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Abstract. We investigate how to coherently define entropy production for a
process of transient relaxation in the quantum Brownian motion model for the
harmonic potential. We compare a form, referred to as ‘poised’ (P), which after
non-Markovian transients corresponds to a definition of heat as the change in
the system Hamiltonian of mean force, with a recent proposal by Esposito et
al (ELB) based on a definition of heat as the energy change in the bath. Both
expressions yield a positive-definite entropy production and they coincide for
vanishing coupling strength, but their difference is proved to be always positive
(after non-Markovian transients disappear) and to grow as the coupling strength
increases. In the classical over-damped limit the ‘poised’ entropy production
converges to the entropy production used in stochastic thermodynamics. We also
investigate the effects of the system size, and of the ensuing Poincaré recurrences,
and how the classical limit is approached. We close by discussing the strong-
coupling limit, in which the ideal canonical equilibrium of the bath is violated.
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1. Introduction

The theory of stochastic thermodynamics provides a consistent description of
nonequilibrium thermodynamics for classical systems weakly coupled to their
environments and described by Markovian dynamics [1, 2]. In recent years fundamental
characteristics of classical thermodynamics have been put under scrutiny in the quantum
realm where obtaining a proper formulation of nonequilibrium thermodynamics seems a
much harder task. In particular when considering low temperatures and non-vanishing
couplings, various difficulties arise, some of which are already present at equilibrium. A
ubiquitous exactly solvable model used for addressing these questions is the quantum
Brownian motion (QBM) model [3]–[5]. It consists of a system with Hamiltonian HS

(often a harmonic oscillator) bi-linearly coupled via a term denoted as HI to a bath
of harmonic oscillators with Hamiltonian HB. The total Hamiltonian is thus of the form
H =HS+HB+HI. In this model, when the total system is initially in canonical equilibrium,
ρeq = e−βH/Z, the Clausius formulation of the second law seems to be violated for a
quasi-static change of the mass or of the frequency of the central oscillator [6, 7]. In this
case, the heat flow is defined as the change in the averaged central system Hamiltonian
due to the bath and is found to be larger than the temperature times the change in the
system entropy, defined as the von Neumann entropy of the central system. To maintain
consistency with these definitions, work and free energy are also defined in terms of the
system Hamiltonian and as a result the Thompson formulation of the second law is also
violated [8, 9]. More work can be extracted from the system than the change in its free
energy. One also intriguingly finds that the behavior of the heat capacity of the system
is different when it is derived from the energy of the central system at equilibrium or
from a partition function approach [10, 11]. In this latter case the heat capacity might
even become negative at low temperature. Also, the von Neumann entropy of the central
oscillator does not vanish at zero temperature, while the equilibrium entropy of the total
system (which coincides with the von Neumann entropy of the total system) does. These
phenomena can be ascribed to quantum correlations between the central system and the
bath [12]. Various attempts have been made to overcome these difficulties. Some of them
incorporate in Thompson’s formulation of the second law the work contribution required
to initially couple the system to the bath at zero [8] or arbitrary temperatures [13, 14].
Others introduce different notions of effective temperature [9, 15]. Ultimately, many of
the difficulties are related to the fact that the equilibrium density matrix of the central
oscillator is not the familiar canonical distribution ρeq

S = e−βHS/ZS defined in terms of the
central system Hamiltonian, as is often the case in weak-coupling theories.
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In this paper, we want to investigate the slightly different problem of transient
relaxation to equilibrium in the QBM model. This means that we initially place the central
oscillator in a nonequilibrium state and put it in contact with its bath at equilibrium. Due
to the interaction, the two parts of the system will exchange energy and if the bath is
sufficiently large, the central oscillator will asymptotically reach an equilibrium state.
For such a process we would like to identify a meaningful notion of entropy production.
In stochastic thermodynamics the nonequilibrium version of the second law states that
for such a relaxation process the entropy production is equal to the change in system
entropy (which is identified with the Shannon entropy of the system) minus the heat
exchanged with the bath divided by the bath temperature. Furthermore the entropy
production can be proved to be an always positive quantity which only vanishes at
equilibrium. For quantum systems the Shannon entropy is replaced by the von Neumann
entropy of the system S = −trSρS ln ρS and a very similar formulation holds as long
as the quantum system is weakly coupled to its bath and described by a Markovian
quantum master equation [16, 17]. The heat exchanged with the bath is then expressed
in terms of the system Hamiltonian by integrating Q̇ ≡ trSHSρ̇S. An attempt to use
such an expression for the entropy production for the QBM model was made in [9] but
with non-satisfactory results, since a negative entropy production rate was obtained for
non-vanishing system–bath coupling strength. A more satisfactory definition of entropy
production has been recently introduced by Esposito et al [18] (denoted here as ELB) in
the form ∆iS = ∆S −Q/T , where the heat is now defined as minus the energy change in
the bath (Q̇ ≡ −trHBρ̇B). This quantum entropy production is positive definite even for
finite bath sizes, notwithstanding recurrences. This definition applies on the assumption
that the central system and the bath have uncorrelated density matrices at the initial
time.

