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Here we provide more details on (i) the determination of the parameter Λ from ex-

perimental data, (ii) the impact of mutations in the limit Λ → ∞, (iii) details on the

derivation of the asymptotes, for λ → ∞ and Λ ' 1, (iv) further aspects of the phase

diagram, and (v) a comparison of the phase diagram for linear and non-linear selection

functions.

I. EXPONENTIAL GROWTH AND THE VALUE OF Λ

The following table contains experimental values measured in Ref. [1] for the ribozyme

and three different parasites. The nucleotide length, doubling time (Td), and relative

replication rate (r), are reported, from which we infer Λ in the final column. The doubling

time Td for the ribozyme is related to the growth rate α introduced in the main text by

Td = ln(2)/α, and similarly the doubling times of the parasites is related to the γ by

Td = ln(2)/γ.

Type Length (nt) 2 Td(s) Relative r Λ

Ribozyme 362 25.0 1.00 1

Parasite 1 245 20.7 1.21 13

Parasite 2 223 17.1 1.46 107

Parasite 3 129 14.6 1.71 473

In the experiment, a typical compartment contains λ RNA molecules that can be

ribozyme or parasite, 2.6 · 106 molecules of Qβ replicase, and 1.0 · 1010 molecules of each

NTP. Replication takes place by complexation of RNA with Qβ replicase, which uses

NTPs to make a complementary copy. This copy is then itself replicated to reproduce the

original. There is a large amount of nucleotides, so that exponential growth of the target

RNA proceeds until N ≈ nQβ. Starting from a single molecule, it takes nD = log2 nQβ =

21.4 doubling times to reach this regime. In a parasite-ribozyme mixture, we can estimate

Λ using the relative r:

Λ =
2nD

2nD/r
= 2nD(1− 1

r
). (1)

Another important assumption of our model, is that we neglect a possible dependence

of Λ on n and m. In order to test this assumption we have estimated the fluctuations of Λ

in the following way. We recall that the total number of RNA at the end of the exponential
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phase is the constant nQβ given above, thus N = (n −m)2nD + m2nD/r = nQβ. We first

solve for nD in this equation for a given n and m and then we use this result into Eq. (1)

to obtain Λ for a given n and m. We show in figure 1 a typical plot of the values taken

by this function Λ(n,m) for a particular choice of n and m, together with the probability

distribution Pλ(n, x,m) defined in Eq. (4) of the main text. In general Λ(n,m) is close

to a constant for soft parasites (r = 1.2), and is less constant for hard parasites (r = 1.7).

Even in the later case however, Λ hardly varies in the range of n,m values where the

probability distribution takes significant weight. We conclude that the assumption of

neglecting a possible dependence of Λ on n and m has only a minor effect on our results.
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FIG. 1. Plots for Λ (colored dots) as function of the parameters (n,m) characterizing the

initial composition of the compartments relative growth rates r and λ = 10, together with the

probability distribution Pλ(n, x,m) (solid lines) for x = 0.5.

II. GROWTH RATES FLUCTUATIONS

The model presented in the main text is purely deterministic, but fluctuations are still

present due to the initial condition. Since growth rates typically depend on the initial

condition, they will fluctuate when sampling the initial condition. While these fluctuations

are already present in a deterministic model, effects associated to other fluctuations in

the growth rates, which may occur at time scales smaller than the duration of the growth

phase require a stochastic approach. Replication is intrinsically stochastic and therefore

this additional source of fluctuations in grow rates could be present. In order to estimate

such an effect, we have implemented below a stochastic version of our model.

A stochastic component in the growth phase of the ribozymes and parasites can be
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included using a discrete Langevin approach. In such an approach, Eq. (1) is modified to

become:

ln
m̄

m
= αT + ξ1, (2)

where the first term on the right hand side accounts for the deterministic contribution we

had before and ξ1 is a Gaussian random variable of mean zero and variance σ1. Similarly

for the parasites:

ln
ȳ

y
= γT + ξ2, (3)

where ξ2 is another similar noise controlling the growth of the parasites.

