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Abstract. We introduce and solve a model of a thermometric measurement on a driven glassy system in
a stationary state. We show that a thermometer with a sufficiently slow response measures a temperature
higher than that of the environment, but that the measured temperature does not usually coincide with
the effective temperature related to the violation of the Fluctuation-Dissipation Theorem.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 07.20.Dt Thermometry –
61.43.Fs Glasses – 75.10.Nr Spin-glass and other random models

1 Introduction

Thermal equilibrium is a rather subtle concept. It relies on
the distinction between “fast” and “slow” processes with
respect to a given macroscopic measurement. It follows
that the same system can be at equilibrium on one scale
and out of equilibrium on another. More strikingly it can
be at equilibrium but exhibiting different properties on
two scales at once [1].

The notion most intimately connected to equilibrium
is temperature. It is operationally defined by the so-called
zeroth law of thermodynamics, which states that when
two systems are in thermal equilibrium with a third one,
then they must be in thermal equilibrium with each other.
This allows one to define temperature as a signature of
the equivalence class defined by mutual thermal equilib-
rium. This property makes possible the use of test systems,
called “thermometers”, to decide whether any two sys-
tems will or will not remain in thermal equilibrium when
brought into contact. When two systems are not in mu-
tual equilibrium, the direction of the energy flow between
them is determined by the second law of thermodynamics.

When dealing with non-equilibrium systems the chal-
lenge is thus to produce an “effective” time-scale de-
pendent temperature that would predict the direction
of heat flows within this scale. Indeed, many concepts
of “non-equilibrium temperature” have been introduced
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in the literature. An extensive discussion in the frame-
work of Extended Irreversible Thermodynamics is given in
reference [2], which also provides references to definitions
in other contexts. Our study concerns a class of out-of-
equilibrium systems with small heat flows, which includes
nonstationary pure relaxational systems, like glasses, and
stationary systems, slowly driven by non-relaxational for-
ces. In these systems, an effective temperature has been
defined through an expression involving the response, the
correlation and the temperature of the heat reservoir [3,4].
This notion is closely related to the one previously intro-
duced by Hohenberg and Shraiman [5] in the context of
weak turbulence, and has been further reviewed in ref-
erences [6] and compared to the temperature appearing
from the second law of thermodynamics in reference [7].

In a recent experiment, temperatures higher than the
thermal bath temperatures have been exhibited in an os-
cillating circuit coupled to an aging glycerol sample after
a quench [8].

We are mainly interested in the way this effective tem-
perature can be measured in stationary driven systems by
a procedure similar to that advocated in references [2,9]
and extended to the many-time-scale situation in ref-
erence [4]. In this context, the “kinetic temperatures”,
like the one discussed in reference [10], correspond to
the “harmonic-oscillator temperature” considered in ref-
erence [4]. The relation between this temperature and the
one defined by the current measuring process is discussed
in reference [2].

We thus analyze the process of a thermometric mea-
surement in a glassy system, by means of an exactly
solvable model. We restrict ourselves to the stationary
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non-equilibrium regime of a driven system. We consider
a simple system and a thermometer, both described
by Langevin equations. By taking advantage of Time-
Translation Invariance (TTI) the Langevin equation is
transformed into an algebraic equation in Fourier space,
that can be analytically solved.

Our thermometer is a simple physical system coupled
to its own heat bath, which is different from the thermal
bath of the observed system. We suppose that during the
measuring time, the two systems are brought into contact,
each being coupled with its own thermal bath. We then
monitor the exchanged energy between the system and
the thermometer in the stationary regime. The reading of
the thermometer corresponds to the temperature of the
heat bath of the thermometer for which the net energy
flow between the system and the thermometer vanishes.
We discuss the relation of the measured temperature with
the effective temperature defined in references [4,5].

In Section 2 we recall the generalization of the
fluctuation-dissipation theorem to nonequilibrium sys-
tems and show how it defines an effective temperature.
In Section 3 we describe the general measurement proce-
dure. In Section 4 we specify the procedure for the mea-
surement of the effective temperature of an asymmetric
spherical SK model. Finally, Section 5 is devoted to the
analysis of the results obtained for this system.