In this paper, we compare this definition of entropy production ∆iS with a new
definition ∆iS

P, inspired by the one introduced in [17] in the context of Markovian
master equations. The corresponding heat definition is expressed in terms of the averaged
change of an effective Hamiltonian, which reduces to the system Hamiltonian HS in the
weak-coupling limit. We evaluate analytically both expressions for the entropy production
for the QBM model and evaluate their difference. We consider only Gaussian initial
conditions, both for the bath and for the central oscillator, which guarantees that the
density matrix remains Gaussian at all times. We find that ∆iS is positive definite but
can present oscillations while ∆iS

P is positive definite and has a positive time derivative
only in the Markovian high-temperature or weak-coupling limits. The difference between
the two definitions depends considerably on the coupling. We also study the behavior
of the entropy production for finite-size thermal baths, where Poincaré recurrences
characterize the time evolution of the system. The convergence toward a continuous
relaxing behavior is studied, as a function of the system size. It turns out that a Lorentzian,
rather than uniform, sampling of oscillation frequencies of the bath guarantees a better
convergence. Finally the evolution of the von Neumann entropy of the bath is studied.
It is found that, for fixed initial conditions, its asymptotic value does not depend on the
coupling in the classical limit, while it does in the quantum regime. However, in both
cases the Kullback–Leibler divergence between the density matrix of the bath at time
t and at canonical equilibrium depends considerably on the coupling, making the usual
approximation of the ideal bath problematic.
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The outline

In section 2 the different definitions of the entropy production are spelled out, along
with the general protocol adopted. In section 3 the quantum Brownian motion model is
introduced and solved. Initial conditions are specified in 3.1 and the evolution of the system
is described in section 3.2 via its Wigner quasi-distribution function. The approach to the
thermodynamic limit is described in section 4. Explicit expressions for the definitions of
entropy for our model are reported in section 5. Section 6 is devoted to a study of the
model with a finite-sized bath, where Poincaré recurrences characterize its behavior. A
discussion of the bath entropy, the correlation entropy and the distance of the bath density
operator from its canonical form is reported in section 7. In section 8 we conclude and
summarize our results. A few technical details are relegated to several appendices.

2. Entropy production

We consider a central system S coupled to its bath B. The total Hamiltonian is

H = HS +HB +HI. (1)

We assume that the system and the bath are prepared separately, so that no correlation is
initially present between them, and that the interaction HI is instantaneously switched on
at t = 0. We also assume that the bath is initially at canonical equilibrium. The density
matrix of the total system is therefore of the form

ρ(0) = ρS(0)⊗ ρB(0), ρB(0) = ρeq
B ≡

e−βHB

ZB

, ZB = trBe−βHB , (2)

where β = (kBT )−1 is the Boltzmann factor and ρS(0) and ρB(0) are respectively the
central oscillator and the bath reduced density matrix. From now on we set kB = 1. The
density matrix ρS(t) of the system S evolves according to the equation

ρS(t) = V (t)ρS(0) = trBρ(t), (3)

with the evolved total density operator

ρ(t) = U(t)ρ(0)U †(t), (4)

where

U(t) = e−iHt, (5)

is the unitary evolution operator in the global system S⊗ R.
The evolution of the system density matrix (3) can be formally written as

ρ̇S(t) = L(t)ρS(t), L(t) = V̇ (t)V −1(t), (6)

where the operator L(t) in general depends on time. In this case, the evolution operator

V (t) may be written as V (t) = T exp{
∫ t

0 dτ L(τ)} in which T indicates the time-ordering
operator. The form (6) is the starting point for deriving convolutionless quantum master
equations [17]. In the Markovian case, L(t) is time independent. This typically happens
in the thermodynamic limit of the bath for times t larger then the bath correlation time.
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2.1. The ‘poised’ definition

Let us define the poised density matrix ρ∗S(t) as the solution of

V (t)ρ∗S(t) = ρ∗S(t). (7)

Its existence and uniqueness may not always be guaranteed. In the Markovian case, the
poised density matrix ρ∗S becomes constant in time and coincides with the stationary
density matrix ρst

S , defined by Lρst
S = 0:

ρ∗S = ρst
S . (8)

For the QBM model, the poised density matrix is well defined at all times. Its expression
is given in equation (76) and is derived in appendix H.

