)

dH(σ, σ′) νσνσ′ , (5)

where the sum runs over all distinct pairs (σ, σ′) of active strains.
It is interesting that in this regime, as already noticed in [11], the disease becomes

extinct at large values of the infectivity. With our data, e.g., for r = 2, µ = 1, extinction
occurs for β0 < 2, but also for β0 > 8. This effect is due to the fact that the initial ripple in
the number of infected individuals is followed by a severe bottleneck, as shown in figure 1.
The bottleneck becomes more intense as the infectivity increases, eventually leading to
extinction. The eventual proliferation of viral strains makes it difficult to analyse this
model by generalizing the occupation number representation framework used, e.g., in [12]
to a multidimensional sequence space [17].

Since this model cannot sustain the nonproliferating strain regime characteristic of
influenza, we considered whether infectivity randomness alone could be responsible for it.
Indeed, recent studies [6] have shown that single-nucleotide substitutions lead to a wide
distribution of fitness effects in an RNA virus. It is likely that some of these effects also
arise in the short nucleotide sequence coding for the immunologically relevant section of
NA. We have thus attached to each strain σ a value βσ of the infectivity, drawn from a
gamma distribution of average β0 and parameter k.

As shown in figure 2, the behaviour of the system in the presence of only the randomly
distributed infectivity does not appear very different from that of the simple bit-string
model. There are only the proliferation and the extinction regimes. If anything, the phase
space allotted to the proliferating regime is reduced, because of the high average values of
the infectivity. The illness did not appear to remain, with our mutation rate and popula-
tion size, for ranges r ≥ 3. The average infectivity values in the population appear much
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Figure 2. Behaviour of the system with randomly distributed infectivity.
Expected value of the infectivity β0 = 3, parameter k = 3; other parameters
as in figure 1. Left: continuous line (left axis): number of infected individuals
versus time. Dashed line (right axis): effective number of strains. Right:
continuous line (left axis): average value of the infectivity. Dashed line (right
axis): average Hamming distance among active strains. Notice the proliferation
and the divergence of the strains.

larger than the average β0 of the distribution, suggesting that competition takes place at
the tail of the distribution. This behaviour does not depend strongly on the parameter k,
although the average values of the infectivity become smaller as k is increased.

If the infectivity is nonrandom, but the short term general immunity is present, the
disease either dies off or, after a few ripples, reaches a steady state at an incidence level
(number of infected) of the order of

I∗ = N
τ

τ + η

(
1 − 1

β0

)
. (6)

In this regime, however, the effects of specific immunization are apparent only in the small
reduction of the steady-state incidence level, as seen in figure 3, left. On the other hand,
one can see in figure 3 that the effective number of active strains remains high, and most
significantly that they diverge, so the average Hamming distance soon gets close to the
theoretical value for a random sample.

The picture changes if both random infectivity and short immunity are introduced. We
show in figure 4 the behaviour of the system with short immunity of duration 0.75 years,
and gamma-distributed infectivity with parameter k = 3 and an expected value β0 = 3.
Although the incidence of the disease settles down to a level close to the stationary level
dictated by equation (6), one can see that the effective number of strains remains of
order unity. The competition among viral strains shows up quite clearly in the oscillating
behaviour of n(t) and of δH(t). One can see that the actual average values of the infectivity
remain quite high and that, in spite of the ongoing competition, the incidence of the disease
does not show pronounced oscillations.

We can now consider the slow version of the program, in order to analyse the behaviour
of the model in detail. We show in figure 5 the results of a simulation in which the time
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Figure 3. Behaviour of the system with short immunity but nonrandom
infectivity. Infectivity β = β0 = 3, short immunity duration η = 0.75. Other
parameters as in figure 1. Left: continuous line (left axis): number of infected
individuals versus time. Horizontal line: expected number of infected individuals
according to equation (6). Dashed line (right axis): effective number of strains.
Although the number of infected individuals remains close to the equilibrium
value I∗, the effective number of strains reaches a large value, corresponding to
proliferation. Right: continuous line: average Hamming distance from the origin
of the active strains. Dashed line: average Hamming distance between active
strains. One sees that the distance between active strains keeps increasing,
witnessing their divergence. (With L = 32, the average distance in a random
sample would be dH = 16.)

interval dt is taken equal to 10−3 years (corresponding to a few hours), and the other
parameters are as in figure 4, apart from the genome length L, which is set equal to
128 in order to reduce the probability of back mutations. While the overall incidence
level remains close to that previously obtained, one can see that spontaneous oscillations
in the number of infected individuals persist, and are synchronized with corresponding
oscillations in the effective number of strains and in the width of the distribution of strains
in sequence space. In this system, something analogous to the working regime of influenza
appears to have been reached. One may also notice that the divergence between active
strains, measured by the average Hamming distance, remains limited even if the average
distance from the origin increases with time. The active strains therefore show ongoing
change, but with a limited amount of divergence.