2 Fluctuation-dissipation theorem
and effective temperatures

According to [4], the definition of an effective temperature
for non-equilibrium systems can be related to the violation
of the fluctuation-dissipation theorem (FDT). Let us con-
sider a system (described by the Hamiltonian H) subject
to a time-dependent perturbation of the form:

H −→ H − h(t)O, (1)

where O is an extensive operator. The correlation function
C(t, t′) of O is defined by

C(t, t′) := 〈O(t)O(t′)〉c
:= 〈O(t)O(t′)〉 − 〈O(t)〉 〈O(t′)〉 , (2)

while the corresponding response function R(t, t′) is
given by

R(t, t′) :=
δ 〈O(t)〉
δh(t′)

∣∣∣∣
h≡0

. (3)

For a system at equilibrium with a thermal reservoir at
temperature T , Time-Translation Invariance (TTI) inti-
mates that both the correlation and the response func-
tions depend only on the time difference τ between their
time arguments (τ = t− t′). On the other hand, the FDT
entails a relation between the response and the correlation
functions:

R(τ) =
θ(t− t′)

T

∂

∂t′
〈O(t)O(t′)〉c = −θ(τ)

T

∂C(τ)
∂τ

· (4)
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Fig. 1. Plot of χ vs. C of the asymmetric spherical SK model
for T1 = 10, J = 20 and different values of the asymmetry
parameter v. The susceptibility χ is normalized by the bath
temperature T1. The lines correspond (from above to below)
to v = 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8.

Experimentally, one usually measures the (time-)integra-
ted susceptibility:

χ(τ) :=
∫ τ

0

dτ ′R(τ ′). (5)

At equilibrium, we can use the FDT to compare this sus-
ceptibility to the correlation function:

χ(τ) =
1− C(τ)

T
· (6)

(We are considering magnetic systems for which C(0) =
1.) Then, a parametric plot of χ(τ) vs. C(τ) yields a
straight line with slope equal to −1/T .

A certain class of out of equilibrium systems with very
slow dynamics exhibits an aging regime in which the FDT
is violated in a very specific way. Following an initial
quench of temperature, these systems fall out of equilib-
rium and do not reach it again, even on macroscopic time
scales. The longer the time tw elapsed since the initial
quench, the slower is the response of the system to a given
perturbation: the system ages. This phenomenon also ap-
pears in the time-correlation functions. In these systems,
even in the limit tw →∞, a parametric plot of χ(t, tw) vs.
C(t, tw) does not yield a straight line with slope −1/T as
in equilibrium.

Very similar features appear in some stationary non-
equilibrium (driven) systems [3,4,6,12], like the one shown
in Figure 1. Let us introduce a parameter v which mea-
sures the intensity of the driving force. (For these sys-
tems, of course, the time needed to reach the stationary
nonequilibrium state diverges as v → 0.) In a sense, v
plays a role similar to tw in aging systems: the smaller v,
the “older” the system. In a driven system TTI is satisfied,
but FDT is not, even in the limit of vanishing driving force
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(v → 0) [4]. Let us consider the slope χ′(C) = dχ/dC of
the curve χ(C). According to [4], for small enough driving
forces, the effective temperature T eff can be expressed in
terms of this slope:

T eff(C) := − 1
χ′(C)

= −
(

dχ(C)
dC

)−1

. (7)

In all known cases one has T eff(C) ≥ T .
We can define a time scale τ(q, v) by means of the

relation:

C(τ(q, v), v) = q. (8)

If q is larger than a threshold value qEA (called the
Edwards-Anderson order parameter) one has

lim
v→0

τ(q, v) <∞.

This is equivalent to the following definition of qEA:

qEA := lim
τ→∞

lim
v→0

C(τ, v). (9)

On the other hand, if q < qEA, the time τ(v) diverges as
v goes to zero.

