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The Martin-Siggia-Rose field theories associated with the critical dynamics of mode-coupling

systems, are renormalized in a way which decouples statics from dynamics, through the minimal-

renormalization procedure. This simplifies considerably the computations which are thus carried
out to two-loop order for exponent and Wilson functions. We obtain all dynamic transients for
helium, O(n) symmetric antiferromagnets, and liquid-gas systems. We also discuss the relevance
for helium of a fixed point where dynamic scaling is weakly violated.

INTRODUCTION AND SUMMARY

The study of the dynamics of critical systems using
the Wilson renormalization group' has now been
developing for several years, both for purely relaxa-
tional systems" and for systems involving reversible
mode coupling. ' ' A complete account of this ap-
proach is given in a recent review article by Hohen-
.berg and Halperin. At the same time, field-
renormalization techniques have proven successful in

describing the critical behavior of static systems. As
developed in particular by. the Saclay group, ' they
provide a clean way of demonstrating scaling proper-
ties, and a relatively easy access to higher=order com-
putations of asymptotic behaviors near T,. or correc-
tions thereof. Their extension is relatively simple for
purely relaxational systems" " [models A, B,C of Ref.
(8)]. The dynamics produced by the stochastic
Langevin equations of motion obeyed by the fields p;
that describe the system (order parameters, conserved
quantities) may be obtained from a simple Lagrangian. "
Since this Lagrangian only involves the field cp; itself,
its renormalization closely follows the statics. ' The, set-
up is more complicated for systems with mode cou-
pling. The Lagrangian now involves both y; and a
conjugate field p; as introduced by Martin, Rose, and
Siggia, ' and the basic building blocks of the theory
(Green's functions of the fields y, , p;) no longer
identify with physical response functions. This is a
source of difficulties both: (i) in setting up a properly
renormalized theory and (ii) in sorting out a renor-
malization scheme simple enough to allow for tract-
able computations. Indeed a straightforward extension
of standard renormalization procedures" " leads to a
renormalized theory whose static properties depend
upon purely dynamic parameters. The discussion of
the renormalization-group equations, and in particular
of stability, becomes therefore unnecessarily compli-

cated.
In this paper we show how these difticulties are

overcome by use of the minimal-renormalization pro-
cedure. " We apply the technique to helium, O(n)
symmetric antiferromagnets, and liquid-gas systems
above T, For these systems we compute" all tran-
sient exponents that govern corrections to the critical
asymptotic behavior. For helium, besides the dynamic
scaling fixed point of Halperin, Hohenberg, and Siggia,
we find a new fixed point corresponding to a vanishing
value of the ratio. transport over kinetic coefficient.
We discuss the relevance for helium of that new fixed
point which eritails a weak violation of dynamic scal-
ing. We compute in particular the thermal conductivi-
ty X, its anomalous asymptotic behavior, and its main
correction term which introduces a new universal
combination of amplitudes. Precise measurements of
A. should be able to tell which fixed point is relevant
for helium.

In Sec. II we start from stochastic Langevin equa-
tions of motion and briefly derive the associated
Martin-Siggia-Rose action for a general probability law
of the noise field. We also give relationships between
response and correlation functions.

In Sec. III we develop the renormalization program
for the symmetric model (model E). The point is to
segregate into a few renormalization functions Z all
the divergent behavior (divergent when the cutoff A

goes to infinity in four dimensions, or in the choice
we make of the dimensionally regularized theory,
when e =4 —d goes to zero). For this we list from
power counting all one-irreducible vertices that are
primitively divergent and introduce as many Z func-
tions as necessary to absorb them. The same is done
on response functions which provide the connection
with statics. The Z functions contain some arbitrari-
ness which is usually removed by imposing renormali-
zation conditions. Here we choose instead minimal
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renormalization which decouples statics from dynam-
1cs.

In Sec. IV we use the renormalized theory to get the
Callan-Symanzik equations that govern the critical
behavior, and construct the Wilson and exponent
functions. The fixed points (zeros of Wilson func-
tions) are exhibited and their stability is discussed,
both for the dynamic scaling fixed point of Halperin,
Hohenberg, and Siggia (HHS) and for the weak-
scaling fixed point. Transients are given up to e',
The behavior away from T,. is examined and given for
characteristic frequencies and kinetic and transport
coefficients. Deviations from the symmetric model
are discussed. Thermal conductivity is considered in

more detail and the amplitude of the main transient
term is obtained.

In Sec. V we give results for the 0 (n) symmetric
pntiferromagnet. The liquid-gas system is finally con-
sidered and its dynamic transient given to order e'.

I. MO'DKLS AND LAGRANGIANS

A. Martin-Siggia-Rose Lagrangian

Let us consider systems governed by the stochastic
equation

By, (t) =—(r.),„—+ v, (y(t))+e, (t) .

tors of y s and satsifies

Q, ,
=—Q„ (1.4)

where

K, (y) =—(r,),„+v, (y},OZ

(1.5)

and the 8 functions insure that (1.1) is always
satisfied. J iy} is the Jacobian associated with the ar-
gument of the 5 function

Clearly (1.3) and (1.4) imply the conservation condi-
tion (1.2) for the probability current V, e ~("(.

Instead of solving (1.1) for y;(e) and computing
correlation functions as averages of products of y; (e}
over the probability weight e'(e}, it is convenient to
write an action which generates exactly the same
correlation functions by resorting to the set of conju-
gate variables y;, p, of Martin, Siggia, and Rose. '

Indeed one may replace (1.1) by the stochastic gen-
erating functional

Z, ((}= Jt Sy, (t) exp
&

dt (, (t)y, (t)

x fag
' +K, (y(t)) —e, (t) J(y),I By;(t)

/, (

BK, (y)J (y} = exp ——
J dt

2 By, (t)
(1.6)

Here j stands for the component index and space,
. y, (t) is either the order-parameter field or any cou-
pled conserved field, K (y), is the Landau-Ginzburg
free-energy functional, (I o);, is the kinetic matrix,
and e;(1) a stochastic variable governed by a (Gaus-
sian) probability law tp (e) whose autocorrelation ma-
trix is 2(1 o),&B(t —t') Besides V, .(y} is the streaming
term which obeys the conservation condition (repeat-
ed indices are summed over), 2O

5
V (y)e-sc(e( 0

Sq;
(1.2)

insuring that e '~ is a stationary probability distribu-
tion. In particular, the mode-coupling term of
Kpwasaki2i and Kadanoff-Swift has the form

V, (y) = (~/5y, ) Q„(@)—Q„(y)(8& (y}/5y, ), (1.3)

where Q„is built from Poisson brackets or commuta-

That is, we have

z„(()= Jf ay(t).ay(t)

!

xexp „dt(,(t)y, (t)+iy,

By;(t) I BK,+K, (y)-e, ——
Bt

' ' 2 By, (t)

Taking the average over 0, with the probability law
6'(e) yields the functional which generates the correla-
tion functions

z (() Jl ae, (=t-) tp(e)
z„((}
z„(0)

If orle retIiembers that, from (1.5), Z„(0)= I, the in-
tegration over 0; is readily done to yield

t

Z ((}—= J ay, (t) &y, (t) exp 8 (y, y}+ dt (;(t)y;(t)

By, (t) - - I 5K, (y)= Jt ay, (t)ay, (t) exp J dt (, (t)y, (t)+ty, ' +K, (y) y, (t)(ro)„y—, (t) ——
Bt t ' ' 2 Sy;(t)
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Clearly if P(tt) is a non G-aussian probability law the
quadratic term in y involving the first cumulant

S,(t, t, ;k, t, ) -=2(rp);g5(t( (2)

is replaced by the sum

( ()v ('

J~ dt( ~ ~ dt„(p((t(). . . (p„(t„)
p'

x S„(l,t(, ,p, t) (1.10)

Z 'I I) = ' Sy(t) &4'(t)

( f\

exp C(('p, tp) +„Ct(I;(t)('p, (t) + t;(t)(p, (t)

where the S„'sare the cumulants of tP(H}.

We shall also need in the following the generating
functional for (p and (p correlations (G functions)

i.e. , the zero frequency limit of the response functions
are static correlation functions (Appendix A). (iii)
The linear (p =1) response function
R((D, (p(1, (,) —= R (tp —t() satisfies the fluctuation-
dissipation theorem'" "

R (t) —R (-t) = C—(t)9
9t

(1.16)

where C(tp —t() is the two-point correlation function
C, (0, (p, 1, t, ) and where it is understood that R (—t) is

computed with due account of time-reversal proper-
ties.