The noise which has been introduced here could describe either fluctuations of growth

rate α or of the duration of replication. Note also that we still define Λ with respect to

the mean time and growth rates as Λ = exp((γ − α)T )). Since N is fundamentally fixed

by the number of enzymes nQβ in this problem, we still assume that N is fixed in this

stochastic model. Then this condition N = m̄+ ȳ leads to a constraint between the noise

ξ1 and ξ2, which means that these two noises must be correlated. Then, Eq (2) is modified

as

x̄(n,m, η) =
m̄

N
=

m

m+ (n−m)Λ exp (η)
, (4)

where we have introduced the random variable η = ξ2− ξ1. Let us introduce the variance

of η which we call σ2. This is the main parameter controlling the growth noise.

Eq. (5) is now modified as follows

x′(λ, x) =

∫
dηg(η)

∑
n,m x̄(n,m, η)f(x̄(n,m, η))Pλ(n, x,m)∫

dηg(η)
∑

n,m f(x̄(n,m, η))Pλ(n, x,m)
, (5)

where g(η) is the Gaussian distribution of mean zero and variance σ2. In order to evaluate

the correction due to the noise η, we expand the integrand in the numerator and denom-

inator with respect to η and we perform the Gaussian integrals. The result is a modified

recursion relation which contains a correction term proportional to σ2. The explicit ex-

pression of this correction is lengthy and not given here, it was evaluated numerically.

This Taylor expansion is justified if the amplitude of the noise σ2 is sufficiently small.

In order to assess this, we investigate the various sources of noises in this problem. The

noise could be due to the arrival times of Qβ or from the replication process itself. For

the first source of noise, the time scale to form an Qβ - RNA complex due to diffusion

can be evaluated as tD ≈ (DRNA c
2
3
Qβ)−1, where DRNA is the diffusion constant for an
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RNA strand (length ≈ 300) and cQβ the concentration of Qβ replicase. We found this

timescale to be over 2 104 times smaller than replication times (15-25s, see SM 1). Due to

this large difference in timescales, the noise in this problem should primarily be caused by

the replication rather than by the binding of a Qβ to an RNA strand. Let us now look at

the noise due to replication. Once a Qβ enzyme is bound to a single RNA molecule, the

total replication time τ can be written as a sum of the dwell times of all the nucleotides to

be added to the template and which are themselves exponentially distributed. When the

binding rates are identical, the resulting distribution of τ is a gamma distribution with

a coefficient of variation 1/
√
n, in terms of n the number of nucleotides as shown in D.

Floyd et al. (2010). Since our replicating molecules are long, typically between n ' 150 to

300, this coefficient of variation is quite small. This coefficient of variation is expected to

increase due to the number of doubling times in the replicating phase, which is typically

of the order of 20. In the end although we can not provide an accurate estimate of the

noise of η, all these factors suggest a small noise amplitude for σ2.

In the worst possible case, we would have σ2 = 1 which is the case shown in the

two figures below. The red contour plots of ∆x corresponding to that of Fig 1 of the

manuscript, the blue ones correspond to the prediction of a stochastic version of the same

model including the correction due to σ2. We only show the plots for Λ = 4 (left) and

Λ = 2.5 (right), because we find that for high values of Λ the noise has only a negligible

effect even in this worst case scenario, which is reasonable. While we see that the noise η

affects significantly the contour plots in this worst case scenario, when σ2 = 1, the effect

is quite small with a more realistic estimate of the noise namely σ2 = 0.1 as shown in

figure 3:

All these results support our view that while the growth is intrinsically stochastic the

deterministic model we have developed with a constant N and fluctuations only in the

initial conditions indeed capture the main features of the experiment we are interested

in. As shown in figures 2 and 3, the stability of the ribozyme phase in the new stochastic

model is enhanced with respect to the deterministic model. This confirms that fluctuations

are essential to stabilize the ribozyme phase, and favor it whether they come from the

initial condition as in the deterministic model or from other sources as in the stochastic

developed here.
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FIG. 2. Contour plots of ∆x similar to that of Fig 1 of the manuscript, with no correction due

to noise (red solid line) and including corrections due to noise with σ2 = 1 (blue solid line). The

figures correspond to Λ = 4 (left) and Λ = 2.5 (right).

