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A simple model  of a populat ion of asexually reproducing individuals, evolving in a flat fitness 
landscape, is defined_ It is shown that the model is equivalent to a dynamical system with 
stochastic dynamics, the Annealed Random Map Model.  Thus, it is possible to solve exactly for 
the genealogy statistics and for the genetic variability of the population_ Fluctuations of 
quantities, like the average relatedness and the variability, which also take place in the limit of an 
infinitely large population,  are computed.  

1. Introduction. Several models of Darwinian evolution at the molecular level 
have recently been introduced. They have different structures, according to 
which features are more of interest to the investigators. In adaptive walks (see, 
e.g. Kauffman and Levin, 1987; Kauffman, 1989; Macken and Perelson, 1989) 
evolution is modelled as a stepwise optimization process: the genotype of a 
species is mutated at random, and the new genotype is adopted if it leads to a 
higher fitness. This approach does not take explicit account of the genetic 
variability of the population. The quasi-species model (see Eigen et al., 1988 for 
a recent review) represents evolution by deterministic equations modelled on 
those of reaction kinetics. The state of a population is described by the relative 
frequency of each molecular species. The approach neglects fluctuations in 
these quantities: this is in principle warranted if the number of possible 
molecular species is much smaller than the total number of molecules. 
Although this is the usual situation in reaction kinetics, it appears of doubtful 
validity in this context, since the number of possible molecular species (e.g. of 
possible nucleotide sequences in polynucleotide dynamics) is staggering. 
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Nevertheless, the main results of quasi-species theory hold if fitness optima are 
well pronounced and sparse. However, a number of features related to finite 
population size do require a stochastic treatment (Ebeling and Feistel, 1977; 
Swetina and Schuster, 1982; Schuster and Sigmund, 1985; Schuster and 
Swetina, 1988). A very instructive phenomenon is "Muller's ratchet", in which 
a population moves away from an adaptation opt imum because of fluctuations 
(Nowak and Schuster, 1989). 

Stochastic models have been mainly treated by computer simulations 
(Fontana and Schuster, 1987; Fontana et al., 1989; Amitrano et al., 1988; 
1989), although some analytical results have been obtained (Demetrius et al., 
1985). Some important properties have thus been highlighted. Of course, the 
case in which a stochastic treatment is most needed is that of a neutral or almost 
neutral evolution (Section 8.1 of Kimura, 1983). In this case, the deterministic 
quasi-species equations can be trivially solved, yielding the prediction that, at 
equilibrium, the frequency of any allowed molecular species is as large as that of 
any other. But it is obvious that the finite size of the population implies that, at 
any given time, only a few molecular species can possibly be represented. 

In fact, the description of a stochastic evolutionary model requires the 
introduction of two different kinds of averages. One might take the average of 
relevant properties over the whole molecular population existing at any given 
time: this is the population average. Quantities like the consensus sequence and 
the genetic variability are defined in this way. However, these quantities 
fluctuate even for  very large populations. One can thus envisage taking their 
average over a very long time stretch: this is a time average, which, if some sort 
of ergodic property is assumed, may be represented by the average over all 
possible realizations of the stochastic process. One of the weaknesses of the 
standard quasi-species model lies, in our opinion, in not differentiating 
between these two kinds of averages. 

The presence of two kinds of averages is commonplace in the theory of 
disordered systems, and in particular of spin glasses (a useful review and 
collection of papers is contained in M6zard et al., 1987). The population 
average is analogous to the thermal average, and the long time or process 
average to the average over disorder. The stochastic nature of thermal averages 
goes under the name of "lack of self-averaging". 

We show in this paper how these properties appear in the explicit solution of 
a very simple model of a population evolving in a flat fitness landscape. The 
model is inspired by those of Fontana and Schuster (1987), Fontana  et al. 
(1989), Amitrano et al. (1988; 1989) and Zhang et al. (1989). 

Although the consideration of a flat fitness landscape may appear academic, 
we think that our results are relevant for two reasons: on the one hand, the 
explicit knowledge of the behavior of a population evolving in the absence of 
Natural Selection makes it easier to identify, by contrast, the features which are 
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due to Natural Selection itself; on the other hand, we shall argue in the final 
discussion that our results about genealogy statistics also hold for a model of a 
population evolving in a rugged fitness landscape (Kauffman and Levin, 1987; 
Kauffman, 1989; Macken and Perelson, 1989), at least in the infinite genome 
size limit (p. 236 of Kimura, 1983). 

We shall use the following strategy: the problem of the distribution in 
genome space of the population is conceptually split into genealogy statistics 
on the one hand, and drift in genome space of a given lineage on the other. If 
two individuals share a more or.less recent common ancestor, they will have a 
greater or lesser genetic similarity. Now, we are able to compute the genealogy 
statistics of our model, by exploiting its equivalence with a dynamical system 
with stochastic dynamics, the Annealed Random Map model, introduced by 
Derrida and Bessis (1988). A new link between models in evolution theory and 
dynamical systems is thus established (different from those discussed by 
Hofbauer and Sigmund, 1988). The drift in genetic, space then appears as a 
simple random walk problem, whose solution allows us to predict explicitly the 
distribution of genetic similarity and the statistics of the genetic variability of 
the population. 

The model is defined in Section 2. The statistics of genealogies is derived in 
Section 3, and some of its consequences are explored in Section 4. Section 5 
contains a discussion of the genetic variability of the population, and Section 6 
discusses its corresponding fluctuations. Section 7 contains a discussion of the 
genetic drift. A general discussion closes the paper, while two technical results, 
obtained by Derrida and Bessis (1988), are rederived in the Appendices for 
completeness. 