(i) R„=Dif t, & t„for any j (causality) and (ii)

j dt(. . . dt(, R(&(0itpl1't(& ' ' ' 'p'tp)

=C„,„(0,1, . . . , ), ,'(l. l )

C. Models

B. Correlation and response functions

The correlation functions of tp s are obtained from
the above generating functional (1.8) by taking deriva-

tives with respect to the source I coupled to y. Thus,
we have

5(p&

C, (l, t,;;p, t,)= Z'(0) — — Z (1}( =o
5I( tt 51~ tp

= (4t(t() @ (t ))

We shall not discuss here the difficult question of
the choice and the derivation of the appropriate sto-
chastic equations to describe a given physical system.
Such equations involve in general a multicomponent
field p; which is made up of slowly varying fields,
namely, ' (i) the order parameter (((„(xt),(ii) the ener-

gy field E(x(), when it is relevant, and (iii) the gen-
erators of the continuous symmetries of the micros-
copic Hamiltonian (i.e. , a conserved field) m, (xt)

The fields F and m, may or may not couple to lII,
„

in

Z. The Q„function is linear in (p and proportional to
the structure constants of the symmetry group of the
Hamiltonian

where the bracket means average taken with the
weight Z '(0)exp+. When t( ——t, =. . . =t„,C„be-
comes the static correlation function C„„

The response functions are generated from the same
functional by taking derivatives with respect to the
"physical" external field h, (t) which eccurs as

Ã (('p h(t)) = &p(cp} —g h;(t)tp; (1.13)

R„(0,( (l,pt(;. . . ;p, t„)
g(p+) )= Z-' (0) Z (l) l(=h=p

5l, (t,)5h, (t(). . . 5h„(t„)

5h((t(). . . 5h(, (tp)
&yp(tp) & I (=(,=p (1.14)

The followng properties of R„will be useful later

The field h, (t) is thus coupled to
i [(I p)(, + Q„(cp)](p(,(t) in 8 (('p, (p). The pth response
function is, therefore,

Q( == q~i(p(,

We shall consider explicitly the following models: (a)
the planar antiferromagnet and superfluid helium
(models E and F), (b) the liquid-gas model (model
H ), and (c) the O(n) symmetric model of Sasvari,
Schwabl, and Szepfalusy. " For reasons of simplicity
we shall carry out the derivations on model F., a rea-
sonable model for helium and planar an'tiferromagnets
in the critical region. When discussing stability we

shall also use its straightforward extension to n com-
ponents. We shall mention in due time what has to
be changed when dealing with the other models. The
fields of model E are: (i) A two component or com-
plex order parameter (l((x, t) which is not conserved.
This represents the condensate wave function for He
or the staggered magnetization in the easy plane for
the planar antiferromagnet. (ii) A conserved scalar
field m (x, t) which generates rotations in the order-
parameter plane. This represents a linear combination
of energy and mass density for He, or normal com-
ponent of the magnetization for the antiferromagnet.
These fields satisfy the stochastic equations'
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=—I', , —ig, i(i(r)
' +8(r), (1.17)

Bi
'

5i(i '(r) '
5m (r)

Bm(t)
A ~, 5Z

Br
' 5m(r)

+ Ig, y" (i) „y(—i) + ((r),
5y "(r) Sy(r)

r

x + ~+ID 2+ 4+ m2 (1.20)

is the Landau-Ginzburg functional. The Gaussian
noises 0 and ( have zero mean value and correlations
given by

where

Ã = Ko —
J d'x (h„,m + h Q" + h 'i(i) (1.19)

(e'(xt) e(x'r') ) = 2I a5(x x')—5(r —r')

(((xr) ((x'r') ) =—2A, '7'5(x —x') 5(r —r')

These equations induce the Martin-Siggia-Rose
(MSR) action

(1.21)

(1.22)

'I

f - - - (j 5X . 5KI = dr d'x y'—21,y+'i y —y+I', „+ig,y
f)r 5$" 5m

—C.C.

I

+mAO'7 m +im —m —Ao'7 +igo Q' „—Q +Injip, Q",m}
)5Z . ~ 5Z 5X

Br 5m 5$" 5$
(1.23)

The perturbation expansion generated from 6 is
represented" by a well-known diagram series. Its
construction rules are summarized in Appendix B
where the eA'ect of the Jacobian term lnJ is also dis-
cussed.

%e only list here the properties" needed for the
discussion below. (i) Diagrams are built with two

types of propagators for each field

tionai W((cp), ((p) } for the one-irreducible vertex func-
tions I' is given by

W((ria), (Ia)}+„Chl, (r) (rI, (r)) +l, (r) ((tt, (r))

= lnZ (i,l}, (2.1)

where y; =i(i, i(l', m, etc. In (2.1) l, i are considered as
functionals of (9i), (p) satisfying the implicit equations

(44) =—G;,

(&&') —= Gee

(1.24)

(1.25)
5lnZ

( )hl

5 lnZ (") (2.2)

the last one being the correlation function. For the
third type, we haVe

(i(ii(i ") —= G~~. =0 (1.26)

II. RENORMAI IZATION

In this section we show that the action (1.23) may
be renormalized by a simple redefinition of its fields
and parameters, This is not obvious since there are
fewer parameters than vertices in (1.23). Besides it is
not clear that the (static) parameters appearing in Z
renormalize just as they would in a purely static
theory. Standard renormalization procedures take as
basic functions, not the G averages, but the one-
irreducible vertex functions I, since the G functions
are build from the I"s without further integrations in
the frequency wave-vector representation. More pre-
cisely, let Z(/, i) be the generating functional for the
G functions defined in (1.11). The generating func-

Similar properties hold for the fields m, m. (ii) Causal-
ity implies that the last time argument in any averages
must appear in a g or m field. In particular, all aver-
ages built with only hatted fields vanish.

r„.=r„„„=o, (2.3)

for the I' functions (more generally, causality entails
that all I 's built with only nonhatted operators van-
ish).

Assuming Z (l, i} is known through its (regularized)
perturbation expansion, (2.1), (2.2) allow to build W

whose Taylor expansion around (9i) = (p) =0 yields the
one-irreducible vertex functions. At zero-loop order
one recovers the Lagrangian density of (1.23).

' Beyond, ultraviolet divergences appear as powers of
the cutoA' A or if the theory is dimensionally regular-
ized in d dimensions, d = 4 —e, as poles at e =0, since
the critical dimension is dimension four. Redefining
fields and parameters introduces renormalization Z
functions, whose purpose is to absorb all infinities
(singular terms in e) that appear in the loop expansion
of the bare one-irreducible I" functions. " This is done
by making sure that Z functions remove all primitive
divergences, "since it is then a matter of (complicat-
ed) combinatorics to verify that all other divergences
are also removed. Note that property (1.26) of the G
functions implies
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A. Dimensional considerations and

primitively divergent diagrams

%e here identify all vertices containing primitive
divergences. By comparing various terms of (1.23)
and taking into account [K]=0 (dimensionality is ex-
pressed in wave-vector units) one gets

[j]= [k'y] = —,
'

d + 1

[m] = [m] = —,
' d,

[~] = [Ak'] = [I k2],

where eo and k are frequency and wave vector. One
has also, as usual

[uo] =4 —d =—e

From the point of view of power counting [ao] =2
leaving a free choice for the frequency unit. It follows
that:

] [
[go] =2 ——d = —. e

2 '2

i.e., both couplings uo and go are relevant for
d (d, . =4."

Leaving apart for the time being composite opera-
tors, we consider one-irreducible vertices I' (taken at
nonexceptional momenta) and exhibit those which
may show primitive divergences, i.e., those with posi-
tive dimensionality, that is, (i) vertices involving no
hatted operators P or m (these vanish) and (ii) ver-
tices with only one hatted operator:

case (a): I - —A'

case (b): I'&& —lnA

case (c): I'&&&&.
—lnA

We have listed here the (A) cutoff dependence in four
dimensions. Furthermore, since m is a conserved field,
each m operator is always accompanied by a power of
its wave number, i.e., when m is an external operator&
it decreases by at least one the degree of divergence.
Therefore, the only divergent I"s involving m are

case (e'): I'- —lnA,

B. Renormalization of vertex functions

%e have altogether nine divergent vertices, cases
(a) —(i). Each of these vertices corresponds to a term
present in the action (1.23) which is also its zero-loop
approximation. The action also contains a tenth ver-
tex mi earn corresponding to the nonprimitively diver-
gent function (k). To remove the divergences, we in-

troduce nine corresponding renormalization functions
Z, —Z; which we choose to parametrize as follows:

(i) wave-function renormalization

4=Zy" 4R

j= (ZJ, '/Z~) yR

m =Z]/2m

m = (Z„',"/Z„,) mR

(ii) kinetic coeScient renormalization

r, = I /Z, ,

Ao ——A/Z, ,

(2.4)

(2.5)

(2.6)

(2.7)

(2.S)

(2.9)

cannot contain primitive divergences. For the same
reason, even though the composite operator
(m(x) P'(x)) has the same dimensionality as g(x) in
dimension four, it will not be necessary to take it into
account when renormalizing P (it does not mix with

p). (iii) Vertices involving two hatted operators

case (f): I &&. -InA

case (g): I" -„-—lnA

where for (2.4i) we have used the above remark on m

conservation. All other vertices, beyond the seven
vertices (a) —(g), are nor primitively divergent
near four dimensions. From case (a) it also follows that

case (h): I'&&( i cu, k) ——lnA
6

Ql Ol

case (i): I'. ( i oo, k—) —lnA,a
gk2

show independent primitive divergences.

case (d): I „-&&.—lnA
/

each one of these vertices being at least proportional
to the wave number of m. In fact I „-„„is proportional
to k2 so that case (d) may be replaced by

(iii) vertex renormalization

K„uo= p, 'u (Z„/Z~2 )

g ]/2g a/2gZ

(2.10)

(2.11)

case (e):
2

I' - —lnAmm

whereas

where p, is a reference wave number and the factor

E„=2(m) "i'(2m) /I'( —,
' d) (2.12)

is introduced for convenience.
For simplicity we choose to work at the critical tem-

perature T, , i.e., for the particular value ro, . of ro for
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mi curn = (Z„,/Z„,) mRi iomR (2.13)

which the zero-frequency, zero-wave-vector linear
response 5(P)/SA is infinite. The extension away
from T,. is done below by treating the mass term
(ro —ro, .) pili as a (soft) insertion. 'o Besides, the
parametrization (2.4 —2.11) implies renormalizing a
nondivergent vertex, namely, (I)/Bioi) I'„-„„orin the

Lagrangian density

Renormalization of R and R„,requires knowledge of
how composite operators such as (m P") or
(ilia —P'P') (taken at coinciding space-time: points)
renormalize. This is made through the fluctuation dis-
sipation theorem (1.16) which linearly relates response
and correlation functions. It follows that bare and re-
normalized responses are in the same relation as the
corresponding correlation functions,

One has, therefore,

lrl iH (2.14)

R~ = Z~R~R

R
Rat = Zi&IRirt

(2.1 7)

(2.18)

This leaves us with eight Z functions, and we still
miss one which can be associated with the vertex
I „-,&~.. It will be seen (Appendix C) that the primitive

divergences of I „-,~~. are not independent of those of
other vertices which allow us to do with just the above
introduced Z functions. More generally the Martin-
Siggia-Rose (MSR) field theories associate a whole
class of vertices with one given coupling constant
[e.g. , in model E (1.23) ilium, P'Q'm, and mfa" with

go]. The renormalization procedure introduced by
(2.4) —(2.12) provides with only one Z function for each
coupling constant (Z,„Z„).This, a priori is not
sufticient to remove all divergences arising in the class
of vertices that go along for example with go. That
this is indeed sufficient is shown in Appendix C.