We can then introduce the following definition of the entropy production:

∆iS
P = [D(ρS(0)‖ρ∗S(t))−D(ρS(t)‖ρ∗S(t))] , (9)

where D(· · · ‖ · · ·) is the Kullback–Leibler divergence, defined by

D(ρ‖ρ′) = trρ ln ρ− trρ ln ρ′ ≥ 0. (10)

One can prove that the expression (9) is positive definite as follows. From equation (3)
we obtain

D(ρS(t)‖ρ∗S(t)) = D(V (t)ρS(0)‖V (t)ρ∗S(t))

= D
(
trBU(t)ρS(0)⊗ ρB(0)U †(t)‖trBU(t)ρ∗S(t)⊗ ρB(0)U †(t)

)
≤ D(ρS(0)‖ρ∗S(t)), (11)

where we have used the property of the Kullback–Leibler divergence

D(ρ1‖ρ2) ≥ D(trBρ1‖trBρ2). (12)

We also introduce the slightly different entropy production

∆iS
Br = D(ρS(0)‖ρst

S )−D(ρS(t)‖ρst
S ), (13)

which is obviously also positive definite in the Markovian case and extends the definition
previously proposed by Breuer and Petruccione for weakly coupled systems [17] where ρst

S

is the canonical distribution expressed in terms of the system Hamiltonian HS.
In the Markovian case, it follows from (11) that the time derivative of ∆iS

P and that
of ∆iS

Br are also positive [17, 19]:

d∆iS
P

dt
=

d∆iS
Br

dt
= − lim

dt→0

D(ρS(t+ dt)‖ρst
S )−D(ρS(t)‖ρst

S )

dt
≥ 0. (14)

This result does not hold in the non-Markovian case where L(t) depends on t and where
d∆iS

P/dt 6= d∆iS
Br/dt.

It may happen that the stationary density matrix can be expressed as the canonical
distribution of some effective Hamiltonian Heq

S . In the weak-coupling limit it corresponds
to the system Hamiltonian HS. Its expression for the QBM model is given in equation (69).
In such cases, the entropy production (13) has a straightforward physical interpretation,
since it can be rewritten as

∆iS
Br = ∆S −∆eS

Br, (15)

doi:10.1088/1742-5468/2013/04/P04005 6
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i.e., as the difference between the entropy change ∆S and the entropy flow ∆eS
Br identified

by the variation of the averaged effective Hamiltonian of the central system:

∆eS
Br = β∆ 〈Heq

S 〉 . (16)

The average of an operator O is defined as 〈O〉 = Tr ρ(t)O and ∆ denotes the difference
between the average evaluated at time t and at time 0. We shall see in section 5.1 that in the
classical high-temperature limit and in the quantum weak-coupling limit this definition
becomes equal to the one used in the usual stochastic thermodynamics setup. In the
following, when studying the QBM model for a finite-size bath, where ρst

S does not exist,
and when referring to ∆iS

Br, one should consider the definition (15) instead of (13). When
the bath approaches the thermodynamic limit the two definitions are equivalent.

2.2. The ELB definition

A definition of the entropy production which guarantees its positivity in all cases has been
recently introduced by Esposito et al [18]. It reads

∆iS = D (ρ(t)‖ρS(t)⊗ ρeq
B ) . (17)

This quantity is clearly positive definite and within our assumptions it expresses the
second law in the form

∆iS = ∆S + β∆ 〈HB〉 . (18)

One has in fact, exploiting the conservation of the von Neumann entropy,

D (ρ(t)‖ρS(t)⊗ ρeq
B ) = trρ(t) ln ρ(t)− trρ(t) ln ρS(t)− trρ(t) ln ρeq

B

= trρeq
B ln ρeq

B + trρS(0) ln ρS(0)− trρS(t) ln ρS(t)− trρB(t) ln ρeq
B

= ∆S(t) + [trρeq
B (−βHB)− trρB(t) (−βHB)] . (19)