2. Model. We consider a population f~, made up of a fixed number, M, of 
individuals reproducing asexually, whose genome is characterized by N binary 
units $7= _+1, ~=1 ,  2, . . . ,  M; i=1 ,  2, . . . ,  N. At each generation t, all 
individuals are removed, and a new generation is formed by offsprings of the 
previous individuals. To each individual ~ e f~ is assigned a parent G~(~)E f~. We 
stipulate that G,(~) is chosen,independently and with uniform probability in f~ 
for each individual ~ and at each generation t. The fitness landscape is flat, in 
the sense that all genotypes have equal chances of leaving behind offspring. 

Therefore, for finite values of M, the probability Pm that an individual leaves 
behind m offspring is a binomial with success probability equal to 1/M. If 
M>> 1, this probability becomes a Poisson distribution of mean 1: 

- 1  
e 

P" m! (1) 

T15e genome of each offspring would be identical to that of its parent, were it 
not for the rare occurrence of mutations. We consider here only point 
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mutations.  This means that, at each generation t, the genome S ~ = ($7) of the 
individual ~ is identical to that of its parent G,(~) at the previous generation 
t -  1, except for mutations, which occur with probability/.t dt during each time 
interval dr. Therefore: 

~S~t(=)(t - 1), with probability ½(1 + e - 2 / 1 ) ,  

S~(t) = ~. _ S~t( , ) ( t_  1), with probability ½(1 - e -  2~). 
(2) 

One might also consider more general models, where the probability p,, is 
not given by equation (1). It turns out that our results apply also to these cases 
up to a simple rescaling of time, provided that all individuals are equal with 
respect to their chances of reproducing. This point will be discussed in the next 
section. 

We now show that the genealogy statistics of our model can be represented 
by the Annealed Random Map (ARM) model, introduced and solved by 
Derrida and Bessis (1988). In the rest of this section--and in the following 
one--we forget about the genome structure of the individuals and consider 
only their labels ~ = 1, 2 , . . . ,  M. 

The ARM model is defined as follows. One considers a phase space f~, made 
up of M points. At each time step t, the dynamics is defined by a random 
mapping Gt: f ~ f 2  of f~ into itself. For  each po in t  ~ef~ one chooses 
independently and with uniform probability in fl its image Gt(o:). Mappings at 
different times t are independent. 

As time goes on, the images of different points may be mapped on the same 
point, i.e. trajectories may merge. Let us follow the fate, after t time steps, 0fthe 
images of the different points in f~ for a given sequence of mappings G t. The 
phase space f~ splits up in a certain number of"valleys" such that, if two points 

and fl belong to the same valley, they are mapped on the same image after t 
time steps. The valleys depend on t (hence they may be aptly called "t-valleys") 
and on the particular sequence of mappings (Gt). 

Let us now consider our population, a long time after the beginning. We can 
now investigate the genealogy of a given individual by tracing backwards its 
parent and ancestors: as we move back one generation, the parent is identified 
by applying the random mapping Gt once, and the ancestors by applying the 
corresponding mapping to the parent, and so on. Merging of the images of two 
different points corresponds to the splitting of two lineages in genealogy 
statistics. By the same token, the fact that two points, ~ and fl, belong to the 
same "t-valley" in the ARM model, is equivalent in the population model to the 
fact that two individuals had a common ancestor t generations ago. 

Building on this analogy we can now restate, in the language of genealogy 
statistics, some of the results obtained by Derrida and Bessis (1988) for the 
ARM model. 



FLAT FITNESS LANDSCAPE 359 

3. Genealogies. Given n individuals in the population, let us denote by w,(t) 
the probability that their ancestors, t generations ago, are all different. This 
quantity is easily calculated. If k individuals have already been assigned each a 
different parent, the next one will be assigned another different one with 
probability ( 1 -  k/M). Therefore, the probability x k that k individuals have k 
different parents is given by: 

x k = ( 1 - 1 ) ( 1 - 2 ) . . . ( 1  kM1 ).  (3) 

As a consequence, one has: 

By expanding this relation up to first order in 1/M we obtain: 

w.(t+l)=w.(t)[1 n(n -1 )  l ] . 2  

This allows us to derive the expression of w.(t): 

(4) 

(5) 

w.(t)=exp[ n(n-1)t]  
2 M " (6) 

We see that the relevant time scale is proportional to M. We therefore 
introduce the rescaled time variable: 

t 
T = ~r '  (7) 

and express all time dependences in terms of-r. 
It is now easy to see that, in a more general reproduction scheme 

characterized by a probability Pm of leaving behind m offspring different from 
equation (1), equation (6) must be replaced by: 

(8) w.(t + 1) = w.(t) [1 n(n- 

with x defined by: 

x = ~ m ( m -  1)p m = [m2]..- 1, (9) 
m=2 

where the average [ ]av is taken with respect to the probability distribution 
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Pro, and we have exploited the fact that, since we impose the population size M 
to be constant, one has [m]a v = 1. Our results therefore apply also to this case, 
provided we define the rescaled time variable -c as follows: 

t 
z = x  - - .  (10) 

M 

In particular, in the scheme defined by Amitrano et al. (1989) and Zhang et 
al. (1989) a fraction 6 of the individuals is suppressed outright, and the 
remaining ones have one or more offspring, as they are allowed to reproduce to 
fill in the gaps of the population. One has in this case: 

1 - 6  /' 6 "~ m-x / ) 
P°=6;  P ' - ( m - - - - 1 ) ' ~ , ~ )  exp,, 16-~ ,m>O.  (11) 

One then has: 