Let us thus consider a thermometric measurement,
performed on a characteristic time scale τ . We wish to
compare it with T eff(τ), where

T eff(τ) := − 1
χ′(q)

∣∣∣∣
q=C(τ,v)

. (10)

3 Measurement procedure

The measurement procedure is similar to the one de-
scribed in reference [2] and in Appendix C of [4]. It does
not crucially depend on the nature of the thermometer, as
long as it satisfies the fluctuation-dissipation theorem and
has a tunable response time. We use a small but macro-
scopic thermometer in contact with a thermal bath at
temperature T2. The driven system whose effective tem-
perature is to be measured is in contact with a bath at
temperature T1.

The thermometer is coupled to the observable O1(S1)
of the system via its observable O2(S2). The interaction
Hamiltonian writes: Hint = −aO1(S1)O2(S2). We remark
that O1 and O2 are conjugate to each other. During the
measurement procedure both the system and the ther-
mometer are kept in contact with their own baths, af-
ter a certain time, which depends on the coupling con-
stant a, on T1 and T2, a stationary non-equilibrium state
is reached, as beautifully demonstrated, for purely relax-
ational systems, in reference [11]. We expect this result to
hold also for slowly driven systems, which reach a station-
ary nonequilibrium state already when they are connected
to a single heat bath.

We define as Tmeas the value of the temperature T2

for which the net energy transfer between the system

and the thermometer vanishes at stationarity. This tem-
perature is compared with the effective temperature T eff

of the system, defined by equation (7).
At stationarity, the net power gain for the thermome-

ter, Q̇2, writes:

Q̇2 = a 〈Ȯ1O2〉 = lim
τ→0

a ∂τ C̃12(τ), (11)

where we have introduced the cross correlation function

C̃12(τ) := lim
t→∞

〈O1(t+ τ)O2(t)〉c . (12)

Using linear response, one has

O1(t) = O1b(t) + a

∫ t

0

dt′R1(t− t′)O2b(t′), (13)

O2(t) = O2b(t) + a

∫ t

0

dt′R2(t− t′)O1b(t′), (14)

where Oib are the observables in the absence of coupling
and Ri the corresponding response function (i = 1, 2).
At stationarity, to first order in the coupling a, the cross
correlation function (12) is given by

C̃12(τ) = a

∫ τ

−∞
dτ ′R1(τ − τ ′)C2(τ ′)

+ a

∫ 0

−∞
dτ ′R2(−τ ′)C1(τ ′ − τ), (15)

where we have introduced the correlation functions of the
bare systems:

Ci(τ) := lim
t→∞
〈Oib(t+ τ)Oib(t)〉c. (16)

Then the rate of heat transfer writes:

Q̇2 = a2

∫ ∞
0

dτ (R2(τ)∂τC1(τ) −R1(τ)∂τC2(τ)) . (17)

From equation (8), we can substitute q for τ as the in-
tegration variable: dq = Ċ1(τ) dτ . One can now exploit
the fluctuation dissipation relations for the bare systems,
namely R1(τ) = −Ċ1(τ)/T eff(τ) and R2(τ) = −Ċ2(τ)/T2,
and obtain

Q̇2 = a2

∫ 1

0

dq R2(q)
(

T2

T eff(q)
− 1
)
. (18)

The measured temperature Tmeas is defined as the one
which makes Q̇2 to vanish:

Tmeas(q2)−1 :=

∫ 1

0
dqR2(q, q2)T eff(q)−1∫ 1

0 dτR2(q, q2)
· (19)

We have introduced the parameter q2 := C1(τ2), where
τ2 represents the tunable characteristic time of the ther-
mometer. Tmeas(q2)−1 is the average of T eff(q)−1 weighted
by R2(q, q2). We remark that the measured tempera-
ture is independent of the coupling constant a, provided
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Fig. 2. Response function R2(q, r2) vs. q for the paramagnetic
thermometer coupled to the asymmetric spherical SK model for
T1 = 10, J = 20, T2 = Tmeas and for different values of the pa-
rameter r2 which sets the characteristic time of the thermome-
ter. The lines correspond (from left to right) to r2 = 0.001;
0.01; 0.1; 1; 10; 100. We call q2 the abscissa where R2(q, r2)
vanishes.

that it is small enough to ensure the validity of the lin-
ear response theory. On the other hand, Tmeas depends
strongly on q2, because the lower boundary of the inte-
grals appearing in equation (19) is effectively cutoff at q2.

