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A simple system with two temperatures
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Abstract

We study the stationary nonequilibrium regime which settles in when two single-spin paramagnets each in contact with
its own thermal bath are coupled. The response versus correlation plot exhibits some features of aging systems, in particular
the existence, in some regimes, of effective temperatures. q 1999 Elsevier Science B.V. All rights reserved.
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A notion of effective temperature for non-equi-
librium systems, first proposed by Hohenberg and

w xShraiman 1 in the context of turbulent flow, and
w xlater developed, among others, in Ref. 2 , is associ-

ated to the following Gedankenexperiment. A small
Ž .system called the thermometer is coupled both to a

heat reservoir at a temperature Q and to the system
SS whose effective temperature T must be deter-eff

mined. As a consequence, heat flows either from or
to the reservoir at temperature Q . The effective
temperature T is defined as the temperature ateff

which this heat flow vanishes. In aging systems, as
well as in glassy systems kept out of equilibrium by
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Pierre-et-Marie Curie–Paris VI.

gentle stirring, it is expected that T depends on theeff

characteristic time scale of the thermomenter, and is
related to the violation of the fluctuation-dissipation
theorem. In order to investigate this phenomenology,
one has to develop a better grasp of the situation in
which a thermodynamical system is in contact with
heat reservoirs at two different temperatures.

Two-temperature systems naturally appear when
considering systems with annealed degrees of free-
dom, like magnetic systems with evolving inter-

w xactions 3 or diffusing particules on an evolving
w xnetwork 4 , where spins or particules have a temper-

ature different from the one of the bonds. We report
here the results for what is possibly the simplest
two-temperature system: two coupled single-spin
paramagnets in contact with different thermal baths.
When the temperatures of the baths are equal, the
system reaches a trivial equilibrium state. When the
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temperatures are different, the system reaches a sta-
tionary nonequilibrium regime where energy flows
through the system from the high- to the low-temper-
ature thermal bath. We analyze this nonequilibrium
state by means of the susceptibility versus correla-

w xtion plot 5 . At equilibrium, this plot is a straight
line of slope y1rT, as a consequence of the fluctua-
tion-dissipation theorem. In our case, the plot for the
high-temperature paramagnet differs very slightly
from the equilibrium one, but its effective tempera-

w xture 2 is smaller than the one of its bath, in
contrast with the more common situation. On the
other hand, the low-temperature paramagnet can fall
deeply out of equilibrium, and, depending on the
parameters of the system, it can violate the fluctua-
tion-dissipation theorem in a variety of ways, and are
reminiscent, in some limit, of the corresponding plot

w xin coarsening systems 6 . The ways in which the
relation of the cross-response to the cross-correlation
deviate from the equilibrium one are also interesting.

We consider two classical single-spin paramag-
nets coupled via a bilinear spin-spin interaction. The
Hamiltonian of the system is given by

1 2HHsy r S qaS S , 1Ž .Ý i i 1 22
is1,2

where the ‘spin’ variables S can take any real value.i

The parameters r set the response time scale of thei

paramagnets and a represents the strength of the
coupling. Stability requires a2 -r r . We shall con-1 2

sider a as a small parameter in the following. We
Ž .recall that the equilibrium correlation C ti

Ž .² : ² :s S t S 0 and response R t sd S t rŽ . Ž . Ž .i i i i
Ž . Žd h 0 of an isolated paramagnet where h is ai i

.conjugate field to S are respectively given byi

T
yr < t < yr ti iC t s e ; R t su t e . 2Ž . Ž . Ž . Ž .i iri

The dynamics of the coupled paramagnets is de-
scribed by a set of linear Langevin equations:

E HH
E S sy qh t , 3Ž . Ž .t i iESi

Ž .where h is1,2 is a thermal noise, at temperaturei
² Ž . Ž X .:T , with zero mean and variance: h t h t si i i