6 ( 2 - 6 )  
~¢ - - -  (12) 

1 - 6  

We shall call this scheme the ZSP model. 
For the case of two individuals, we have from equation (6): 

w2(z)=e -~, (13) 

which implies that the probability X2(z ) that two individuals had a common 
ancestor "cM generations ago is given by: 

X2 (z) = 1 - e - L  (14) 

The probability density p(z) that the last common ancestor of the two 
individuals existed between z M  and (z + dz)M generations ago is given by: 

p(z) --- dX2(z) - e-L (15) 
dz 

This quantity may be generalized to the probability of a given genealogy, which 
may be represented by a set of genealogical trees such as the one shown in 
Fig. 1. We denote unbranched lineages by straight lines, and we identify by the 
time labels 0 <<,z. <~z,_ 1 . . .  <<-Zk, the epochs at which the different lineages 
branched. The label l identifies the number of different lineages in the 
generations immediately following z~. These variables are always rescaled 
numbers of generations. Then, the probability I-l.(-c,, -c,_ 1 . . . . .  Zk) of a given 
genealogy depends only on the number n of individuals one considers, on the 
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Figure 1_ A genealogy with n = 5, k = 2. The variable z increases as we reckon back 
the genealogy. The probabili ty of this genealogy is given by 

number  k of different ancestors, and on the branching times %, z._ a, - • -, Tk" 
One has: 

H,(z, ,  z ,_ l ,  . - -  , Zk)= exp -- -- 
l = k  

(16) 

where we have defined z, +1 = 0. 
By the same token, Xz(z ) may be generalized to the set of probabilities 

)(,,.2.-.,k(z) that, given n =  t/1 4-1"/2 4- " ' "  4 - n  k individuals, the first n 1 ones had, 
• M generations ago, one common ancestor, the second n 2 ones a different one, 
• . .  and the last n k ones another  different one. One finds in Derrida and Bessis 
(1988) the following expression for this quantity: 

X,,,2...,~ ( z )=  na !n2 ! . . . rig! ( -  1) k 

(2/-- 1) ( n - - k ) ! ( k +  l--2)! exp z × 
"-" ( n + l - 1 ) ! ( n - l ) ! ( l - k ) !  2 l = k  

For reference, the derivation of this result is reported in Appendix 1. 
It is important  to keep in mind that two different kinds of average are 

involved in the model. Let us consider a particular history of the model, i.e. a 
particular time sequence of mappings (Gt) form each individual to its parent• At 
any given time, we may  take the average of any quantity involving one or few 
individuals over the whole population 1): we refer to it as the populat ion  average 
and denote it by angular brackets: ( ). However, such averages may 
fluctuate, even for an infinitely large population, according to the particular 
mapping sequence (Gt) which has taken place• One can therefore consider the 
average of these quantities, taken over all possible realizations of the 
reproduction process, i.e. over all possible sequences of mappings (Gt). We call 

it the process  average and denote it by a bar: 
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There is a loose but instructive analogy between these averages and those 
appearing in the theory of disordered systems. The M ~  oe limit in a population 
with a given history is analogous to the thermodynamical  limit with a given 
realization of the quenched disorder. The population average is therefore 
analogous to the thermal  average in disordered systems. The residual 
randomness makes it necessary to perform a further average over the disorder, 
which corresponds therefore to the process average. It is a special feature of our 
model, however, that the process average can be obtained by averaging over 
the temporal  unfolding of the process for a sufficiently long time stretch, since 
the time sequence (G,) of mappings belonging to different time intervals are 
independent. 

For  example, given the two individuals e and B, we may denote by -c,p their 
relatedness,  i.e. the rescaled number  of generations which we have to reckon 
back to find their last common ancestor. We then define O,p(z) by: 

O,p(v) = O(z - z~o ), (18) 

where 0(-c) is Heaviside's unit step function. We can thus define the quantity: 

1 

r (z )  = = y,  (19) 
(~,#) 

where the sum is over all pairs of individuals in the population. Y(z) is the 
probability that two individuals, chosen at random in the population present at 
a given epoch, had an ancestor in common zM generations before. One can 
show that the quantity Y(z) is a random variable, which depends on the history 
of the population and fluctuates even when its size is infinitely large. The 
average of Y(z) is given by: 

Y(z) = X2(z ) = 1 -- e-~ (20) 

To convince us that Y(z) is indeed a random variable, let us consider: 

Y 2 ( z ) = ~  -- Z 0~p(z) 2 O,a(z). (21) 
(~,//) (~,,~) 

This quantity is the probability that ~ and fl shared an ancestor zM generations 
ago, and 7 and 6 another,  not  necessarily different from the first. We have 
therefore, from equation (17): 

x2,2( ) 
=1 - se" -~ +}e  -3~ - 1~e5 -6~ , (22) 

which is larger than Y(z) 2 for z ~ 0 ,  oc. 
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4. Families. We say that two individuals, ~ and/~, belong to the same z-family 
if their last common ancestor existed less than rM~ generations ago. The 
number F(O of r-families and the number Mz of their members are fluctuating 
variables, whose distribution can be easily obtained. 