In order to furnish a measured temperature equal to
the effective temperature, an “ideal” thermometer should
have a response equal to a delta function: R2(q, q2) =
δ(q − q2). For purely relaxational thermometers like the
one we consider here, the response function is a monoton-
ically increasing function of q, as shown in Figure 2. In
order to have a “peaked” response function, one should
consider thermometers with reactive dynamics, like the
harmonic oscillator first considered in reference [4]. How-
ever, the coupling of a conservative dynamical system to
a dissipative one introduces a number of difficulties in the
simulations. The extension of the present approach to re-
active thermometers is under way [14].

Let us compare the temperature given by such ther-
momethers to the effective temperature of the system.

For a system at equilibrium T eff(q) = T1 for any q.
Thus Tmeas = T1 as expected, whatever the characteristic
time of the thermometer.

Let us consider a simple system with only two time
sectors:

T eff(τ) =

{
T1, for τ ≤ τEA;
T ′1 > T1, for τ ≥ τEA.

(20)

We have introduced the notation τEA defined by the rela-
tion: C1(τEA) = qEA. For q2 ≥ qEA, which corresponds
to probing the short time behavior of the aging sys-
tem, the lower boundary cutoff at q2 of the integrals of
equation (19) implies that the effective temperature of
the driven system is constantly T eff(q) = T1 over
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Fig. 3. Comparison of the effective and measured temper-
atures of the asymmetric spherical SK model for T1 = 10,
J = 20 and v = 0.1. The solid line corresponds to the effective
temperature of the bare model. The dashed line corresponds
to the thermometer measure.

the integration interval and thus:

Tmeas(q2) = T1. (21)

For q2 ≤ qEA the temperature Tmeas is not equal to T eff =
T ′1. Splitting the numerator of (19) in two integrals from
0 to qEA and from qEA to 1 we obtain

Tmeas(q2)−1 =
1
T ′1

∫ qEA

0 dq R2(q, q2)∫ 1

0 dτ R2(q, q2)

+
1
T1

∫ 1

qEA
dq R2(q, q2)∫ 1

0 dτ R2(q, q2)
· (22)

The measured inverse temperature is a weighted average
of the inverse temperature of the bath 1/T1 and the inverse
effective temperature 1/T eff. Its value is intermediate be-
tween them, as shown in Figure 3, where the aging system
and the thermometer are the ones described in the next
section.

If we consider a driven system with many times scales,
the measured temperature over a certain time scale q2 is
the weighted average of all the effective temperatures of
the system over this time scale. Since, on one hand, R2 is
a decreasing function of q and, on the other hand, T eff is
an increasing function of q, we expect the measured tem-
perature to be lower than the effective temperature when
the thermometer probes the long time scales correspond-
ing to the limit q → 0. Nevertheless, for intermediate time
scales, if R2(q, q2) is not peaked sharply enough around
q2, it is possible to measure a temperature higher than
the effective one, as shown, e.g., in Figure 4.
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Fig. 4. Comparison of the effective and measured temper-
atures of the asymmetric spherical SK model for T1 = 10,
J = 20 and v = 0.9. The solid line corresponds to the effective
temperature of the bare model. The dashed line corresponds
to the thermometer measure.

4 Effective temperature of a spherical SK
model with randomly asymmetric bonds

The previous considerations can be made more explicit
in an exactly solvable model of a system-thermometer
complex.