Finally the Z functions are not uniquely determined
by the fact that they remove all divergences from the
perturbation expansion of the vertex functions I .

They become completely defined either (i) by fixing
normalization conditions on the nine vertices for
prefixed values of the arguments (usually taken in

simple relation to p, ) or (ii) by deciding that the Z
functions just remove the poles ih e of the divergent
vertex functions I. This is the minimal-
renormalization procedure. '

Rq = G~~I'o(1 +S)

R„,= G„„;,Aok'(I +P)

(2.19)

(2.20)

By inspection on the diagram expansion (Appendix B)
it is seen that the functions S and P are represented by
one-particle irreducible diagrams and are, respectively,
equal to (ig, /I'o) I ~&„-,&., and (igo/Aok') I

„

We also rewrite correlation functions as

(44') —= Gpe =
I
G„.l'I,.;

l2
) '»'» ~ wiii ~ ii»it

(2.21)

(2.22)

Then, fluctuation dissipation yields

I,-;.= (2r,/~) tlm[r„-(I+S)],
1„.„„=(2A„k'/~)trm[1„„,-, (I+P)] .

(2.23)

(2.24)

Their zero-frequency limit are the static (equal time)
correlation functions. At this point the statics renor-
malizes using the Z functions introduced for the full
dynamical problem, i.e., the Z~ and Z„,functions do
not necessarily depend only upon static parameters but
may also depend on dynamic ones.

We analyze now the R functions in more detail,
rewriting them in frequency wave-vector representa-
tion as

C. Renormalization of response functions
and static limit

We first consider linear responses

The standard vertex functions exhibited in
(2.23) —(2.24) are multiplicatively renormalized ac-
cordir. g to (2.4) —(2.7), the kinetic coefficients accord-
ing to (2.8), (2.9). It follows that S~ and P~ defined by

Z li=i, = (oy, (I'oj+igomy"))
Blah

(2.15)

1+S'—= (1+S)(Z Z )-'

1 + PR —= (1 + P) (Z,Z„,)

(2.25)

(2.26)

h=o=
6/„,5h„,

=. (m, [Ao'k m +igo(QQ —Q'Q")]) (2.16)

are finite. This renormalization corresponds to a rath-
er complicated way of renormalizing the composite
fields.

D. Determination of the Z functions
One may remark that the composite operator (mP')
appears in (2.15) via coupling with the external source
h, and, therefore, the operator m is not accompanied
by a power of its wave number (as it was required
above by m conservation).

In order to obtain for Z~ and Z„,a simple form in-
volving only static parameters, it is necessary to
choose normalization conditions compatible with those
that appear in the purely static problem. It follows
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(because the frequency wave-vector representation is

privileged in the whole renormalization procedure)
that those normalization conditions have to be im-

posed on response functions R, not on correlation
functions, or on basic vertex functions I . Expressed
in term's of I functions they become complicated,
although tractable, conditions.

A way to avoid such complications is to use the
minimal-renorrnalization"" procedure. In eA'ect the
Z functions are then uniquely determined by the pro-
perty that they only subtract poles in ~ of the bare
vertex functions I . Equations (2.17)—(2.18) relate bare
and renormalized responses. Their zero-frequency
limit relates bare and renormalized static correlation
functions and allows one to identify Z&, Z„,as just the
same functions that emerge from a minimal-
renormalization procedure applied to a purely static
theory. The same holds for Z„,by consideration of
the four-point response. Note finally that for the
model chosen, the absence of coupling between m and

P in X implies

Z„,=1 (2.27)

Some simplifications occur, due to constraints
obeyed by vertex functions of the model considered.
(i) We have used such a constraint above to obtain re-
lation (2.14) [ conser)ation of m implying the non-
divergence of (()/fiip)) I „-„„]which together with (2.27)
yields

(2.28)

A

dynamic functions Z&, Z]-, Z&. From a computational
point of view the simplest way to determine them is
the following. (a) Fix (Z(Z~) by requiring that S
defined by (2.23) be finite, that is requiring that

[1+(igp/I p) I ~(„.,~.)]/Z, Z~ (2.31)

contain no poles in e. (b) Fix Z, by requiring that P"
defined by (2.24) be finite, that is, that

[I + ((g,/A, k') r„,„,;. ,-,]/Z, (2.32)

be also finite. (c) Fix Z(/Zz by requiring finiteness
for

(Z~/Z~) [6/()( —t~)]F,-, . (2.33)

Z (e) =1+ g C,")e-" .
k=l

(2.34)

The result is given in Appendix D. By inspection it is
seen that the renormalized vertex functions and the Z
functions are power series in u, f —= g'/At', whose
coefficients remain functions of the ratio )p

—= I /A.

The bare vertex functions appearing in (2.31)—(2.33)
are computed by perturbation theory, in terms of the
bare parameters. Using (2.8)—(2.12) these are replaced
by renormalized parameters and Z functions. Ex-
pressing that (2.31)—(2.33) contain no poles in ~, deter-
mines the Z functions at each order in the loop ex-
pansion, if we specify that the Z's solely contain poles
in e,

(ii) Likewise, the fact. that m is the rotation generator
for the order parameter yields a Ward identity
between response functions

J
.d'y, R &(x, t;0, 0)

gh„, , t'

igpR~(x, t;0, 0), 0 & t' & t

(0 otherwise (2.29)

Since response functions renormalize multiplicatively
with Zp, Z (2.29) entails immediately the basic rela-
tionship

Z Z]/2
I

(2.30)

(iii) Finally, the decoupling of m and the order parame-
ter in @implies a relationship between primitively
divergent parts of I „;&&.and the response R &, as is

shown in Appendix C. This relationship rids us of the
missing ninth Z function. When instead, m couples to
the order parameter through a term ypm ~(I(~' in Zp,
the corresponding relationship shows that the renor-
malization function Z~ associated with the coupling yo
is uniquely determined in terms of static parameters
(Appendix C).

Besides the two static functions Z~, Z„„andthe
ones given by (2.28) —(2.30) we are left with three

III. RENORMALIXATION GROUP AND
CRITICAL PROPERTIES OF He

We exploit in this section the existence of a renor-
malized theory to investigate dynamic critical behavior
in the same way as it was done in the statics. ' We
first consider the behavior at exactly T, We derive a
Callan-Symanzik equation, find its fixed points, and
discuss their stability. The behavior away from T,, is
obtained as in (10) by considering the mass term as
an insertion.

A. C allan-Symanzik equations and
Wilson functions

J. Response or correlation fune(ions

Equation (2.17) relating the bare linear response for
the order parameter to the renormalized one may be
written

R ( i pp/r„, k;u, ,g—,, r, /A, ;A) =—(5/Sh) (([(„.„)
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Similar relationships hold for various correlation or
Green's functions. The associated Callan-Symanzik
equation results''l in varying p, at fixed bare parame-
ters

9 6
p, +g W,——q, ~——q,

Qp, t pl 9QJ

r'''' ',k;u, f, w;p, =0 . (3.2)

Here the exponent functions ri; (j = Q, u, I', A),

lnz lo
dJM,

and the Wilsonfunctio, ns W, (l = u, .f, w),

(3.3)

(3.4)dH(=p, l p
dp

whose zeroes define the fixed points of the theory, are
obtained by difterentiating at fixed bare parameters.

K„u0—= p, 'u (Z„/Z~z )

K((g0 /A0I'0) =—p, 'fZ( ZqZg~. = p, 'fZ(.Z g

I'0/A0 = w (Z q/Z (')

(3.6)

(3.7)

and using (2.28), (2.30), we obtain for the Wilson
functions

S;,=—u(e+7I„—271&)

W( =—f (e + q( + ri g)

W„.=+w(q, —il, )

(3.8)

(3.9)

(3.10)

The minimal-renormalization procedure used leads to
~-~independent exponent functions: the only e depen-
dence in the coe5cients of the Callan-Symanzik equa-
tion is explicitly shown in Eqs. (3.8) and (3.9). -

Integration of (3.2) with the homogeneity property
gives

Taking into account the definitions of u, f', w, namely,

RR
f p t

, k;u, f, w;p. =exp Jl
P 7I,[u(p')j p 'R~«

p
—,—;.u (p),f (p), w (p); p, (3.11)

The parameters l(p), I = u, I; w, and p an arbitrary di-
lation parameter, are determined by the Aow equations

p I(p) = W, (u (p),f(p), w (p)), I = u, f, w
d

p

(3.12)

Corrections, '" are easily obtained by Taylor expand-
ing (3, 11) in powers of l(p) —I, and by writing it in

terms of (k/p)"'.