Let us denote by O(r) the average of F(r): 

O(r)=F(r). (23) 

A simple mean field approximation (where F 2 is replaced by t72= (I)2) would 
give: 

d o m e  __ Omf ((I)rn f - -  1) 

dr 2 ' 
(24) 

and therefore: 

Cme(r)= (25) 

Derrida and Bessis (1988) have calculated the probability Zk(z ) that there are 
exactly k families. The result reads, in the M ~ o e  limit: 

1 ~ (--1)k+~(21-1) 
Zk(r)  -- k ! ( k -  1)! ~=k 

( k + / - 2 ) !  
exp[-½/( / -1)r ] .  (26) 

For reference, this result is derived in Appendix 2. One obtains therefore the 
exact expression: 

I~(r)= k ~'= 1 kZk(r)= t= ~1 (2 l -  1)expl 1(I-1) 1 2  r . (27) 

This expression agrees with the mean field one [equation (25)] when z ~ 1, 
yielding: 

2 
- ,  (28) 
r 

as already obtained by Zhang et al. (1989). However, one finds deviations in the 
fluctuation-dominated range ~>1, where F(r)-~l. It is also possible to 
calculate the mean square deviation AF(r) defined by AFa(r)=F2(r) -F(r )  2. 

The expression of F2(z) is given by equation (A2.8). We show in Fig. 2a the 
average of F(r) over 1000 simulation runs, along with the predictions (25) and 
(27),~and in Fig. 2b the simulation results for AF(z ) /F ( r ) ,  compared with the 
theoretical prediction derived from equation (A2.8). 
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Figure 2. (a) Average number q~(z)=F(T) of T-families vs z for M= 500. Solid line: 
equation (27). Broken line: mean field approximation equation (25)_ Irregular line: 
simulation. (b) Reduced mean square deviation AF(T)/F(z), with AF 2 = F ~ - F 2 :  

Solid line: F2(T) given by equation (A2.8). Irregular line: simulation. Simulation 
averages are taken over 1 000 runs, with M =  500. 

T h e  d i s t r ibu t ion  of  sizes of  z-families has  also been  ca lcu la ted  by  D e r r i d a  and  

Bessis (1988). The  p r o b a b i l i t y  d e n s i t y f ( W 1 ,  W 2 , . . . ,  Wk) tha t ,  if one  chooses  k 
families a m o n g  all poss ib le  ones,  the  first one  has  M 1 = W I M  m e m b e r s ,  the  

second  one  M 2 = W 2 M ,  . . .  a n d  the last  one  has  M k = WkM m e m b e r s  (where  
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the weights W~ satisfy 0 ~< ~ ~< 1, and ~lW//~< 1), can be obtained from the 
requirement that: 

x"l"2""~(z) = f~ 

f/ 
The result is: 

f ( m 1, W2 , . . . Wk)= 
/~(/--1)! 

' Z = k - ( l Z k ~  • 

dW~ f /  d W 2 . . -  

dWk~/~11]~22z... W~k k f ( W I , W 2 . . . .  , Wk). 

Z ~ ( z ) f ] d L f j d Y 2 . - . f ] d Y t  

(29) 

x 6(1 - Y1 - Yz . . . . .  Y~) 

~(wl-  Y1) ~(w2- r g . . .  ~ ( ~ -  rk). (30) 

This expression implies in fact that all possible ways of dividing the total 
population size Minto  the different family sizes Mz have the same probability, if 
the number k of families are given. In fact, if two z-families merge into one at a 
given generation, this happens because the two ancestors of the first ones share 
a common parent, what takes place with a probability which is totally 
independent of their sizes. 

It is now easy to calculate the probability distribution r~(Y) of Y(z ) ,  defined in 
equation (19). Indeed, since W~ is the probability that a given individual 
belongs to the/th z-family, the probability Y(z) that two individuals belong to 
the same r-family may be expressed in terms of the weights W~ as follows: 

r(z)= Z wL (31) 
1 

where the sum runs over all r-families. One gets (Derrida and Bessis, 1988): 

T c ( Y ) = Z , ( z )  6 ( Y -  1)+ ( k - - 1 ) ! Z k ( Z )  d W ~  d W 2 . . ,  dl/V k 
k = 2  

x 6(1 - W 1 - W 2 . . . . .  Wk) 6 ( Y - -  W } -  W } . . . . .  Wk2). (32) 

The form of re(Y) is qualitatively similar to that appearing in other disordered 
systems, such as spin-glasses (Derrida and Flyvbjerg, 1987; M6zard et  al.,  

1987). 

5. Genetic Structure. Genealogies of reproducing molecules or bacteria are 
not accessible to experiment. It is however possible in principle to measure the 
genetic variability of a population, e.g. the probability that a given unit i is in a 
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state different from the most common one. In our model, a convenient measure 
of the variaNlity is provided by the statistics of the overlap q'P between two 
individualse and fl, defined by: 

1 N 
q~a=~ ~ S~S~. (_~3) 

i = 1  

Its population average (q)  is given by: 

(q)  = ~ q~P, 
(~,O) 

(34) 

where the sum runs over all distinct pairs of individuals in the population. 
When (q)  ~ 1, the genetic variability of the population is small, and we have 
therefore a well defined quasi-species (Eigen et al., 1988). On the other hand, 
when ( q ) ~  1, the population is widely spread in genome space. An even 
simpler quantity to compute is Q, defined by: 

1 N 
Q = ~ ~ (S~) 2. (35) 

i = 1  

One has: 

1 
Q = (q)  + M (1 - (q))'-~ (q) .  (36) 

The probability distribution of the overlap q ~p can be explicitly calculated in 
our model. 

Given two individuals, a and fl, their Hamming distance v "p is the number of 
genome units whose state is different in the two individuals: 

v~= 2 (S~-S~) 2 (37) 
i = 1  

One has of course: 

q ' a - l - 2 - - .  (38) 
N 

Let us now consider two individuals whose relatedness is equal to z, i.e. 
whose last common ancestor existed r M  generations ago. Their Hamming 
distance can be calculated as follows. During a time rM, the genome of the 
ancestor of each individual underwent a random walk in the space of the 2 u 
possible genomes, as mutations accumulated. The problem reduces therefore 
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to the study of a random walk in genome space, where each unit has a 
probability/t dt of flipping during each time interval dr. 