From (18) we observe that the entropy flow

∆eS = −β∆ 〈HB〉 = β(∆ 〈HS〉+ ∆ 〈HI〉), (20)

is now identified as the change of the bath energy HB times the inverse temperature β,
as usual in equilibrium thermodynamics. It is then proportional to the change of the
central oscillator energy plus an interaction term which is discussed in section 5. The time
derivative of (17) is not generally positive, as we will observe in 5.1.1. Since by (16) and
(20) one has Heq → HS and 〈HI〉 → 0, we see that the two definitions coincide in the
weak-coupling limit. We note that the positivity of the right-hand side of (18) was also
remarked in [20].

2.3. The difference between the two definitions

Since the following identity holds:

D(ρ(t)‖ρst
S ⊗ ρ

eq
B ) = D(ρ(t)‖ρS(t)⊗ ρeq

B ) +D(ρS(t)‖ρst
S ), (21)

we find, using (17) and (13), that the difference between the ELB definition, ∆iS, and the
Breuer one, ∆iS

Br, is given by

∆iS −∆iS
Br = D(ρ(t)‖ρst

S ⊗ ρ
eq
B )−D(ρS(0)‖ρst

S ). (22)

doi:10.1088/1742-5468/2013/04/P04005 7
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Due to the unitary evolution of the total density operator ρ(t) (4) and (5), one can recast
the first term of the right-hand side of (22) in the form

D(ρ(t)‖ρst
S ⊗ ρ

eq
B ) = D(ρS(0)⊗ ρeq

B ‖U †(t)ρst
S ⊗ ρ

eq
B U(t)). (23)

By inserting this identity into (22) and noting that

D(ρS(0)‖ρst
S ) = D(ρS(0)⊗ ρeq

B ‖ρst
S ⊗ ρ

eq
B ), (24)

we obtain

∆iS −∆iS
Br = −trρS(0)⊗ ρeq

B [lnU †(t)ρst
S ⊗ ρ

eq
B U(t)− ln ρst

S ⊗ ρ
eq
B ]. (25)

Moreover due to the inequality

D(ρS(0)⊗ ρeq
B ‖U †(t)ρst

S ⊗ ρ
eq
B U(t))

≥ D(trB{ρS(0)⊗ ρeq
B }‖trB{U †(t)ρst

S ⊗ ρ
eq
B U(t)})

= D(ρS(0)‖trB{U †(t)ρst
S ⊗ ρ

eq
B U(t)}), (26)

it follows from (25) that

∆iS −∆iS
Br ≥ −trSρS(0)

[
ln Ṽ (t)ρst

S − ln ρst
S

]
, (27)

where we have introduced the evolution operator for the central system associated with
the total adjoint dynamics, implicitly defined by

Ṽ (t)ρS = trB{U †(t)ρS ⊗ ρeq
B U(t)}, (28)

where ρS is a generic density operator for the system S.

If the operator L(t) is Markovian, L̃(t) = ˙̃V (t)Ṽ −1(t) will also be so. If they
furthermore have the same stationary state, and so

Ṽ (t)ρst
S = ρst

S , (29)

then the right-hand side of (27) vanishes and the ELB expression is strictly larger than
the Breuer one:

∆iS −∆iS
Br ≥ 0. (30)

In appendix I we show that this is indeed the case in the QBM model.
In the following we are going to study these different definitions in the context of the

QBM model [3]–[5].

3. The model

The QBM Hamiltonian represents a harmonic oscillator bi-linearly coupled with coupling
constants εi to a bath of N harmonic oscillators:

HS = 1
2

(
ω2

0Q
2
0 + P 2

0

)
, HB = 1

2

N∑
i=1

(
ω2
iQ

2
i + P 2

i

)
, HI =

N∑
i=1

εiQ0Qi. (31)

We have put all masses equal to 1 for simplicity.

doi:10.1088/1742-5468/2013/04/P04005 8
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The equations of motion in the Heisenberg picture read

Q̇µ(t) =
i

~
[H,Qµ(t)] , Ṗµ(t) =

i

~
[H,Pµ(t)] . (32)

The Greek indices µ and ν include by convention also the central oscillator and the terms
associated with the bath, while the italic ones only run over the bath degrees of freedom.
For convenience, we will use the shorthand notation Q = Q0 and P = P0. The solution of
the equations of motion reads [3, 4]