2. Kinetic and transport coeQcients

p lnl (p) = it(.(u(p),f (p), w(p))
d

dp
(3.13)

They may be defined for T ) T,. and in the hydro-
dynamic region, as

and the corresponding initial conditions l(1) = I and
r(I) =r.

The critical region k (& p, is studied by choosing

p = k/p, (( 1. Solutions of Eq. (3.12) in this limit are
governed by fixed points values l' for which all 8'~

vanish, and by the stability matrix W« —= BW(/Bl'
whose eigenvalues cot at l' are the transient exponents.
If I'(u', f'", w') is such a fixed point, witli g~, ",

q &" the corresponding exponents, (3.11) becomes
then asymptotically

r-' =
e(r 0( .

) $ &u=0 (3.16)

m cu=0 (3.17)

The kinetic and transport coeScients I,ff, ARff defined
from the renormalized response functions R &, R„„are
related to the bare ones (3.16), (3.17) by tQe multipli-
cative constant (for fixed p) factors Z«, ', Z„,', respec-
tively.

From (3.14) we then obtain

R& —,k;u, f, NI;p,
,
r' '''''

' —2+ r) ', 2+r)[, '
I QJ

I k
, p, ,u, f,w;p,

1

I „R(r(k;I;IA,)

"+i) .
[

[&'(],P, , i', I )j(='0,

(3.18)

(3.14)
where the last factor is regular. The same asymptotic
behavior holds for A, ff,

where we see that the response function depends
upon the ratio i 0(/k, z being the dynamic exponent

z =2+q[.' (3.1 5) (3.19)
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where the last factor is proportional to w. Therefore,
(3,19) is not valid when w(p) vanishes with o. .

When, as is the case below, w(p) behaves like w p
then (3.19) must be replaced by

1

A,~g(k; I;p,)

v), =—f/(1+ w) +f'G(w) +gr"(u),
fn—/4+ f'L(w)

where

gr = [(n +2) /2 (n + 8) 2] (6 ln ——1)e2

is the two-loop result for model A, '9 and

(3.26)

(3.27)

(3.28)

(3.20)
G(w)=, 4(1+2w) ln

1 (1+w)'
8 1+w 3

. 1+2w

~here the last factor is now regular.

B. Fixed points and stability regions

The minimal-renormalization procedure yields static
functions ( W„,rid, ) which only depend upon u and
decouple from the dynamic ones. In practical terms it
means that the fixed point value u' is obtained from
(3.8) alone [u" = —, a+ 0(e~)] and the stability matrix

has the form

+9(4+n) (ln —,
'

) (1+w)

—(4 +2n) w —(8 + 2 n), (3.29)

L(w) = w (2+w) ln —w ——n (1+w)' ]

8(1+w) w(2+ w)

(3.30)
W„„00

W= W/;, W// W/;, .

W„,„W„,/

exhibiting one transient'

to~I Wj~~g e + e + 0 (e )

(3.21)

(3.22)

The result is valid for the extension to the n com-
ponent order parameter P,„,P,„",n = 1, . . . , i n.

With (3.26) —(3.30) the two eigenvalues. to, , to„.of Wq

are easily computed.
(a) The fixed point value w' =+~ leads to tran-

sients

For the dynamic part of the problem .f", w', are given
by the zeroes of (3.9), (3.10) and the transient tu, , to„.
by the eigenvalues of the 2 x 2 submatrix of (3.21) at
the fixed point.

One sees from (3.9), (3.10) that the following fixed
points exist (i) f' =0 implying 7t, ' =0 and il~ 'equals
its model A value, i 9 q~" )0.With W-,„,=0 at f"=0,
one gets

Ql/ = —nf, 0)„,= 'g] Cd/ (3.31)

displaying its unstability,
(b) The dynamic scaling solution, '""with fixed

point values
1 t

4 —n+32 L4 —n G4 —n 8

n n n n nE
i t

tot = Wtj = (e+g)") (0— (3.23)
(3.32)

showing that model A is unstable with respect to the
introduction of mode coupling terms. (ii) f" &0 im-
plying with (3.9)

2e+16L 4 —n

n n' n

yields

(3.33)

e+ q[. '+ q, ' =0 (3.24) 9]'
2

(3.34)
Equation (3.10) allows for three possibilities of fixed

point values for w, i.e. , for the dynamic exponent (3.15)

W =+oo (3.25a)

(3.25b)

1z= —d
2

(3.35)

or w' &0, ~ leading to the dynamic scaling relation

ll /A ~ (3.25c)

Computing the dynamic exponents in the two-loop ap-
proximation yields

Se2 4 —n
Glf =6 L

n(4+n) n

+ v) j". (u")8
4+n

The associated transients are, to two-loop order,

32q2 4 —n
Gn'(4+ n) n

(3.36)
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4 —n n +8n —16 2 4 —n6+ eL
8 n'(4+ n) n

i

2(n'+4n —16) z 4 —n 4(4 —n)e 6 +n'(4+ n) n n'
1

The physical point for helium in the (e, n) plane lies
at e =1, n =2, i.e., nearly on the tangent (at e =0) to
the separatrix. However, the ~ expansion cannot tell
us whether it lies in region I or II. If we compute the
transients at the physical point (e =1, n +2) we obtain

n, (e) =4 —(19ln—', ——", )e+O(e') (3.38)

n

(3.37)
The solution remains stable (t»„.&0) for n ( n, (e).
(region I), where

a)f = e —0.230m

= —e -0.139m
1

for the dynamic scaling fixed point.
For the weak-scaling fixed point we get

(3.48)

(3.49)

For n & n, (e) .(region 11) this solution looses meaning
(w" (0).

(c) The solution with fixed point value w' =0 leads
to transients

o)f = e -0.126m
I

(u =——e +0.214m
1

(3.50)

(3.s I)

8~t= f'0 .(—ni. +a~) .

OJ„.= 'g[

-and to. a dynamic exponent

z = —(d+pi„.)

computed at the fixed point values

w' =0

(3.39)

(3.40)

(3.41)

(3.25b)

Taken at their face value the dynamic scaling solu-
tion appears as the stable one. However, one of its as-
sociated transients (pi„,) is small, largely shrinking,
therefore, the asymptotic region.

On the other hand the e expansion result for ~„.
cannot rule out, without additional information, the
possibility that the physical point lies in region II. If
this alternative solution were the physical one, it
would lead to a series of consequences that we discuss
later.

w(p) = p
"' (3.43)

with the induced asymptotic behavior (3.18), (3.20),

+ e'[G(0) + L (0)1+ g,"(u')
4+ n (4+ n)' 4+n

(3.42)

Solving the flow equation for w(p) yields

C. Renormalization away from the critical temperature

We have only worked so far at the critical tempera-
ture. '0 Away from T„wehave an extra term in the
Landau-Ginzburg functional (1.20),

Jt d'x (rp —rp, .)
~

iit ~',

which in the action (1.23) generates the extra terms

I p(rp rp, ) Jl dt d x l(QQ Q+Q ) (3.52)
N'

Ql

A„.g =
p

(3.45) In the renormalized version of the action these terms
become

showing. . off a violation of extended dynamic scaling.
For this reason we may cal) the w' =0 solution, the
weak scaling fixed-point

The transient m„,vanishes along the same line
n = n, (e), where the dynamic scaling fixed point takes
over, ~„,is positive in region II, op, remains positive
throughout the separatrix n, . (e). One gets

t I'Zy(Z~ Zy) Z z J dt d'x i (itttt iltti + ittR "iittt )

where t (no confusion with time) is

t =(rp —rp, )(Z,) '

(3.s3)

(3.54)

16 '
p), = e—,[G(0) +L( )0] +v)i"(u')

(4+ n)'
n-4 + 32ne'

G(0)
n +4 (4+ n)'

281e'L (0) + 2tl 4( y)
(4+ n)' 4+ n

(3.46)

(3.47)

a.measure of T —T, These terms are treated as inser-
tions. ' The new renormalization function Z 2 takes

care of the only new primitively divergent vertex,
namely (0/Brp) I'~~. Note that Z, is a static quantity,

as may be seen by computing (8/Brp) I'&& at zero fre-
quency from (2.19). The Callan-Symanzik Eq. (3.2)
takes. now the form
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8
p, + X W(——q(0t

Qp, / ()l Qct)

8—'g 2t—

t

x RR,k;t;u, f, w;p. =0 (3.55)
i a)„,= (k/p, ) "A„,(kg) (3.66)

for the dynamic scaling fixed point. Equations
(3.62) —(3.65) exhibit the dynamic scaling form4 3'3'

.of characteristic frequencies. On the other hand, for
the weak scaling point, (3.65) is replaced by

and under dilation, t(p) obeys

p t(p) =—rt 2(u(p))t(p)d
dp

Asymptotically, we have

t(p) = tp

The asymptotic form (3.14) is now replaced by

(3.56)

(3.57)

where the dynamic exponent z is given by (3.41).
The thermal conductivity A. is the k =0 limit of A,.tr,

X
—= A, a.(k =0) (3.67)

(3.68)

From the definition (3.64) or (3.17) and from (3.65),
(3.66) it follows that the thermal conductivity k
behaves like

RR;k;t;u, t', w;p,r''''' '

t
—2+rI

. Rk R I CO

p, I
, p, , t ~

k
'

k
;u', f;w', p,

for the dynamic scaling fixed point, and

~/2+~, , /2

for the weak scaling fixed point.