Let us denote by ~b~(t) the probability that the total Hamming distance 
travelled in a walk lasting t generations, is equal to v. This probability ~b~(t) 
obeys the following equation: 

d¢~(t)-#[(v+l)¢~+l(t)+(N-v+l)c~_l(t)--N~p~(t)]. (39) 
dt 

The solution of this equation reads: 

N~ dp~(t) = 2Sv!(N_v)! (1 -e-2U')~(1 + e-2"') N-~ (40) 

In particular the average Hamming distance [v]av(t ) is given by: 

N (1 -- e -  z"t). (41) [v].v(t) = Z v4) (t) = -£ 
V 

We can now obtain the probability Pv that the Hamming distance between 
any two individuals is equal to v. If the last common ancestor of two individuals 
existed zM generations ago, they are separated by a random walk lasting 2vM 
generations. We have therefore: 

P~ = dzp(z)d~,(2zM), (42) 

where p(z) dz is the probability, given by equation (15), that the relatedness z~p 
of the two individuals satisfies • < %p ~< z + dz. The result reads: 

2N, ~" (N v) F(2+I)  (43) 
P~--2N(N--v) ! /=0 / F ( 2 + l + v + l )  

Here F is Euler's gamma function, and we have introduced the parameter 

1 
2 - 4#M" (44) 

In the more general schemes one h~ts: 

2 - 4/~M' (45) 

with x given by equation (10). By use of equations (38) and (41) we also obtain: 
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Q =  foo dze--re -4uM~- 2 . (46) 
Jo  2+1  

Equations (43) and (46) could in fact be derived in a different way by 
considering our model as the collection of N loci, each with two selectively 
equivalent alleles, and with mutation rate #, evolving in a population of fixed 
size M. This is the N >  1 generalization of the Wright model (Wright, 1937; see 
also Kimura and Crow, 1964; Stewart, 1976; p. 203 of Kimura, 1983). The 
same method allows us to treat a population evolving in a nontrivial (but 
highly correlated) fitness landscape, where each locus contributes indepen- 
dently to the death probability. However, in this way one would not recover the 
results for the genealogies derived in Section 3, and the calculation of 
fluctuations would be slightly harder. 

The results simplify in the limit N>>I. In this case 49~(t), given by 
equation (40), becomes approximately a delta function, centered on [V]av(t ). 
We therefore have: 

Pv= f o  dzp(z) 6(v-[V] ,v(2ZM))=~ (47) 

By use of equation (38), we may convert this expression into the probability 
density P(q) of the overlap q, obtaining: 

~2q ~-1, i f 0 < q ~ l ,  (48) 
P(q) = (0, otherwise. 

We see that this simple model of evolution in a flat landscape presents a broad 
distribution P(q) of the overlap q, of the same nature as the P(q) predicted by 
the Parisi theory of spin glasses (M6zard et al., 1987). 

Figure 3 shows a plot of O vs 2 for our model (diamonds) and for the ZSP 
model (crosses). The points are averages over simulations, lasting 10 000 
generations, for M = 2 0 0  and N = 2 0  and 10 respectively. The full line 
corresponds to equation (16). In spite of the smallness of the values of Nand  M, 
the agreement appears satisfactory. 

Figures 4 and 5 show the histograms of the Hamming distance v, predicted 
by equation (43), compared with the results of the simulations of our model 
and of the ZSP model respectively. In both figures, the diamonds represent the 
theory and the histograms represent the outcome of the simulation, averaged 
over 10 000 generations. We remark that Pv has a peak away from v = 0 for 
~, < 1; the peak moves to v =0,  becoming very flat at )~ = 1, and stays there, 
becoming sharper and sharper, as 2 increases further. 

It is also easy to generalize these results to the case of the diffusion- 
reproduction processes in real space considered by Zhang et al. (1989). 
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Figure 3. Average of Q ~- (q) vs 2 for M =  200. Diamonds: our model, with N =  20. 
Crosses: ZSP model, with N=10,  #=0.05 and varying death probability 6. 

Averages over 10 000 generations. 

The overlap q'P represents the result of a comparison between two 
individuals. One may also envisage comparing three or more individuals 
together at a time. This defines a class of generalized overlaps which may also 
be explicitly calculated in our model. 

6. F l u c t u a t i o n s  and  U l t r a m e t r i c i t y .  We have already seen, in Sections 3 and 4, 
that fluctuations appear in this model even in the limit M---} ~ .  However, the 
quantity Y(z), whose fluctuations have been computed in equations (20), (21) 
and (32), is not accessible if only the state of the population at a given 
generation is known. On the other hand, the average overlap (q)  fluctuates 
during the evolution of the system, as shown by the simulation results of Fig. 6. 
In order to highlight this feature, let us compute, in the infinite genome limit 
N---} ~ ,  the root mean square deviation of Q. One has: 

Q2 = ~ ( S i )  ~ ( q ) 2 .  (49) 
i = 1  

In the infinite genome limit, wenhave seen that, if the relatedness of two 
individuals is equal to -c, their overlap q is given by: 

q = e-'/a = e 4u,. (50) 

On the other hand, the joint probability density G('c, z') that two individuals, 
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and fl, have  relatedness  equal  to z, and t w o  other  ones,  7 and 6, equal  to  z', is 
given by: 

G(z, z')= Z ,9~p(z) ~ 07o(z' ), (51) 
(~,O) (7,0) 

where O=p(z) has been defined in equation (18). 
One obtains therefore: 
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Figure 4_ Histograms of the Hamming distance v for N= 20, M =  200: (a) 2 = 0.6; (b) 
2= 1.0; (c) 2 = 1.5. Diamonds: equation (42). Averages over 10 000 generations. 