We consider a spherical SK model with randomly
asymmetric bonds [13]. The Hamiltonian has the form

H1 := −1
2

N∑
i,j=1

Js
ijS

i
1S

j
1 +

r1
2

N∑
i=1

(Si1)2. (23)

The “spin” variables Si1 can take any real value. The pa-
rameter r1 is a Lagrange multiplier which enforces the
spherical constraint

∑N
i=1(Si1)2 = N . The interaction ma-

trix Js
ij is a symmetric matrix whose diagonal elements

vanish and whose off-diagonal elements, for each pair {i, j}
of indices, are independent Gaussian variables with zero
mean and the following variance:

(Js
ij)2 =

J2

N

1
1 + v2

· (24)

The parameter v > 0 is a measure of the strength of the
driving force (see below). This spherical SK model is cou-
pled to a single-spin paramagnetic thermometer via a bi-
linear interaction of strength a. The Hamiltonian of the
paramagnet is given by

H2 :=
r2
2

(S2)2. (25)

The response time scale of the paramagnet is given by
τ2 := 1/r2. Indeed, we recall that the bare response func-
tion of a paramagnet has the expression

R2(t) = θ(t)e−r2t. (26)

The total Hamiltonian writes

H := H1(S1) +H2(S2) +Hint(S1, S2), (27)

where the interaction Hamiltonian Hint is given by

Hint := −aS2

N∑
i=1

Si1. (28)

Stability requires a < r1r2. The dynamics of the system
is described by a system of linear Langevin equations:

∂tS
i
1(t) = − ∂H

∂Si1
+ bi(S1) + ηi1(t), (29)

∂tS2(t) = − ∂H
∂S2

+ η2(t). (30)

In equation (29), the driving field bi(S1) is given by:

bi(S1) := vJas
ij S

j
1, (31)

where Jas
ij is an antisymmetric matrix whose off-diagonal

elements, for each pair {i, j} of indices, are independent
Gaussian random variables of zero mean and variance
equal to that of Js

ij (Eq. (24)). The ηi1 are thermal noises
at temperature T1 with zero mean and variance given by
〈ηi1(t)ηi1(t′)〉 = 2T1δ(t− t′), while η2 is a thermal noise at
temperature T2.

In the thermodynamical limit (N →∞), it is possible
to average over the disorder by the means of dynamical
functional integration techniques. Thus the equations for
the asymmetric spherical SK model in (29) reduce to a
single equation for a single spin S1. The new system of
equations reads

∂tS1(t) = −r1(t)S1(t) + aS2(t) (32)

+ J
′2

∫ t

t0

dt′R11(t, t′)S1(t′) + η1(t),

∂tS2(t) = −r2S2(t) + aS1(t) + η2(t), (33)

where J ′ =
√

(1− v2)/(1 + v2)J , and η1 is a renormal-
ized Gaussian thermal noise with zero mean and variance
given by

〈η1(t)η1(t′)〉 = 2T1δ(t− t′) + J2C11(t, t′). (34)

For the response we obtain the following autonomous
system:

(∂t + r1(t))R11(t, t′) = aR21(t, t′) + δ(t− t′) (35)

+ J ′2
∫ t

t0

dt′′R11(t, t′′)R11(t′′, t′),

(∂t + r1(t))R12(t, t′) = aR22(t, t′) (36)

+ J ′2
∫ t

t0

dt′′R11(t, t′′)R12(t′′, t′),

(∂t + r2)R22(t, t′) = aR12(t, t′) + δ(t− t′), (37)
(∂t + r2)R21(t, t′) = aR11(t, t′). (38)
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The time t0 can be freely chosen between the time the
interaction was switched on and the observation times t
and t′. The equations for the correlation function involve
the response:

(∂t + r1)C11(t, t′) = aC21(t, t′) + 2T1R11(t′, t)

+
∫ t

t0

dt′′
(
J ′2R11(t, t′′)C11(t′′, t′)

+J2C11(t, t′′)R11(t′, t′′)
)
, (39)

(∂t + r1)C12(t, t′) = aC22(t, t′) + 2T1R21(t′, t)

+
∫ t

t0

dt′′
(
J ′2R11(t, t′′)C12(t′′, t′)