FIG. 3. Contour plots of ∆x similar to that of Fig 1 of the manuscript, with no correction due

to noise (red solid line) and including corrections due to noise with σ2 = 0.1 (blue solid line).

The figures correspond to Λ = 4 (left) and Λ = 2.5 (right).

III. IMPACT OF MUTATIONS IN THE LIMIT Λ� 1

In this section, we explain how the approach described in the main text needs to be

amended in the presence of mutations. We focus here only on the case that Λ � 1,

because one can expect that the effect of mutations will be more dramatic in this limit

corresponding to hard parasites. If one of such parasites is present in a compartment, it
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invades the population very quickly, provided it appears during the exponential growth

phase. As explained in the main text, to describe the limit Λ � 1, we can introduce

three inoculation probabilities, pribo for compartments containing only ribozymes, ppara

for compartments containing parasites and pzero for empty compartments:

pribo =
∞∑
n=1

xnλn

n!
e−λ = (eλx − 1)e−λ,

pzero = e−λ,

ppara = 1− pribo − pzero = 1− eλ(x−1).

(6)

Now, let us also introduce pmut as the probability that a ribozyme is turned into a

parasite as a result of a mutation during one replication event of the molecule. Then the

probability that there is no mutation occurring during n∗ replication events is

ζ = (1− pmut)n∗. (7)

A typical value for this n∗ corresponds to what is denoted nD in the previous section,

namely the number of replications until the end of the exponential growth regime.

With pzero unchanged, the new probabilities for compartments containing ribozyme

(resp. parasites) p′ribo (resp. p′para) are simply

p′ribo = priboζ, (8)

p′para = ppara + pribo(1− ζ). (9)

Using these expressions in the recurrence relation, we obtain

x′ =
p′ribof(1)

p′ribof(1) + p′paraf(0)
(10)

Evaluating the fixed point stability at x = 0 then yields the equation for the asymptote

ζλf(1) = f(0)(eλ − 1). (11)

Similarly, we can evaluate the fixed point stability at x = 1, to obtain

(eλ − 1)

(
1 + ζ

(
f(1)

f(0)
− 1

))2

= λ
f(1)

f(0)
eλ. (12)

For pmut → 0, ζ → 1 and we obtain the asymptotes mentioned in the text. For ζ < 1, the

asymptotic values of λ for both x = 0 and x = 1 become smaller. As a result, both the

ribozyme and the bistable regions shrink as one would expect. In the extreme case where

ζ → 0, both regions disappear completely since then the only solution to Eqs. (11-12)

corresponds to λ = 0.
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IV. ASYMPTOTIC BEHAVIOR FOR λ→∞

For large λ, for Λ close to 1 and x close to 1 (resp. 0), the most abundant compartments

verify m = n or m = n − 1 (resp. m = 0 or m = 1). As λ is large, we can neglect

fluctuations in n and we can take n = λ. We therefore only look at the recursion for a

typical compartment with n = λ, with a simplified notation Pλ(n = λ, x,m) = Pλ(x,m),

where

Pλ(x,m) = Bm(λ, x), (13)

obtaining

x′ =
f(1)Pλ(x, λ) + x̄Pλ(x, λ− 1)f(x̄)

f(1)Pλ(x, λ) + Pλ(x, λ− 1)f(x̄)
, (14)

where

x̄ = x̄(λ, λ− 1) =
λ− 1

λ+ Λ− 1
' 1− Λ

λ
. (15)

We have therefore

x′ =
xλf(1) + λxλ−1(1− x)x̄f(x̄)

xλf(1) + λxλ−1f(x̄)
=
xf(1) + λ(1− x)x̄f(x̄)

xf(1) + λ(1− x)f(x̄)
. (16)

Taking the derivative with respect to x we obtain

dx′

dx
=

λ(1− x̄)f(1)f(x̄)

(xf(1) + λ(1− x)f(x̄))2
, (17)

which for x = 1 yields
dx′

dx

∣∣∣∣
x=1

=
λ(1− x̄)f(x̄)

f(1)
. (18)

Thus the boundary defined by the equation

dx′

dx

∣∣∣∣
x=1

= 1, (19)

is given by

Λ ' 1 +
f ′(1)

f(1)λ
= 1 + 6.12 10−6/λ. (20)