( @ 2 =  dq dq' d'c dv'G(v, ~')qq' 6(q-e  -~/~) 6(q'-e-~'/z). (52) 

W e  now evaluate  G(-c, z'). One  m a y  easily convince oneself  that:  

G(z, z') = 0(-c - z') [2A('c, -c') + 4B(z, z') + C(z, -c')] 

+ ('r+-~r') + 6(z - r')4D('r), (53) 

where  A, B, C, D, are the probabi l i t ies  of  the genealogies shown  in Figs 7a d 
respectively,  and the numerica l  factors  take  multiplicit ies into account .  A 
simple calcula t ion yields: 

2A(-c, r ' ) = e  -~ 5r ' - -e -3r -3r ' ,  (54) 

4B(r,  "c') -4- x(e , - 2 e  - e - ~- 5~'), (55) 

C(z, "c') = e -  3~- 3~', (56) 

- -  ~ c  - -  3 - v  (57) 

We thus obta in:  

~0 
cl 9 jem 

( q ) / =  dr  d ' r 'e-  (~ + ~')/~G('c, r ') 
o 

222(922 + 1 8 2 + 4 )  

( 2 +  1 ) ( 2 + 2 ) ( 3 2 + 2 ) ( 6 2 + 2 )  
(58) 
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Figure 5. Histograms of the Hamming distance v for the ZSP model, with N=  10, 
M=200, and p=0.05. (a) ~=0.7; (b) b=0.8. Diamonds: equation (42). Averages 

over 10 000 generations. 

This implies: 

AQ 2 = Q 2 _ Q2 ..~ ( q )  2 _ ( q )  2 

223 
(59) 

( 2 +  1)z(2 + 2 ) ( 3 2 +  1 ) ( 3 2 + 2 )  

These results may be compared to those obtained by Stewart (1976) in an 
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Figure 6. Q(t) vs the generation number t for a single run of simulation, with N = 20, 
M= 200 and 2 = 1. 

analogous problem. They hold in the infinite genome size limit. For 
comparison with the simulation data, it is important  to consider the finite size 
corrections to AQ. A simple calculation shows that, to first order in I/N, AQ 2 
should be increased by the following term: 

AQ,2 = 222(112+ 12)(22+ 1) 1 (60) 
3(2+ 1 ) (2+2) (32+  1)(32+2)  N 

Figure 8 shows a plot of AQ vs 2 for our model. The full line corresponds to 
the limit N---}oo, whereas the dashed line takes into account the finite size 
correction equation (60). 

The relatedness z,p provides a natural notion of distance in populations of 
reproducing entities. This distance is obviously ultrametric, i.e. hierarchical, as 
witnessed by the very existence of genealogical trees. This corresponds to the 
fact that the usual triangle property of a distance: 

(61) 

is replaced by the stronger property: 

z,p ~< max(z,;', "c~p), Vow, fl, 7e~ .  (62) 

It is easy to calculate, in our model, the joint probability density P(r,a, z~,  -c~,) 
function of the relatednesses of three individuals. By use of equation (16) we 
obtain in fact: 
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Figure 7. Genealogies involved in the evaluation of AQ. Integration on the 
unmarked time labels is understood. 

P('c,p, rpr , zr, ) = 0(z,p -- Tar ) 6(z,p -- zr,)e- '-o- 2~,, + Perm(ct, fl, 7). (63) 

Equat ion  (50) implies that  relatedness is unequivocally converted in genetic 
similarity in the infinite genome limit. In particular,  if two individuals belong to 
the same -c-family, their overlap is not  smaller than  e -~/x. We may  then derive 
from equat ion (39) the jo int  probabil i ty density P(q~'P, qar, q r,) of the overlaps 
q, in the infinite genome limit N---, oo: 

p(q,p, qpr, qr~,)= A20(qPr_q~a ) b(q~p_qr~) (q~,P)z- l(qra)2z-1 + Perm(a,  fl, 7). 
(64) 

By the same token, the distr ibution of z-familiesf(W 1 , W 2 , . . . ,  Wk), given by 
equat ion (30), is converted into a cluster distr ibution in genome space. Since "c 
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Figure 8. Root mean square deviation AQ of Q vs )~ for N=20 and M=200. 
Averages over 10 000 generations. The full line is the theory equation (59), valid in 
the limit N~oo,  while the dashed line takes into account the 1IN corrections 

equation (60). 

and q are related by equation (50), is converted into a cluster distribution in 
genome space. Since z and q are related by equation (50), these distributions 
describe the formation of clusters of genetically similar individuals. 

When N is not  strictly infinite, however, the mapping from genealogical 
relatedness to genetic similarity is no more deterministic. In particular, we do 
not expect the ultrametric structure of q appearing in equation (64) to remain 
strictly valid for finite N. 

7. G e n e t i c  D r i f t .  The time evolution of the average genotype (S i ( t ) )  is 
conveniently expressed by the correlation function X(t), defined by: 

1 N 

g(t) = ~ i ~-5-1 ( S , ( t ) )  (S,(0)). (65) 

For  reasons that will appear evident in a short time, we shall indicate time 
dependences, in this section, by the generation number  t instead of the reduced 
one ~. 