(3.69)

I/v=2 —rt 2' (3.59)

The response function thus takes the form

RR i 2 k
d

lot

p, V
(3.6o)

where g is the correlation length g = t '.

D. Critical behavior of characteristic frequencies
and kinetic coe@cients

(3.58)

where the standard critical exponent v is related to
'by

K. Deviations from the symmetric model

A more realistic model for He takes into account
the coupling between the m field and the local changes
in temperature, implying a coupling of the form
yomgg" in the Landau-Ginzburg functional Zo. This
asymmetric coupling renders complex the divergence
of

(f)/Bijou)

I &&, forcing the introduction of a complex

kinetic coeIIicient I'0(1+ibo), 10 and bo real, in the
equation of motion (1.17), the noise correlation being
still given by 2rog(x —x') 8(t —t') [Eqs. (1.21), (1.22)
unchanged]. This is model F of Halperin, Hohenberg,
and Siggia. 9

f. Renormafization

lnRel. 0 R,(~==O) r.a'=
Q I QJ

(3.61)

The characteristic frequency ~& of the order param-
eter is defined by

The divergent part of I' vertices now becomes corn-
plex making it necessary to introduce complex Z func-
tions. It is sufhcient to introduce a complex Z&, and a
complex Z function for the kinetic coeSeient I which
we parametrize with real Z&- and Z~ defined by

and with (3.58) it takes the form

a) ~
——(k/p, )*0

t,(k g)

n;~ =r-' Iny(x, kg) l,.=, .
Qx

(3.62)

(3.63)

1+ibZ„r, (1+ib, ) = r(1+th)
Z, 1+ib

This implies I"0 = I'/Z ~. as in (3.9) and

bp = bZb

(3.70)

(3.71)

Likewise eo„,defined through
Besides the yp coupling in Zp leads to a static vertex
renormalization" Z~ defined by

co,„'—= lnR„,l„=0= R„,(o) =0) A„ba'k ', (3.64)
JIM

g 1/2 e/2 yZ
yo= p

iti

(3.72)

takes the form

o)„,——(k/p)-Q„,(kg) (3.65)

and a nontrivial Z„,(still equal to Z„,).
The two complex Z functions Zt, and (Z~, Z„)take

care of complex divergences of (0/Bi 0t) r&& and
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(tl/Bk2) I'&&. That all other primitively divergent 1'

vertices are taken care of with the above set of Z
functions follows from static renormalizability and re-
lationships between responses and I vertices displayed
in Appendix C.

2. Callan-Symanxik equation

ln (3.2), the sum $, W&9/Bl now runs over five

terms I = u, y, f, w, b. We have, successively,

is positive. At this fixed point,

v)„,' =0

(b) One aiso obtains the asymmetric fixed point

y
' = u/y—B (u "), stable if

~,'"' =2/v —d =+a/v

is positive. At this fixed point we have,

v)„,' =—u/v

(3.77)

(3.78)

(3.79)

W, =—,' y[e+2q, (u) +rt„,(u, y)] (3.73)

where u = u —3'y', and q„,defined by (3.3) has the
form

corresponding to a divergent specific heat.
The stability regions of these two fixed points are

separated by the line n = n( )edefined by

(3.80)

q„,=—y'B(u) (3.74)

W„(u)unchanged, as derived from the statics. Be-
sides from the Ward identity (2.32) and definition
(3.6) one gets

n, . (e) =4 4e+0(e ) (3.81)

where the transients cu, vanish. To lowest order we
get

W, = f(e+—q, + g~+q„,)

instead of (3.9).

(3.75) The physical point (e= l, n =2) is on the symmetric
'

side of the tangent at a=0 to the separatrix. The e

expansion to two loop for the transient in the syrn-
metric region, at n = 2, gives, however,

3. Fixed points and stability
CO

' =——6+—76(5) I 1

5 25 (3.82)

(5) (3.76)

In principle, one would have to study five coupled
Wilson functions and therefore a 5?& 5 stability matrix.
However, since our renormalization procedure decou-
ples statics from dynamics, W„(u)and W(u, y) do
not depend on dynamical parameters. The discussion
for fixed points and stability for u, y separates and
may be carried otrt independently as in (12). Briefly
one gets (a) the symmetric fixed point y' =0, stable if
the transient exponent

As is the case for co„.[Eqs. (3.38), (3.51)] it is difficult
without extra information to decide on the basis of the
e expansion, whether the physical point lies in the
symmetric or asymmetric region. On the basis of ex-
perimental results one knows that o. = —0.02 and the
fixed point is symmetrical. In view of the smallness
of the transient co,"' =—a/v, y(p) reaches the origin
so slowly that a special treatment is needed for solving
the flow equations, for which we refer to (2,4).

If one computes WI, to first order in b, for the sym-
metric fixed point y' =0, one gets

Wt 1+2w= f — uf(n +2)(1 —3—ln —) +—u (n +2) ln — f K(w)—4 l

(1 + )2 6 3 ]8 3
(3.83)

K(w) = —'(I+ w) w 1+2w+(1+4w) In —(1+w) —(I +4w+6w')'ln
2 2 1+2w

+—„(1+w) n [2 —3ln —+ w( —2+15 In —)] +4(1 —3 In —) +6w ln—

+(I + w) 4(1 —3 In —)+6w In —+ (I +3w) ln —(1+w) +(I + w) In
4 4 (1+w)'
3 3 2 1+2w

+ (I +2 w) (I +3 w) ln
1+2w

(3.84)
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i.e., b' =0 is a stable fixed point with the associated
transient

where p is a universal function of the effective
specific-heat exponent

~b = b ' wb(u', f",w')
I b=o (3.85) ~,, = 8 ln C„/8In ( T —T, (3.94)

For n =2, we get

w" Q 0:cob =
4

~ —0.299m

w' =0:sub = —,e-0.159m4 o 2

(3.86)

(3.87)

and the sum X' now runs over only four parameters
i = u, f, w, b The. dominant term in g' is the w

term, since o(„(is the smallest transient. (ii) If w' =0
(weak scali-ng fixed point), the renormalization group

tells us that w(p) = w p "', thus leading to
for the dynamic scaling and weak-scaling fixed point,
respectively.

F. Thermal conductivity in the critical region

We return now to thermal conductivity for which
we have the asymptotic behavior (3.67), (3.68) and
corrections determined by. transients o(„(3.22), o(,
(3.78), o(( [(3.48), (3.50)], o(„.[(3.49), (3.51)], o(b

'

[(3.86), (3.87)]. If we express it in terms of renor-
malized quantities through (3.67), (2.20), (2.26),
(3.17) we obtain

(It T2 2( ) 1/2(f «) —I/2
W

—1/2(a/2

0

I

(I —,f'/4) rp(o(, ,) 1 + $' c, ~
0.

(3.95)

where f' is computed at the new fixed point (3.42).
In (3.95) there appears a new nonuniversal quantity
w, and the extra exponent co„,in the leading term.
Corrections are again dominated by the w term in X'.
Its coefficient c„.takes the form

)(. =Z„,A,R(k=0) =Z„,—(I+Pn) „=,. =o . (3.88)
C„=A(E) w (3.96)

r=(ft, g,' /Z f/ )'/' (3.89)

The renormalized kinetic coefficient I may in turn,
using (3.6) and (3.7) be written

The important fact is that A is universal, and w is
the same quantity as in (3.95). One obtains therefore
a universal combination of amplitudes as it occurs '3
whenever there exists an exact scaling law among ex-
ponents. The quantity A (e) is given by

where both g0 and Z„,are related to independently
known static quantities' A(.) = in(I+P') „,8

Bw I' f4
(3.97)

Z/ri ~p

go= T

(3.90)

(3.91)

The only diagrams contributing to (3.97) are the two-
loop graphs 7b, 7, and Appendix D which for small w

take the form

C„is the specific heat, o- the entropy density per unit
mass (we use units such that 6= k(( =1).

Using the renormalization group on A,"q we obtain
the results (i) if w' %0 (dynamic scaling fixed point):

(7b) = f [—m ——+—w( —rr .+ —)
9 l 2 i

b ie e. 6 '
4

+ 5 w ln 2 w + w ln'2 w] (3.98)

(It T2&2C )1 2(w~f~) 1 2

x g /'(I ——,
' f')

(3.92)

where the fixed point values w', f; are given by

(3.32), (3.33). The factor I ——f" is the one-loop

result for I +Ps(l'), the sum over i runs over the five
parameters i = u, y, f, w, b, and the six constants c(,
go are nonuniversal. As mentioned above the y
correction needs a special treatment going beyond the
linear order. Its net effect is to change the last
bracket as follows

A (e) = e (13 ——m ) =0.045e'
144 3 (3.100)

When comparing with experimental results" it is
convenient to consider the ratio

(7,) = 1'bfi[- 2+ w(3- 3lm2) -5win2w- wln22w] .