Evaluating the stability around the fixed point x = 0 we obtain likewise

x′ =
λx(1− x)λ−1x̄f(x̄)

(1− x)λf(0) + λx(1− x)λ−1f(x̄)
=

λxx̄f(x̄)

(1− x)f(0) + λxf(x̄)
, (21)

where now x̄ is given by

x̄ = x̄(λ, 1) =
1

(λ− 1)Λ + 1
' 1

Λλ
. (22)
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Evaluating the derivative of x′(x) at x = 0 we obtain

dx′

dx

∣∣∣∣
x=0

=
λx̄f(x̄)

f(0)
. (23)

This gives the boundary as

Λ = 1 +
f ′(0)

f(0)λ
= 1 + 19.8661/λ. (24)

V. ADDITIONAL FEATURES OF THE PHASE DIAGRAM
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FIG. 4. Contour plots of ∆x vs. x for Λ = 4 in the plane (x, λ). Inset shows a blow-up of the

region near λ = 8, which exhibits features of both the bistable and coexistence regions.

The construction of the phase diagram of the main text is based on the condition of

stability of the two fixed points x = 0 and x = 1. This treatment only gives a complete

picture of the phase behavior if there are at most three fixed points. While this is true for

most pairs (λ,Λ), notice that in the special case of Fig. 4a for Λ = 4 and near λ = 8, the

curve turns back. In this region, there are four fixed points, with x = 0 and 0 < x∗ < 1

being stable. The novel aspect of the region near λ = 8 and x below 0.1 (shown in the

inset as a blow-up), is that there is a bistability between points x = 0 and x = x∗ whereas

in the phase diagram of the main text, the bistability only concerned points x = 0 and

x = 1. For x > 0.1 and λ between approximately 2 and 8, we have a standard coexistence

phase.
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VI. COMPARISON BETWEEN LINEAR AND NON-LINEAR SELECTION

FUNCTION

In the main text, we have introduced the following selection function

f(x̄) = 0.5

(
1 + tanh

(
x̄− xth
xw

))
, (25)

with xth = 0.25 and xw = 0.1, which is now represented as the blue solid line in fig. 5.

Note that this selection function takes a small but non-zero value for x = 0, namely

0.5(1 − tanh(xth/xw)) = 0.0067, which represents the fraction of false positives in the

selection process.
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FIG. 5. Representation of the two selection functions used in this section, namely the one defined

in the main text (red solid line) and a linear one (blue solid line), which approximately take the

same values at x = 0 and x = 1. The horizontal dashed line represents the level of false positives

given by f(0).

It is interesting to compare the phase diagram given in the main text with that obtained

for a linear selection function, flin shown as the red solid line in fig. 5. We choose

flin(x̄) = 0.0067 + x̄, such that we have the same approximate values for f(0) and f(1)

as with the previous function defined in Eq. (25). Consequently, we expect to find the

same vertical asymptotes at λ ' 6.95 and λ ' 149, as confirmed in fig. 6. The equations

of these vertical asymptotes are indeed only a function of f(0) and f(1). They are

λf(0)eλ = (eλ − 1)f(1), (26)
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for the boundary between the bistable and parasite regions, and

λf(1) = (eλ − 1)f(0), (27)

for the boundary between the bistable and ribozyme regions.

When comparing the two phase diagrams obtained with the non-linear and linear

selection functions shown in fig. 6, we observe a similar general structure except for the

center of the diagram and for the two asymptotes for Λ close to 1. This is to be expected

for the center region where none of the simple approximations hold. Concerning the

asymptotes near Λ = 1, as shown in the main text they represent boundaries between

the coexistence and parasite regions (resp. coexistence and ribozyme regions) and they

depend on the logarithmic derivative of the selection function near x = 0 (resp. x = 1).
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FIG. 6. Left: Phase diagram of the transient compartmentalization dynamics with the linear

selection function f(x̄) = 0.0067+x̄ in the (λ,Λ) plane. Right: idem with the non-linear selection

function represented in Fig. 5. Phases are R: pure Ribozyme, B: Bistable, C: Coexistence and

P: pure Parasite.
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