We expect in general an exponential decay of correlations: 

Z(t) w.e - 2~*t, (66) 

wtiich defines the effective mutat ion rate/ t*.  
This correlation function is easily calculated. Let us consider an individual, 



376 B. D E R R I D A  A N D  L. P E L I T I  

~, existing at generation 0, and an individual,  fl, existing at a following 
generat ion t. Let us denote by fl' the ancestor of fl, existing at generation 0. The 
relatedness between ~ and fl' is distr ibuted according to the probabili ty density 
p ( z )  obtained in equation (15). Given a relatedness z between ~ and fl', the 
individuals ~ and fl are connected by a r a n d o m  walk in genome space, lasting 
2 " c M +  t generations. Their expected overlap is therefore equal to e -2~t2rM+t). 
We therefore have: 

)~(t)= I v dze-~e -2u(z 'M+')-  2 e_2U,. (67) 
Jo 2 + 1  

Thus  the effective muta t ion  rate #*, equal to half the inverse characteristic time 
of correlation decay, is equal to the "bare" muta t ion  rate #. This is a well known  
proper ty  of neutral  evolution (e .g .p .  47 of Kimura ,  1983). We remark,  in 
particular,  that  #* is independent  of the popula t ion  size M, when # is fixed. We 
report  in Fig. 9 a plot  of the effective muta t ion  rate #* vs  the bare one # for 
N =  20 and different popula t ion  sizes M. 
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Figure 9. Effective mutation rate/~* vs # for N= 20 and different population sizes M. 
Averages over 40 000 generations. Pluses: M= 10; crosses: M= 80; pluses with a 

hole: M= 160. Line: #* =p. 

8. Discussion. The most  obvious l imitat ion of our model  lies in the 
considerat ion of a fiat fitness landscape. Our  results, however,  may  have 
interesting implications for models  of evolut ion in rugged fitness landscapes 
(Kauffman and Levin, 1987; Kauffman,  1989; Macken  and Perelson, 1989). In 
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these models the fitness H(S) of a given genome configuration S is picked at 
random from an identical probability distribution, independently for each of 
the 2 N ones. In the theory of disordered systems, such a model is known as the 
Random Energy Model (Derrida, 1980; 1981). 

The behavior of the model is simplest in the case of sharp selection 
(corresponding to the f l~  ~ limit in the language of Amitrano et al., 1989). 
Genotypes S, whose fitness H(S) does not exceed a threshold H o are unviable, 
and the corresponding individuals are removed outright from the population. 
Such genotypes are called forbidden: with our hypotheses, they are distributed 
at random on the hypercube of all possible genome configurations. We shall 
denote by x the fraction of forbidden genome configurations. 

Let us consider the following form of the infinite genome size limit (p. 236 of 
Kimura, 1983): 

N ~  oo, a = # N =  const. (68) 

Each mutat ion produces a new genome configuration, which is a forbidden one 
with probability x. In this case, the mutated individual dies, and one of the 
other ones reproduces to fill in the gap in the population. Thus the model 
becomes a form of the ZSP model, with a death probability 6 given by: 

= o-x. (69) 

We expect that the genealogy statistics will be the same as in the neutral model, 
up to a suitable choice of the rescaling parameter x. 

However, we expect deviations in the statistics of the overlap q as well as in 
the genetic drift. It is easy to convince oneself that the decay of the 
autocorrelation Z(t) of the average genome will be still characterized by the 
same time constant as that of the drift of a single lineage in genome space. But 
this drift is constrained to take place only on allowed configurations, whose 
fitness H(S) satisfies H(S) ~> H o . The problem reduces to that of a random walk 
on a hypercube with randomly distributed holes. This problem has recently 
been attentively investigated (e.g. Flesselles, 1989; Flesselles and Botet, 1989): 
it appears that, if the fraction x of holes is small, the walkers diffuse with a 
reduced, x-dependent, diffusion constant. But, at higher values of x, the 
existence of a stretched-exponential diffusion regime has been suggested. When 
x increases beyond a percolation threshold, one would go to a "trapped" 
regime, where memory of the initial configuration never disappears (Amitrano 
et al., 1988). An explicit solution of this diffusion problem would immediately 
yield predictions for Q, P~ etc., in the same way as ¢~(t) allowed us to draw 
predictions in the fiat landscape case. 

In spite of its simplicity, we believe that our model captures a few features of 
general relevance in evolving populations. In particular, the consideration of 
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quantities like Y(T), the number of-c-families F(T), or the family distribution 
functionf(W~, W z , . . . ,  Wk), may be useful to describe the genetic structure of 
the population via the mapping of relatedness to similarity provided by 
equation (50). They could remain meaningful even in more sophisticated 
models of evolution. In the same way, the lack of the self-averaging property of 
some population averages may have a more general validity. 

It is interesting to remark that our model exhibits most of the intriguing 
features of mean field spin glasses, such as lack of self-averaging, ultrametricity, 
nontrivial overlap distribution etc. It may therefore be useful as a pedagogical 
introduction to the new ideas in the theory of disordered systems. 

On the other hand, the model predicts extremely large variabilities for any 
reasonably sized natural population--and in particular for the populations of 
in vitro replicating polynucleotides investigated by Biebricher and collabora- 
tors (e.g. the short review of Biebricher, 1986). Two effects conspire to reduce 
the variability of real populations: on the one hand, Natural Selection, whose 
neglect is the major weakness of the present model. The study of the behavior of 
the model in nontrivial fitness landscapes appears therefore as a most necessary 
step. On the other hand, populations like bacteria on a Petri dish, or in vitro 

replicating polynucleotides, are studied only a few generations after their 
foundation by one or few individuals. They are therefore far from equilibrium, 
as defined in the present model, which takes place only after a number of 
generations of order M. One is therefore led to consider the effects of a rapidly 
increasing population size. We expect novel features to appear when either of 
the effects just mentioned is introduced. For example, Weinberger (1987) has 
shown that a dynamical phase transition may appear in evolution models, as a 
function of the rate of population increase; whereas Amitrano et al. (1989) have 
discussed the effects of landscape correlation on the level of adaptation (see also 
Kauffman, 1989). 