Ž X.2T d ty t . Expliciting the previous equation wei

obtain

E S syr S qaS qh t ,Ž .t 1 1 1 2 1
4Ž .½ E S syr S qaS qh t .Ž .t 2 2 2 1 2

From this equation we derive a system of eight
Ž X .equations for the correlation C t , ti j

X Ž X .s S t S t and response R t , t s² :Ž . Ž .i j i j

Ž X.² :d S t rd h t functions respectively.Ž .i j

For the response functions one has the au-
tonomous equations

° X X X
E qr R t ,t saR t ,t qd ty t ,Ž . Ž . Ž . Ž .t 1 11 21

X X X
E qr R t ,t saR t ,t qd ty t ,Ž . Ž . Ž . Ž .t 2 22 12~

X X
E qr R t ,t saR t ,t ,Ž . Ž . Ž .t 1 12 22

X X¢ E qr R t ,t saR t ,t . 5Ž . Ž . Ž . Ž .t 2 21 11

Ž .By appying, e.g., E qr to the third of theset 2

equations, and substituting the second one, we obtain

E qr E qr R t ,tXŽ . Ž . Ž .t 2 t 1 12

sa2R t ,tX qad ty tX . 6Ž . Ž . Ž .12

It is easy to see that R satisfies the same equation.21

Since both R and R satisfy the same boundary12 21

conditions, namely they vanish for tF tX, we deduce
that

R t ,tX sR t ,tX , ; t ,tX . 7Ž . Ž . Ž .12 21

For the correlation functions, the equations involve
the response functions:

° X X X
E qr C t ,t saC t ,t q2T R t ,t ,Ž . Ž . Ž . Ž .t 1 11 21 1 11

X X X
E qr C t ,t saC t ,t q2T R t ,t ,Ž . Ž . Ž . Ž .t 2 22 12 2 22~

X X X
E qr C t ,t saC t ,t q2T R t ,t ,Ž . Ž . Ž . Ž .t 1 12 22 1 21

X X X¢ E qr C t ,t saC t ,t q2T R t ,t .Ž . Ž . Ž . Ž .t 2 21 11 2 12

8Ž .

After a short transient, the systems enters a sta-
X ˆ XŽ . Ž .tionary regime, where C t,t sC ty t andi j i j

X ˆ XŽ . Ž .R t,t sR ty t . It is then possible to solve thei j i j
Ž .system. We define the integrated response x t by

t X Xˆx t s d t R t . 9Ž . Ž . Ž .H
0
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ˆFig. 1. Response function x versus correlation function C for11 11

T s1 and different values of the higher temperature T . We have1 2
ˆset r s r s1 and as0.1. Both x and C are normalized by1 2 11 11

ˆ Ž . Žthe instantaneous value C 0 . The lines correspond from above11
.to below to T s1,30,100,300,1000, respectively.2

We then have

ya tyr ya e y1Ž . Ž .2 y
x t su t yŽ . Ž .11

a a yaŽ .y q y

ya tqr ya e y1Ž . Ž .2 q
q , 10Ž .

a a yaŽ .q q y

T r 2 ya 2 qa2TŽ .1 2 y 2 ya < t <yĈ t s eŽ .11 2 2a a yaŽ .y q y

T r 2 ya 2 qa2TŽ .1 2 q 2 ya < t <qy e , 11Ž .2 2a a yaŽ .q q y

and the corresponding ones obtained by exchanging
the labels 1 and 2. We have introduced the following
notation for the inverse characteristic times:

2 2( r yr q4ar qr Ž .1 21 2
a s " . 12Ž ." 2 2

Ž .Since the autocorrelation C t is a monotoni-11
< <cally decreasing function of t , we can invert Eq.