(3.99)

The appearance of logarithmic terms as in (3.98),
(3.99) would have rendered complicated the analysis
of correction terms. It turns out, however, that they
exactly cancel (to two-loop order) in Pn. It is hard to
tell whether this property is preserved to higher ord-
ers. One obtains nevertheless to order e2,

(
ill ( QJI i

1+X c, — ('p(a, ,) 1 + X' c, ~
( 4'o (o

, (3.93) i1 (T2 2C )
—1/2((; —1/2y —1 (3.101)

which tends to the Halperin-Hohnberg-Siggia (HHS)
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universal value,

R„'=(K,/w'f")'"(1 ——'f') .
4

At the dynamic fixed point we obtain

RI, '=(K /e)'t'(1+0. 47e)

(3.102)

(3.103)

R = (K //') '"(1 ——' /") w-'"(g/g ) "

=(3K„/2e)' '(1 —0.24e') w ($/$o)

(3.104)

(3.105)

However, since w also appears in the main correction
term, one has

R I,
= Ci(8/8o) " +0 135KIte (3.106)

up to correction terms (involving oI„,oI, , orat, ) that
vanish at the critical point. It remains to be seen
whether the weak-scaling fixed point, and in particular
(3.106) may give a better account of experimental
data than (3.101)—(3.103).

IV. ANTIFERROMAGNETS AND LIQUID-GAS
SYSTEMS

We apply in this section the previous renormaliza-
tion technique to other mode coupling systems: (i)
the symmetric O(n) model of Sasvari, Schwabl, and
Szepfalusy2' (SSS) which for n =3 reduces to HHS
model G, 's and for n =2 to HHS model E,4 9 (ii) the
liquid-gas model, i.e., HHS model H.' " %e confine
ourselves to pointing out differences from the previ-
ous discussion and to exhibiting results.

A. SSS O(n) symmetric model

The order parameter P is a real n component vector
field. The conserved field m is now an antisymmetric

I

At the weak-scaling fixed point the corresponding ratio

R„defined as (3.101), with F instead of % ', has the
nonuniversal asymptotic behavior,

tensor whose m p component generates rotations of Iit

in the ap'plane. The equations of motion for this
model read

5K 5Z
Bt 8$„5tn„p

I

0tn p ~~t 5K + ~. 5Z gx
9t Smp 5fp 5P,„

(4.1)

(4.2)

with the Landau-Ginzburg functional,

Ã = Kp —„d'x(h„pmp+ h,„Iit,„) (4.3)

Zo= Jfd'x~ 2,VIit 'I7$„+ roQ Q +— uo—(Q,„Q„)

+
~ m~pm~p (4.4)

Repeated indices are summed over, h„&and g,„&are
antisymmetric tensors. The Gaussian noises tt, ( are
governed by the correlation functions

(8,„(xt)Hp(x't') ) = 21 og„pg(x—«') g(t —t')

((„p(xt)(.p (x't'))

(4.5)

=—2Ap(5,„,„5pp—8 p gp,„)I7'8(x —x') 8(t —t')

(4.6)

The MSR action is obtained as above. It generates a
perturbation expansion which only differs from the
one of Appendix B by graph multiplicity.

The renormalization scheme is unchanged, so is the
Wilson function expression (3.8) —(3.10) given in
terms of the exponent functions q~-, g & which now be-
come

f(n —1)/(1+—w) +f'G~„( )+wq,"(u), (4.7)

n.~=—,f+f'L~~(w) . (4.8)

These equations replace (3.26); (3.27), q,". is given by
(3.28) and we have

1 I

G„F(w)= [1+(2 —n) w](1+2w) ln
n —, 1 2(1+ w) + (1 + nw) ln —(1 + w) + —(27 ln ——6) (1 + w) + (n —1) w

1 1 4

2(1+ w)'
t t

I'

(4.9)

1 w(2+ w) (n —2 + w) ln
(1+w)' 3 n+W+ ———

4(1+ w) w(2+ w) 2 2,
(4.10)

instead of (3.29), (3.30). The separatrix where to„,
vanishes, takes the form

(4.12)

n, (e) = —,
' +pe+0(e. ') (4.11)

The physical point (e=1, n =3) is far to the right of
the tangent (at e =0) to the separatrix, i.e., well in the
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stability region of the dynamic scaling fixed point

w = (2n —3) +4(n —I) e[LAF(2n —3) —G~F(2n —3)]

1

Kp= d"x r—pili'+ —('7f)'+ Q + —j'

4(n —I) „(,)

f'=e+2e LAF(2n —3)

(4.13)

(4.14)

(4.24)

The projector 6 selects the transverse part of the vector it ap-

plies to

The transients computed at this fixed point become
C„a(k)=S„s—k ks/k2

0, $ are corresponding Gaussian noises.

(4.25)

ooq ——a+e F + gr(u')4(n —I)
2n —1

(4.15)
2. Renormatization

with

(4.16)

The MSR action is constructed from (4.21)—(4.25)
as above. It generates a perturbation expansion where
parameters appear in combinations with the following
dimensions

4(n —I) 2F=- G&F(2n —3) —— LAr (2n —3)
2n —1 2n —1

go //to'0o = e

Ao/go= —2 .

(4.26)

(4.27)

4n2 —10n +5
(2n —1) (n —1)

(4.17)
It is clear from (4.27) that

wo = Ao/rio (4.28)

4n' —12n +7
2(2n —I) (n —I)

+ (2n —3) [GAF(2n —3) —LAF(2n —3)] . (4.18)

For n =3, we have

o)) = e —0.314e2

co~ =
8

e —0.103m=3 2

(4.19)

(4.20)

B. Liquid-gas model

confirming that the physical point lies in the stability
region of the dynamic scaling fixed point.

The unstable w' =0 fixed point had already been
noticed by Gunton and Kawasaki. '

is an irrelevant. parameter which must vanish at the
fixed point. %e are therefore interested in perturba-
tion expansion for very small values of this parameter
(wpp, ' (( I). This forces us to compute regularized
perturbation theory for zero value of wo and treat its
elect as an "insertion" (in eFect it is not an insertion
in the field-theoretical sense, since wo is not coupled
to a local operator). The situation is analogous to that
encountered in the discussion of critical dynamics
above dimension two where one had to compute in
the limit u = ~ (hard-sphere limit) without being able
to treat u ' as an insertion. The renormalization
scheme is then fairly obvious. Besides the static re-
normalization functions Z&, Z„,Z; = 1, one is left
with Z&=1 (order-parameter conservation), Z,, = I
[Ward identity corresponding to Galilean invariance of
(4.21), (4.22)], and Z„Zq. With the standard
definitions

The order parameter P, a linear combination of en-
ergy and mass density, is a conserved real scalar
(n = I). The conserved field j, coupled to i' in equa-
tions of motion, is the transverse part of the momen-
tum density.

l. Equations of motion

«1(go l~orlo) =—fP'ZnZ,

wo= wp, Z~Z~

and (3.3), (3.4), we get

W) =—f(e + rt ~ + q„)
W„.= w(2+rt& —q )

(4.29)

(4.30)

(4.31)

(4.32)
Bi[i ~ ~2 5Z (~ )

5K +g0
5~

gp

—= C qp'7' +gp("7Q) +g,. sx — sx'
9t 5$

(4.2&}

(4.22)

gA = f +0.141f2 ——q&'(u') (4.33)

From (4.32) we see that the only possible fixed point
value for w in perturbation expansion is w' =-0. The
exponent functions are obtained, up to two loops as

Z=xp —
J d'x(hy+h j) (4.23) rio= 24 f +0.029f' (4.34)



368 C. D E D 0 M IN IC IS A N D L. P E L IT I

a+q~'+ v),
' =0 (4.35)

corresponding to the KadanoA'-Swift" scaling law.
The transient exponents are derived from (4.31),
(4.32) as

The stable fixed point for W, is at f' %0 which en-
tails

plays a role analogous to that of p(,
We wish to show that (Al) is equal to the static

response, given by

(rpopi+2 ' ' ' 0'„)= J +rp rpoR ' ' ' rp„e (A4)

It will be obviously sufhcient to prove for any number
p of operators the identity

f
fi

('Iiw+7I&) I I=i'

O)w =2+'

yielding to order ~',

o)f = ~+0.121e2,

(4.36)

(4.37)

(4.38)

6„=—A~D 'A2. D 'A„e ~+Perm(1, 2, . . . , p)

Dp+ pe ~

For p =1 (AS) reduces to

A;e +=Dpe ,

(AS)

a) = 2 ——a+0.163m
17

w 19 (4.39)

APPENDIX A: ZERO-FRE(}UKNCY LIMIT OF
MULTILINEAR RESPONSE FUNCTIONS

We prove in this Appendix that the zero-frequency
limit of a multilinear response function is equal to the
corresponding static correlation function [Eq. (1.15)].
It is convenient to use in this case the Fokker-Planck
formalism as used, e.g. , by Ma and Mazenko to
whom we refer for more detail.