+J2C11(t, t′′)R21(t′, t′′)
)
, (40)

(∂t + r2)C22(t, t′) = aC12(t, t′) + 2T2R22(t′, t), (41)

(∂t + r2)C21(t, t′) = aC11(t, t′) + 2T2R12(t′, t). (42)

After some time, the system enters a stationary regime
where Cij(t, t′) = Ĉij(t − t′) and Rij(t, t′) = R̂ij(t − t′).
Choosing t0, t′ and t in this regime, and taking advan-
tage of Fourier analysis, one can solve the system for
the response and then the one for the correlation. For
simplicity we suppose that the interaction between the
system and the thermometer has been switched on an
infinite time in the past. This corresponds to sending
t0 → −∞. All the quantities depend on the value of r1
which is chosen in order to verify the spherical condition:
C11(t, t) = 1

N

∑N
i=1 S

i
1
2 = 1. Taking the derivative of this

condition with respect to time we obtain

lim
t′→t−

∂C11(t, t′)
∂t

+ lim
t′→t+

∂C11(t, t′)
∂t

= 0. (43)

Substituting equation (39) we obtain an equation for r1:

r1 = T + aC21(0) (44)

+ (J2 + J ′2)
∫ t

t0

dt′′R11(t, t′′)C11(t′′, t′).

Since C21, R11 and C11 all depend on r1 this is an equation
for r1. We solved it numerically and then substituted the
value of r1 into the correlation and response functions.
After this step the solution is completed and we can search
for the temperature T2 of the paramagnetic thermometer
which makes the heat flux to vanish.

The power exchanged between the thermometer and
the system at stationarity is given by

Q̇2 :=
〈
∂Hint

∂S1
Ṡ1

〉
−
〈
∂Hint

∂S2
Ṡ2

〉
. (45)

From the definition (28) of Hint we obtain

Q̇2(t) = −aS2(t)
dS1(t)

dt
+ aS1(t)

dS2(t)
dt

= lim
t′→t

(−a ∂tC21(t, t′) + a∂tC12(t, t′)) . (46)
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Fig. 5. Effective temperature T eff vs. q for the bare asym-
metric spherical SK model for T1 = 10, J = 20, and for dif-
ferent values of the asymmetry parameter v. T eff is normal-
ized by the temperature T1 of the thermal bath coupled to
the aging system. The lines correspond (from above to below)
to v = 0.1; 0.15; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9. The Edwards-
Anderson order parameter qEA of the corresponding symmetric
model is given by qEA = 1 − T1/J = 0.5, and corresponds to
the value of q from where the curves diverge.

By using the results of the appendix and taking an inverse
Fourier transformation, we finally obtain

Q̇2 = a

∫
dω
2π

iω
(
C̃12(ω)− C̃21(ω)

)
= −2a

∫
dω
2π

ω Im
(
C̃12(ω)

)
. (47)

The temperature measured by the thermometer is the
one which makes the heat flux Q̇2 to vanish. The result-
ing measured temperatures are shown in Figure 6 and
should be compared with the expected effective tempera-
ture shown in Figure 5.

5 Results

Figures 5 and 6 show the effective and measured values
of the temperature as a function of the value of the cor-
relation function, for the model under study. The two
quantities behave similarly, in that they are close to the
equilibrium value T1 for q > qEA, and start increasing, as
q becomes smaller and smaller, for q < qEA. Nevertheless
it is possible to identify a quantitative discrepancy, anal-
ogous to the one discussed in Section 2. For small values
of the asymmetry parameter v, the driven system exhibits
two clearly separated regimes, with T eff = T1 for q > qEA,
and a temperature increase for q < qEA. For high values
of q, Tmeas remains close to T1, but is much smaller than
T eff in the low-q region, as shown in Figure 3. For higher
v, T eff increases smoothly all along the range of q. Being
an average of T eff over a given time scale, Tmeas becomes
quickly higher than T1 as it feels the increasing of T eff