These results still hold if one introduces a small modulation with a period of one year
in the infectivity5, by letting, for each viral strain σ,

βσ(t) = βσ (1 + m0 sin(t/2π)) . (7)

However, one can see that the characteristic time of the incidence ripples in our model
correspond to a few months, as if it were essentially determined by the duration of the
short immunity and of the illness, instead of by the viral strain turnover. Therefore a

5 The possibility that a small modulation in the infectivity could lead to the observed strong seasonality of the
influenza epidemics is discussed in [19].
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Figure 4. Behaviour of the system with randomly distributed infectivity and
short immunity. Expected value of the infectivity β0 = 3, parameter k = 3, range
r = 1, short immunity duration η = 0.75. Other parameters as in figure 1. Left:
continuous line (left axis): number of infected individuals versus time. Horizontal
line: expected number of infected individuals according to equation (6). Dashed
line (right axis): effective number of strains. Right: continuous line (left axis):
average value of the infectivity. Dashed line (right axis): average Hamming
distance among active strains. Dotted line: average Hamming distance from the
origin for the active strains. Notice that the number of active strains and their
mutual distance remain limited while exploring sequence space.
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Figure 5. Behaviour of the slow version of the model with randomly distributed
infectivity and short immunity. Expected value of the infectivity β0 = 3,
parameter k = 3, range r = 1, short immunity duration η = 0.75, genome
length L = 128. Other parameters as in figure 1. Left: continuous line (left
axis): number of infected individuals versus time. Dashed line (right axis):
effective number of strains. Right: continuous line (left axis): average value
of the infectivity. Dashed line (right axis): average Hamming distance among
active strains. Dotted line: average Hamming distance from the origin for the
active strains. The incidence ripples are more evident in this version since the
correlations in the immunity state of the population are more correctly taken into
account.
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Figure 6. Behaviour of the slow version of the model with randomly distributed
infectivity and short immunity, in the presence of a modulation of the infectivity
according to equation (7). Modulation m0 = 0.2. Other parameters as in figure 5.
Left: continuous line (left axis): number of infected individuals versus time.
Dashed line (right axis): effective number of strains. Right: continuous line (left
axis): average value of the infectivity. Dashed line (right axis): average Hamming
distance among active strains. Dotted line: average Hamming distance from the
origin for the active strains. The incidence ripples are more evident in this version
since the correlations in the immunity state of the population are more correctly
taken into account.

small modulation does little more than modulate the amplitude of the ripples, as shown
in figure 6.

5. Discussion

In this paper we addressed the problem of understanding the dynamical mechanisms
underlying antigenic drift of the influenza A virus. In particular we revisited the problem
outlined in [5] of the existence of a constantly evolving well-defined strain giving rise to
comb-like shape phylogenetic trees, i.e., to a constantly evolving viral population with a
comparatively narrow distribution in genetic space. We considered a minimal, individual
based model that couples epidemic dynamics and viral evolution. Our main finding is
that the absence of strain proliferation relates equally importantly to the large spectrum
short time cross-immunity emphasized in [5] and to heterogeneity in the effective viral
infectivity. In our model we directly suppose that different strains have different values
of the infectivity. Our results show that even a comparatively narrow distribution of
infectivity, in combination with the increased competition due to the presence of the
short immunity, is sufficient to lead to a ‘drifting quasispecies’ behaviour. We have also
seen that, on the other hand, such a behaviour has a very narrow range of stability, if any,
if either the short immunity or the random infectivity is lacking, at least in a model of a
comparatively large population without spatial structure, like the one we have considered.
We expect, on the basis of Kimura’s theory of selection in finite populations [18], that, as
the population becomes larger and larger, the spread in viral infectivity needed to stabilize
influenza behaviour becomes narrower and narrower.
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Perhaps obscured by the emphasis on short time immunity, a different mechanism was
present in [5]. In that case the heterogeneity was provided by a nontrivial ‘geographical
distribution’ of individuals. These were assumed to be randomly distributed on a
two-dimensional space. As an effect, the competition between different viral strains
is enhanced, since some geographical locations acquire a leading role in spreading the
disease, and the first strains to establish themselves in these locations acquire a standing
advantage. However, the possibility that different strains are also characterized by
different infectivities is quite natural and yields a realistic evolutionary dynamics. It
appears that some heterogeneity and a mechanism for an enhanced competition among
strains are all that is needed to reproduce the observed evolutionary pattern. Most
probably, varying infectivities for different strains and a heterogeneous pattern of contacts
among individuals in different communities both play a role in influenza spreading and
viral evolution. We think that this point deserves further research. Understanding which
contact and social patterns favour an increased effective infectivity could lead to more
effective policies for keeping influenza epidemics under control.

Finally, phylogenetic trees similar to those of the influenza virus have been observed
in in-host HIV evolution [4]. The present work might provide a stimulus for identifying the
factors that play the role corresponding to short immunity and heterogeneous infectivities
in that case.
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