The zero-frequency pth response function (1.15)
may be written6
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which is in our notation relation (2.34) of Ref. 6 and
may be directly verified. We can now prove (AS) by
induction on p. If we assume that (A5) is satisfied for
(p —1) we may write the left-hand side as follows:

o =XAyq» "(y) ye ~ (A7)

where (p, ) indicates that t'p, does not appear in the
product. On the other hand, one obtains from (A3),

[&„q,l=(I );, —Q;, . (AS)

+Xt(t (tp) tp Dq e ~ (A9)

and by use of (A8) and of the antisymmetry of Q,; we
obtain

6 =2 X X(ro) (rP) (y) . (yl) rPpe 'c

Since the commutator in (Ag) commutes with all p's
we may commute the A s to the right and apply (A6)
to obtain

6 =X)[A y]p, (p) (y) pe +

g(p) (
=JISM, [yoD 'A, D '3, D 'A„e-

~ ~ ~ Shp

+Perm(1, 2, . . . , p)], (Al)

where D is the Fokker-Planck operator corresponding
to Eq. (1.1)

+ XyI (p) p Dpe +

We have, on the other hand,

[D, tp, ] =—v, +(r,),, +2(r,),,5K 5
Sp( Sy(

and

(AIO)

(All)

D = —v, +(r,)„„+
~9( ~9 tn ~Win

! t

and A, is the operator that couples to the external
field h;

(A2)
[ [D;tp,],y' I = 2 (ro), (A12)

which commutes with all the rest. Since e +is the
equilibrium distribution we have De +=0 and

(A3)A =8 [(r) -Q]5

The streaming velocity V, is given by (1.3) and 8/8&~

[D, rp, ]e ~= D tp; e tc

We may write, therefore,

(A13)

Drp, rp, p e += [D qr~]$2 p e ++ rp~[D y,] p„e&+ + p, y„,[D p ]e ~

=gx[[D q ] tply& . (y') (t) pe ~+XI . . (V ) rpDte (A14)
/
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where we have used (A13). It is clear from (A12) that (A14) is equal to (A10).

APPKNMX 8: PERTURBATION EXPANSION

A. Diagrammatic rules for model g

We understand that the change of variables mentioned in Ref. 26 has been performed. We indicate by (. )p
the average over the quadratic part of (1.23) and consider a complex I'o for generality.

Propagator lines (Fig. 7)

(a): G' (1, 2) =- (p(1)&(&(2))o= 8(t—, —t2) Jf exp( —[ik(x, —x2)+lo(1+ibp)(k +rp)(t& /2)]}

G»» (k, p&) = f i p&—+I—'p(l +ibp)(k'+ro)]

(Bl)

(B2)

d"k(b): G, -,(1,2) = [G - (1,2)]'= 8(t) —t2)—' exp( —[/k(x~ —x2) +I p(1 —/b )p(k'+r )(ot~ —t2)]}J (2 )d
(B3)

G.»o»( kp&) = [ ip&+—I p—(1 —/bp)(k'+ro)] ' (B4)

(c): G„„,-, (1,2) =—(m(1)m(2))p= 8(t& tp) &» exp( —[/k(x& —x2)+Apk (t& /2)]}

G„„;,(k, p&) = ( /0&+ Apk )

Here 8(t) is the unit step function.

(B5)

(B6)

2. Correlation lines (Fig. 2)

(a): G»» (1, 2) —= (&(&(1)&}&'.(2)) = J . , exp( —[ik(x~ —x,) +I'o(k2+rp)(t, —t2(]}(k'+rp) ' (B7)

G (k, ) =21' /( —i +I (1+ib )(k +r )(, (B8)

(b): G„„„(1,2) —= (m(l) m(2))o

ddk= JI exp (
—[ik (x, —x2) + Aok'] }

(2&r) '
(B9)

3. Irreversjble ~&ertfces (FIg. 3)

(a): I'p(1+ibp) up

(b): I o(1 —ibo) tto

(B1 I)

G„„„(k,p&) =2Aok'/( —i p&+ Apk (' (B10)

2 1 2

FIG. 1. Propagator lines. FIG. 2. Correlation lines.
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h

FIG. 3. Irreversible vertices.

hm

4. Reversible vertices (Fig. 4)

(a): (gp,

(b): ig()—
(812)

FIG. 5. Sources.

f

B. Diagram rules after integration
over internal frequencies

(c): igp( 7)'+ ')7i) (in configuration space)

igp(k(' —k2 ) (in momentum space)

5. Sources (Fig. 5)

(a): —1 p(1+ibp) h

(a13)

(814)

(i) Arrange all vertices and sources from right to
left in the order of their time labels, taking care of the
retarded nature of the propagator lines. (ii) Associate
with each vertex and source the above contributions.
(iii) Associate with each correlation line the
corresponding static contribution: (k'+rp) ' to Gz~z.

and 1 to G„„„.(iv) Associate with each time interval
between successive vertices the factor

( f1 + g—r, (1+ib,) (k,'+ r,)

(b): —I „(1 i b„)h '—
(815) + X rp(1 (b,) (k,'+ r,-) + $ A, k,' (819)

(c): (g()h

(d): ig()h'

(a16)-

(817)

where the summation runs over all lines present in

the interval, i runs over all lines with arrow pointing
to the left, j over those with arrow pointing to the
right, and I over all broken lines. The quantity 0 is

the sum of all external frequencies present in the in-

terval. (v) Multiply by (—1)'where I is the number of
propagator lines and by the multiplicity factor of the
diagram computed as if it were a static diagram.

(e): A 7'ph otr —Apk'h„,
C. Role of the Jacobian

(f): ig()h„, —

(818)

The Jacobian associated with the 5 functions is

hit., (r)J= det h,, —+ ' h(r —r')" hr hp, (r)
(a2o)

(g): (gph„, .
i.e., up to a constant multiplicative factor [that drops
out in the ratio (1.7)], in symbolic form,

8 M (r) h(r —r')

(821)

FIG. 4. Reversible vertices,
=exp Trln 1+—8 hJt (r)

,
dr hp(r')

(822)
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Since the operator (8/()t) ' is retarded only the
lowest-order term survives by taking the. trace, there-
fore,

A. I
&&

vertex
»I

We analyze the bilinear response 8'(&f&}/gh Sh„,as

gK, (q(i) lJ =exp ——„idt
2 " Sp, (r)

(B23) 8'(0}
5h Sm Gyp(I i y R &i&R»&

where the factor —, comes from the value of the step
1

function at the zero value of its argument [(B23) may
also be proved from (B22) and from the theory of
Fredholm determinants of Volterra equations].

Consider now the contributions arising from the ac-
tion in (1.8), where p& and one y; from the same cou-
pling term in re&;K, {&&o[ close onto a loop. Since G~„is

retarded, all such contributions vanish except the one
with a single propagator line (this is also known as the
Deker-Haake theorem"). One may easily see that the
corresponding contribution exactly cancels (B23) order
by order in perturbation theory. One may therefore
eliminate all such loops and forget about the lnJ term.

APPENDIX C: VERTEX RENORMALIZATION OF
MSR FIELD THEORIES

For ordinary field theories as in statics or purely re-
laxational dynamics, renormalization of the coupling
constants introduces Z functions (Z„,Z, ) that absorb
primitive divergences of the corresponding vertices
(I'~ » ~ for Z„,I „,» for Z,). In MSR field theories
each coupling constant appears several times in the
Lagrangian density. For example, go as such, appears
for model E as

+ I ~q„,R„,+ I ~~„-,R~+ I ~q„,)-, (C3)

where we have introduced for short, the notation

4 =igont 0' nt = ~go(44 0 "0') —
~

for the parts that couple to external fields h and h»,

through mode coupling. For zero frequencies the
left-hand side is the static response. It vanishes for
model E (go =0) since the fields m and Q are decou-
pled. Thus, we have (for zero frequencies)

$$»i Q+»I 0 tti p ih»I Qttrihi QJi =0

(C4)

(I',-,„,),=—(I';,„,),=—ig, r;, , ~, =06
II I o&

On the right-hand side the factors R &, I &&„-,contain
primitive divergences but I &&„,and I &&„-,do not; be-

sides, R», =1 at zero frequency. To contribute to the
primitive divergences" of I &&„„oneis only allowed to

keep zero-loop contributions of the factors that multi-

ply an already primitively divergent factor. Now I &~„„
I &~„-,have no zero-loop contribution. Hence, when

focusing only on primitive divergences (0') one has

igo(QQm —»f&'Q'm) —gom(Q'V Q
—mQ'7 &I)&&

(C I)

where one reads, as usual, the zero-loop contribution
to I ~~„„1 ~.&.„„andI „-,~~.. These I vertices possess
independent primitive divergences that a priori cannot
be taken care of by just renormalizing the coupling
constant go. One should thus write (Cl) in its renor-
malized form as

»&

Z,, Z,&Z»'& '[ Zq (&f&R PRmR —
&f&R '&f&R MR)

K )/2, t, i I»

Z (,, tnR(&f&R V QR &f&R 7 $ )]

(C2)

~here the last equation is a weak form of the %ard
identity for model E. Equations (CS) show that re-
normalizing the vertex I &&„, (or its complex conju-

gate) as in (C2) that is, introducing for its zero-loop
term ig p, '~'K,

/ '~'Z&Z~, is enough to absorb its primi-
tive divergences.

Finally, going to nonzero frequencies introduces no
new divergence since all the above primitive diver-
gences are logarithmic.

B. I „;&&.vertex

The bilinear response considered is now

where (,, (the tenth renormalization function of Sec.
III B) should take care of the extra independent primi-
tive divergences,

%e show here that (,, =1, together with the results
of Secs. IIIB—IIID [Z~=Z =Z =I, . Z~/Z„, deter-
mined by the finiteness of' r)/r)( io&) I ~—~l, is enough to

take care of primitive divergences of both I ~~ » and

iii ttr+
'

5ASA , =G„„;,(I „;.R R ~ +I'„-,. — .R

+r„.„;.R, +r„„-,—.) .