even for short time scales. Then it keeps on increasing,



R. Exartier and L. Peliti: Measuring effective temperatures 125

0 0.5 1
q

1

10

100

Tmeas/T1

Fig. 6. Measured effective temperature Tmeas vs. q of
the asymmetric spherical SK model for T1 = 10, J =
20, a = 0.1, and for different values of the asymmetry
v. The lines correspond (from above to below) to v =
0.1; 0.15; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9.
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Fig. 7. Ratio Tmeas/T eff vs. asymmetry parameter v of the
asymmetric spherical SK model for T1 = 10, J = 20, and for
different values of the overlap q. The lines correspond (from
above to below) to q = 0.8; 0.5; 0.4; 0.1; 0.01; 0.001.

at a slower pace than T eff , as shown in Figure 4. Figures 7
show the ratio Tmeas/T eff as a function of the asymmetry
parameter v. The ratio remains close to the ideal value
1 only for q > qEA. Ideally, similar plots would apply to
an aging system as a function of the inverse waiting time,
because of the correspondence between v and the waiting
time discussed above.

The fact that Tmeas 6= T eff is obviously due to the
fact that our thermometer is not able to separate effec-
tively different time scales, since its response function is
monotonic in q (cf. Fig. 2). This property holds for a wide
class of purely relaxational thermometers. It is impera-
tive, therefore, to use more complex thermometers whose
response function is peaked at at tunable time scale. This
may be achieved by introducing inertia in the evolution
equations of the thermometer. This approach is currently
under investigation [14].
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Fig. 8. Measured effective temperature Tmeas vs. asymmetry
parameter v of the asymmetric spherical SK model for T1 = 10,
J = 20, a = 0.1, and for different values of the parameter τ2
which sets the characteristic time of the thermometer. Tmeas

is normalized by the temperature T1 of the thermal bath cou-
pled to the aging system. The lines correspond (from above to
below) to τ2 = 100; 10; 1.0; 0.1; 0.01.
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Fig. 9. Effective temperature T eff vs. asymmetry parameter v
of the asymmetric spherical SK model for T1 = 10, J = 20 and
for different values of τ . T eff is normalized by the temperature
T1 of the thermal bath coupled to the aging system. The lines
correspond (from above to below) to τ = 100; 10.; 1.; 0.1; 0.01.

In Figures 8 and 9 the behavior of the measured and
of the effective temperature is shown as a function of the
asymmetry parameter v for different values of the ther-
mometer response time τ2. The figures are in qualitative
agreement only for short time scales which are represented
by the lower lines of the plots. When the thermometer
probes longer times scales, Tmeas(τ2) shows a non mono-
tonic behavior which does not appear in the T eff(τ) plot.
In the waiting time representation, a thermometer with a
fixed (but long) reaction time τ2 would first yield higher
and higher readings, as it attempts to approach the flat
part of the graph shown in Figure 1, but will eventually
read the temperature of the thermal bath as tw � τ2.
This leads to a non monotonic behavior as a function
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of tw, and an analogous one as a function of v, at least
for sufficiently slow thermometers.

In conclusion we have shown in an exactly solvable
model of a thermometric measurement in a “glassy” sys-
tem that, while thermometer do indeed measure temper-
atures higher than the one of the environment if they are
slow enough, the relation of the measured temperature
with the effective temperature defined, e.g., in [4] is far
from trivial.

LP acknowledges the support of a Chaire Joliot of the ESPCI.
Discussions with Serge Galam are gratefully acknowledged.

Appendix

Taking the Fourier transform of the autonomous system
for response functions, equations (35–38), we obtain

(iω + r1)R̃11(ω) = aR̃21(ω) + J ′2R̃11(ω)2 + 1, (A.1)

(iω + r1)R̃12(ω) = aR̃22(ω) + J ′2R̃11(ω)R̃12(ω), (A.2)

(iω + r2)R̃22(ω) = aR̃12(ω) + 1, (A.3)

(iω + r2)R̃21(ω) = aR̃11(ω). (A.4)

Again, from (39–42) we obtain the following equation for
the correlation functions:

(iω + r1)C̃11(ω) = aC̃21(ω) + J ′2R̃11(ω)C̃11(ω) (A.5)

+J2C̃11(ω)R̃11(ω) + 2T1R̃11(ω),

(iω + r1)C̃12(ω) = aC̃22(ω) + J ′2R̃11(ω)C̃12(ω) (A.6)

+J2C̃11(ω)R̃21(ω) + 2T1R̃21(ω),

(iω + r2)C̃22(ω) = aC̃12(ω) + 2T2R̃22(ω), (A.7)

(iω + r2)C̃21(ω) = aC̃11(ω) + 2T2R̃12(ω). (A.8)

In Fourier space, the equation (44) for the spherical
parameter r1 writes:

r1(t) = T + a

∫
dω
2π
C̃21(ω)

+ (J2 + J ′2)
∫

dω
2π
R̃11(ω)C̃11(ω). (A.9)

Equations (A.1–A.9) form a nine-equation system for the
response and correlation functions and for the spherical
parameter, which is possible to solve explicitly. Equations
(A.1) and (A.2) yield a second-order algebraic equation
for R̃11(ω):

J ′2R̃2
11 −

(
iω + r1 −

a2

iω + r2

)
R̃11 + 1 = 0. (A.10)

We choose the solution which respects the symmetries of
Im(R̃11(ω)), Re(R̃11(ω)), and recovers the right value for
R̃11(ω) in the limit a→ 0.

From equations (A.2) and (A.3) we obtain

R̃12(ω) = R̃21(ω) =
a

iω + r2
R̃11(ω), (A.11)

while equation (A.3) yields:

R̃22(ω) =
1

iω + r2
+

a2

(iω + r2)2
R̃11(ω). (A.12)

From equations (A.5) and (A.8) we obtain:

C̃11 =
2T1 + 2T2a

2/(ω2 + r2
2)

|R̃11|−2 − J2
, (A.13)

C̃21 =
a

ω2 + r2
2

[
(r2 − iω)C̃11 + 2T2R̃11(ω)

]
. (A.14)

As shown by equation (47), the measurement procedure
of Tmeas gives a particular relevance to the imaginary part
of C̃21(ω):

Im(C̃21) = −a2T2 Im(R̃11) + ωC̃11

ω2 + r2
2

· (A.15)

References

1. S.-K. Ma, Statistical Mechanics (World Scientific, Singa-
pore 1985), p. 3.

2. J. Casas-Vázquez, D. Jou, Phys. Rev. E 49, 1040 (1994).
3. L.F. Cugliandolo, J. Kurchan, J. Phys. A 27, 5749 (1994).
4. L.F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev. E 55,

3898 (1997).
5. P.C. Hohenberg, B.I. Shraiman, Physica 37, 109 (1989).
6. L.F. Cugliandolo, J. Kurchan, Physica A 263, 242 (1999);

L.F. Cugliandolo, in Trends in Theoretical Physics II,
edited by H. Falomir et al., Am. Inst. Phys. Conf. Proc.
of the 1998 Buenos Aires meeting; L.F. Cugliandolo,
J. Kurchan, to appear in Frontiers in Magnetism, special
issue of J. Phys. Soc. Jpn.

7. Th.M. Nieuwenhuisen, Phys. Rev. Lett. 81, 2201 (1998).
8. T.S. Grigera, N.E. Israeloff, Phys. Rev. Lett. 83, 5038

(1999).
9. J. Casas-Vázquez, D. Jou, Phys. Rev. A 45, 8371 (1992).

10. W.G. Hoover, B.L. Holian, H.A. Posch, Phys. Rev. E 48,
3196 (1993).

11. P.G. Bergmann, J.L. Lebowitz, Phys. Rev. 99, 578 (1955).
12. H. Horner, Z. Phys. B 57, 29 (1984); ibid B 57, 39 (1984).
13. A. Crisanti, H. Sompolinsky, Phys. Rev A 36, 4922 (1987).
14. R. Exartier, L. Peliti, in preparation.