Ž .11 for positive times, and express the integrated
response in terms of the correlation. For times longer

than ay1, when the fastest decreasing exponential inq
Ž .Eq. 11 can be neglected, we obtain

ˆ 2C 0 aŽ .
x t s 1yŽ .11 r r qrŽ .T 2 1 21 2� 0a q

T rT y12 1

ˆ 2C t aŽ .
y 1y .

r ya r qrŽ . Ž .T 2 y 1 21 2� 0a q
T rT y12 1

13Ž .
We can directly read off this equation the slope of
the response versus correlation plot:

X C ExŽ .
sy

T E C1

1 a2

s 1y .
r ya r qrŽ . Ž .T 2 y 1 21 2� 0a q

T rT y12 1

14Ž .
This corresponds to a straight line, i.e., to a well-de-

Ž . w xfined effective temperature T sT rX C 2 . Thiseff 1

temperature goes from T to infinity as T rT grows1 2 1

ˆFig. 2. Response function x versus correlation function C for11 11

T s1 and different values of the higher temperature T . We have1 2
ˆset r s10, r s1, and as0.1. Both x and C are normal-1 2 11 11

ˆ Ž .ized by the instantaneous value C 0 . The lines correspond11
Ž .from above to below to T s1,100,300,1000,2000, respectively.2

It is interesting to remark that in this situation the response dies
off long before the correlation, like in coarsening.



( )R. Exartier, L. PelitirPhysics Letters A 261 1999 94–97 97

from 1 to infinity, showing that the difference from
equilibrium behavior can be very strong in the sys-
tem coupled to the colder bath.

On the other hand, when T rT goes from 1 to 0,2 1

the departure from equilibrium is proportional to a2

and positiÕe, i.e., the plot lies slightly above than the
FDT line. Thus the high-temperature paramagnet
exhibits an effective temperature slightly smaller

Ž .than the one of the bath. See Figs. 1 and 2.
The expressions for the cross-correlation and re-

sponse are:

x tŽ .12

ya t ya ty qe y1 e y1
sa u t y q ,Ž .

a a ya a a yaŽ . Ž .y q y q q y

15Ž .
ya < t < ya < t <y qT r qT r e e1 2 2 1

Ĉ t sa yŽ .12 2 2 ž /a aa ya y qq y

sign t T yTŽ .1 2 ya < t < ya < t <y qy e ye ,Ž .2 2a yaq y

16Ž .

and the corresponding ones obtained by exchanging
the labels 1 and 2. For times longer than ay1, whenq

Ž .the fastest decreasing exponential in Eq. 16 can be
neglected, the cross-susceptibility has a simple ex-
pression in terms of the cross-correlation:

r qr r qr1 2 1 2ˆ ˆx t s C 0 y C tŽ . Ž . Ž .12 12 12r T qr T r T qr T1 2 2 1 1 2 2 1

=
a T yTŽ .y 1 2

1q .ž /r T qr T ya T yTŽ .1 2 2 1 y 1 2

17Ž .

Notice that the curves of the cross-response versus
Žthe cross-correlations start from the same point since

ˆ ˆŽ . Ž . Ž . Ž . .C 0 sC 0 , while x 0 sx 0 s0 and end12 21 12 21
ˆ Ž .at the same point, because the symmetry of R ti j

Ž . Ž .implies the equality of x t and x t . Neverthe-12 21

less the two effectiÕe temperatures are different, one
being above and the other below the ‘average’ tem-

Ž . Ž . Ž .perature Ts r T qr T r r qr . See Fig. 3.1 2 2 1 1 2

Summarizing, we have shown that the behavior of
a very simple system with two temperatures exhibits

Fig. 3. Cross-response function x versus correlation functions12
ˆ ˆC and C for T s1 and different values of the higher tempera-12 21 1

ˆ ˆture T . We have set r s10, r s1, and as0.1. C , C are2 1 2 12 21
ˆ ˆŽ . Ž .normalized by the instantaneous value C 0 sC 0 , and x12 21 12

Žby its asymptotic value for t™`. The lines correspond from
.outside to inside to T s10,5,2,1, respectively. The lines above2

ˆ ˆcorrespond to C , those below to C . Notice that the behavior of12 21

Ĉ is not monotonic.12

some of the characteristic features of aging systems,
kept out of equilibrium by a stirring force. It is
possible to extend the approach to study the details
of the measurement of temperature in an aging sys-

w xtem 7 .
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