—r„-„,-.R,.' —r„-„-,-.R, 'R, .', OJ; =0

Again for zero external frequencies, one has

v —[
lif lfJ I/J i» i/J Q

(c6)

(C7)
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Here R~, R& are primitively divergent; I „-,&z.,
I „-,»., and I „-,~~. are not. Besides I „-,&&. has a zero-
loop contribution (igp), but I'„-,~~. has none. Hence,
one may write, for the primitively divergent parts

(r„,&,.-)~, = ig—p(R~' —R~')~, , ru, =0 (c8)

In (C2) we have renormalized the vertex I „-,&&. with a

factor =gZz(;, . Equation (C8) shows that the factor
Z„,is able to take cat.e of all primitive divergences of
R~' —R&' and hence we have

(c9)

where we have used (3.72), the Ward identity (2.30),
and relation (2.14). We have introduced along the
same line as in the above discussion an extra renor-
malization function (,. This function together with

Z, takes care of the fact that the coupling constant fp
appears in (C10) with (the real part of) both vertices
I ~~„,and I „., ~z.. Comparing (C12) and (C13) one
sees that Z~ absorbs the primitive divergences of
R~' —R~', (Z„,Z, ) ' those of P, and Z (as in static
theory) those of I",;,'&z . Thus, again, we have

(C14)

the extension to nonzero frequencies bringing nothing
novel as above.

When the Landau-Ginzburg functional contains a
coupling ypmPP" as in model F, the corresponding
MSR Lagrangian density contains, besides the terms
of (Cl), the couplings

ypI'p(QQm + Q Q m) + ypApk m QQ (clo)

(I „;~~.)~ = Apk2(I';, 'q~. )~ + Apk'yp(P)~

—igp(Rq' —Rq')s, , cu, =0 (C12)

Correspondingly, the renormalized form of the I „-,&&,

vertex as appearing in (Cl), (C.10) should be written

whose coefficients are supplementary zero-loop contri-
butions to 1 &&„„I &.&.

„„

I „-,»., respectively. With the

pp coupling it is no longer true that the left-hand side
of (C3), (C6) vanish for zero external frequencies. In-
stead, e.g. , (C6) yields

I'„, .=A k~(1+P)I;,' ~
—I'„;-.R

—I „.,
—.R ' —I'„-,~q.Rq'Rq', cu;=0, (Cl1)

where we have used (2.20) and I'
Iz& is the one-

irreducible vertex function of the static theory (as
developed in Ref. 12). Here both Pand I';,'~& are
(logarithmically) primitively divergent, but I'

I&~ only
has a zero-loop contribution (yp). Hence, instead of
(C8) one has

The same treatment applied- to I'~~„,confirms
(C14). It is easily extended to I'&&z.

&
by considering

the trilinear responses 5'(P)/5h5h5h'and complex
conjugate to show eventually that the standard renor-
malization procedure as defined by (2.4) —(2.12) and
(3.70) —(3.72) is enough to absorb all primitive diver-
gences appearing in the theory.

Once primitive divergences are provided for,
nonprimitive divergences can be sho~n to be also ab-
sorbed into the Z functions by the same order by ord-
er recurrent combinations that appears in standard
field theories either by working on the loop expan-
sion of the one-irreducible 1 vertices as generated by
(2.1),(2.2) or by working out or proof by introduction
using Callan-Symanzik equations.

APPENDIX D: RENORMALIZATION FUNCTIONS

We list here the graphs computed in the two-loop
renormalization of model F.. It is understood that the
sum over all possible choices of propagator and corre-
lation lines compatible with time ordering as well as all

internal frequency summations have been performed.
The graphs are expressed as a function of the parame-
ters

e/2ig, i, Z&—(,m(P'V Q
—

Q.V Q")
rl

ltdgp /Apl p (Dl)

+ (y p, "/KP') (Z, A/Z„,Z, ) (,k'm y "y, (c13) wp
=—I p/Ap (D2)

1. Graphs, for S (Fig. 6)

(a): — d"q
(igp)' 1 1, 1 1= k ' f —[I + O(e)]

i ra+I' [p(k + )q+rp—l+ Apq (k +q)'+ rp
' I + wp

(D3)
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(b):

1

I'o 2 (
—i co+ I'o[(k +p)~+ro] + Aop')' (k +p)'+ ro

[(p + q) ' —q']' 1

—ice+I'o[(k +p)~+q'+(p +q)~+3ro] (q'+ ro) [(p +q) +ro]
r r

'fo-n 1
1 ——e 5 —9ln —+re+0(e ) . (D4)1 1 4 2

(I+w )2 4~2 2 3

(D5)

Jtd" J d"
I'o (

—ice +I o[(k +p) +ro]+Aop ) i co+I'—o[(k +p+q) +ro] +Ao(p +q ) (k +p+q) +ro

0 1 s 1+ wo 2(1+ wo)
k "fo — 1 ——e 1 —ln +(1+2wo) ln +e8+O(e )(1+wo)' 2e' 2 1 +2wp

I'o —i~+ I'o[(k +p) +ro] + Aoq

= k-"f'
(1+wo)'

1 1 1

i co + I—'o[(k +p + q) '+ ro] + Ao(p~ + q') i co + I —o[(k + q) ' + ro] + Aoq (k +p + q) '+ ro

2(1+ wo) I + wo(I +2wo) ln +In — +O(~)
4e 1+2wo 2 (D6)

(e):

( ,)' 1 [(k +p)' —(k +p +q)'][(k +q)' —(k + p + q)']
ro ~

" ~ " ' i~+ ro[(k-+ p)'+ro]+ Aop~ ice+ I' [(ko—+p)'+(k+ p+q)'+ (k+q)'+3r ]o
1 1

iro+ I'o[(k +q)~+ro] + Aoq' [(k +p)'+ ro] [(k +p)'+ ro] [(k +p + q)'+ro]
1

=k 'fo 1 1 4
9 ln ——2+ O(e)(1+wo)~ 4& 3

(D7)

The graph in Fig. 6(f) vanishes.

2. Graphs, for P (Fig. 7)

(a):
1

go
'

n td„[(k+q)'—q']' 1 1 ,f n I [I O. ( )]
Aok 2 —ice I+o[(k +p) +q~+2ro] (0+q)~+ro q +ro

'
2 2e

(D8)

(b):

(Igo) Jtd„JI'd,I [(k +p)' —p']' 1 1

Aok' ( i +I'o[(k+p)'+p—'+2r ]) iso+I' [(k+—p+q)'+p'+2r„]+A q' (k+p+q) '+ro-
Pl

1 + wo

1

3e q ln(1+ wo)'
I — ——wo(2+ wo) +e8+ O(e')

8e 4. 2 wo(2 + wo)
(D9)
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(c):
/

A„k~ " " i'—+I'o[(k+p) +p +2r„]
q' —(k +q)' 1 1

—~'oo+I„[(k+q)'+q'+2ro] ioo—+I o(p'+q'+2ro) +~o(k p+q) (p +ro)(q +Io)

=k '/'on 1 —w„(2+w„)ln + O(e) (D10)
(1+wo)'

166 wo 2+wo

3. Graph for 8/Il( i cu)—V&& (Fig 8).
n +2 ", " F [op' +'q+(k +p —q)'+3rol j

[—I ~+ "o[p'+ q'+ (k + p —q)'+3ro]]' (p'+ ro) (q'+ ro) [(k + p —q) '+ ro]

= k 'I ouo ——ln —+ 0 (e) . (D 11)pn+2 1 3 4
36 e 2 3

Graph multiplicities are expressed in terms of the
number of real components of the order parameter
(n =2 for He) for the generalized helium models.
The quantities I, ', and e represent frequency- and

momentum-dependent functions which are canceled
by opposite contributions arising from the develop-
ment of one-loop graphs in terms of renormalized
quantities. Taking into account the lowest-order ex-
pressions of Z~, ZA'.

Z
~

= I + ( f /e) 1/(1 + w ) +. . .

Z, =1+(f/e) (n/4) +. . .

(D12)

(D13)

and the renormalization of f, w (4.6) —(4.7) one has
in fact the following for Figs. 6(a) and 7(a). For Fig.
6(a):

e

FIG. 6. Generic diagrams for S. The diagrams that refer
to the computing rules of Appendix B are generated by draw-

ing in all possible ways, a "tree" on a, b, c, d, e, f, and mak-

.ing each branch of the "tree" a propagator line (Fig. I). This

gives rise to eleven diagrams [a(1), b(2),c(2),d(2), e(2),f(2)].
FIG. 7. Generic diagrams for P [giving rise to ten di-

agrams a(2), b(4), c(4)].
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f —+f1 1 2 1 ] 1
n— (1 ——»+ —»8+0(» ))2

1+ w» (1+w)' ' 2»'

+f —[1 ——»+ —»a+0(»')]1 ] [

(1+w)' »'
(D14)

For Fig. 7(a):

f n' +—f n—1 2i 1 1
2 2~

' 2 1+w 2~2 2 2
[1 ——»+ »E +—0 (»') ]

By requiring SR and PR to be finite me finally obtain

FIG. 8, Generic diagram for 8/9( —ice)I - (three di-

agrams).

3f 1 f2 n 1 1+2W
Z)- =1+- +—— +

» 1+w»2, 8 (1+w)' (1+w)

f2
16(1+w)3

x 4(1+2w) In +9(4+n)(ln —)(1+w) —(4+n) w —(8+n)(1+w)' 4

1+2w 3

Q 5+2 3 4 1—ln ———+ ~ ~ ~

36 2 3 4
t

Z 1+f n+f
& 4 e2 8 1+w 16

t

t t

f' n w'(2+ w) 1n —w ——(1+w)t 1

» 16(1+w) w(2+ w)

Z~= 1 +— (—1n———) +tt fl +2 3 4

36 ' ' 4

(D17)

(D18)
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