We hope that the present model could be considered as a useful stepping 
stone towards the study of these more complicated situations. 

B. D. thanks T. Spencer for his kind hospitality at the Institute for Advanced 
Studies. L. P. acknowledges the support of the Centre National pour la 
Recherche Scientifique. He thanks J. Prost and the Groupe de Physico-Chimie 
Th6orique de I'E.S.P.C.I. for a most pleasant hospitality. Both authors thank 
M. M6zard for illuminating discussions. L. P. also thanks G. Ciccotti for useful 
suggestions, and S. Nicolis for help in the simulations. 

APPENDIX 1 

We repor t  here, for completeness,  the calcula t ion of X, ....... ~(z). We have seen tha t  the 
probabi l i ty  of a given genealogy in H.(z . ,  z. 1, • • - ,  Zk) and  depends only on  n, the n u m b e r  of 
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individuals, k, the number of families, and on the branching epochs %, ~, a . . . .  , z k . We define a 
genealogical scheme as a set of genealogical trees in which the order (but not the epochs) of 
branching of the different lineages is fixed_ The probability P* (z) of  a given genealogical scheme 
depends only on the number  n of individuals involved, on the number k of their ancestors, and on 
the time span z, and is given by: 

fo f~ ~ f~ t~__k l  l(l-1) ] P*(z )=  dr,  dz, 1 . . -  dzg exp 2 (zt--Zl+J) (AI.1) 
n k + l  

We have set z, + 1 = 0. This probabili ty has the form of a Laplace convolution,  and its Laplace 
transform is readily calculated: 

(A1.2) 

where we denote by fl the Laplace parameter.  
The quanti ty we are looking for is the product of this probabili ty for the number of 

genealogical schemes of n individuals divided in k families, such that the first n 1 ones belong to 
the first one, the second n 2 ones to the second one . . . .  and the last n k ones to the k th one. Let us 
denote this number by G, ....... . For  a single family, G, is readily calculated by induction. 
Consider a genealogical tree ofn  individuals, and imagine cutting it at the level of the most recent 
common ancestor of two individuals. We obtain a tree for n -  1 individuals. Since the two 
individuals involved may be chosen in n(n-1)/2 ways, we obtain: 

n[(n- 1)! 
G , -  2" ' (A1.3) 

Let us now consider a set o fk  genealogical trees. In order to get a genealogical scheme, we must 
specify the order in which the different branching times are arranged among the different trees. 
The order within a single genealogical tree is fixed by definition. The number of possible 
arrangements of the n -  k branching times is equal to the number of  combinations of the n -  k 
order labels, such that the first tree has n 1 - 1 of them, the second one n 2 - 1,. _. and the last one 
n k-  1 of them. We have therefore: 

(n-k)! k 
. I - i ~ o ,  G, . . . . .  = (n 1 - 1)!(n 2 - 1)! . . . (n k -  1)! 1=1 

(n-  k)! 
2,_ k nl!n2! . . . nk!. (Al.4) 

We can now write down the Laplace transform of X,l ....... (z): 

-~,, ........ (fl)=nl !n2! " " ' nk[ ~ tH=k [fl + l ~ ]  -1 (A1_5) 

By inverting the Laplace transformation we recover equation (17). 

APPENDIX 2 

We derive here, following Derrida and Bessis (1988), the expression equation (26) of the 
probability Zk(Z ) that the whole populat ion is divided in k z-families. 
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We first consider the probability Q~")(z) that n individuals belong to k z-families. One has of 
course: 

Zk('C)= lim Q~k")(z). (A2.1) 
n~co  

The time evolution of the Qk (") is given by: 

dQ~ " ) _  _ __k(k-  I) in(.) + k (k+ I) t~(.) (A2.2) dr 2 ~k ~ ~k + 1, 

with the initial condition: 

Q(k")( O ) = 6k, . (A2.3) 

Equation (A2.2) may be solved recursively, by going to the Laplace transform, and taking into 
account the initial condition (A2.3). The result reads: 

n!(n-1)! ~ (_l)k+ ' ( 2 1 - 1 ) ( k + l - - 2 ) !  [ /(I--1) ] (A2.4) 
Q(k")(z) k!(k-1)! ~=k (1--k)!(n+l--1)!(n-- l )!  exp 2 z , 

and equation (27) follows by taking the limit n--* ~ .  
The moments of F(z) can be computed straightforwardly. We have, for example: 

(p+k-2) !  [ p(p-1) ] 
do(Q: ~ kZk(z): ~ ~ (--l)P+k(2p--l) _l),]2(p_k) exp z . (A2.5) 

k=1 k=1 p=k [(k 2 

By rearranging the sum we obtain: 

p(p-1) 1 d0(z)= ~ ( - 1 ) " ( 2 p - 1 ) A p e x p  2 "c , (A2.6) 
p = l  

where: 

Av= ~ ( -1 )  k (p+k-2) !  
k: l  [ ( k _ l ) ! q 2 ( p _ k )  ! = ( -  1)', (A2.7) 

and equation (27) follows directly. In the same way we obtain: 

F2('c): p=l ~ ( 2 p - - 1 ) ( p 2 - - p + I ) e x p [  p(p-1) ] 2  z . (A2.8) 
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