Qµ(t) =
N∑
µ=0

(
Ȧµν(t)Qν(0) + Aµν(t)Pν(0)

)
, Pµ(t) = Q̇µ(t). (33)

The form assumed by the Aµν(t) is reported for completeness in appendix A.
One also gets a condition to be fulfilled in order to obtain a positive-definite

Hamiltonian and non-diverging solutions (see (A.1)):

Ω2
0 = ω2

0 −
N∑
i=1

ε2i
ω2
i

≥ 0. (34)

This expression actually defines a normalized frequency of the central oscillator, Ω0, as it
appears in the quantum Langevin equation (QLE) picture [21](cf appendix B).

The term A(t) ≡ A00 plays the role of a retarded propagator. This can be seen by
putting the solutions (33) for the central oscillator in the form [21]

z (t) = Φ(t)z (0)− (Φ ∗ η)(t), (35)

where we have defined z (t) with zT(t) = (Q(t), P (t)), the matrix propagator

Φ(t) =

[
Ȧ(t) A(t)

Ä(t) Ȧ(t)

]
, (36)

and the noise ηT(t) = (0, η(t)) with components

η(t) =
N∑
i

εi

[
Qi(0) cosωit+

Pi(0)

ωi
sinωit

]
. (37)

This is actually the solution of the QLE reported in appendix B, from which it appears
that the dynamics is characterized by a damping kernel

K(t) =

∫ ∞
0

dω
γ(ω)

ω2
cosωt, (38)

where γ(ω) is the coupling strength

γ(ω) =
∑
i

ε2i δ(ω − ωi), (39)

and by a noise kernel

ν(t) =
1

2
〈{η(t), η(0)}〉 =

∫ ∞
0

dω
γ(ω)

ω2
E(ω, T ) cosωt. (40)
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In appendix D we show the equivalence between Ullersma’s expression (33) and Fleming’s
one (35) and (B.1) for the solution of the QLE.

Having determined the time evolution of the Heisenberg momenta and positions as
functions of the same operators at time t = 0, all the moments of these quantities at time
t can now be evaluated as functions of the moments at t = 0 and of the Aµν .

3.1. The initial conditions

General initial conditions were specified in equation (2). An equivalent description of the
system can be obtained via the Wigner quasi-probability distribution (often simply called
‘the Wigner’), a function of the phase-space variables (q, p) = (q0, p0, . . . , qN , pN), defined
in terms of the total density matrix ρ by

W (q, p) =
1

(π~)N

∫ ∞
−∞

∏
µ

dyµ eipµyµ/~
〈
q0 −

y0

2
, . . . , qN −

yN
2

∣∣∣ ρ ∣∣∣q0 +
y0

2
, . . . , qN +

yN
2

〉
.

(41)

The reduced Wigner corresponding to the central oscillator and the bath reduced density
matrix can be defined in a similar way and can be obtained from the total system Wigner
by integrating out the appropriate degrees of freedom.

Using a matrix formalism with vectors z̃T = (p, q), zT = (Q,P ) and kT = (kq, kp), a
generic single-particle Gaussian Wigner and its Fourier transform read [22]

W (q, p) =
1√

2π∆2
exp

{
−(z̃ − 〈z̃ 〉)Tσ(z̃ − 〈z̃ 〉)

2∆2

}
; (42)

W̃ (k) = exp{−1
2
kTσk − ikT 〈z 〉}. (43)

The first moments and the symmetric covariance matrix respectively read 〈z̃ 〉T =

(〈P 〉 , 〈Q〉), 〈z 〉T = (〈Q〉 , 〈P 〉) and σij = 〈{zi, zj}〉 /2 − 〈zi〉 〈zj〉 with i, j = 1, 2, where
we denote by {. . . , . . .} the anticommutator and by 〈. . .〉 the average over a Gaussian
density matrix ρ. We also define

∆ =
(
σ2
qσ

2
p − C2

qp

) 1
2 = (det σ)

1
2 , (44)

where we indicate σ2
q = σ11, σ2

p = σ22 and Cqp = σ12.
We shall only consider initial conditions such that the Wigner of the central oscillator

has a Gaussian expression at time t = 0. Then the Wigner is parameterized by its moments
〈Q(0)〉, 〈P (0)〉 〈Q2(0)〉, 〈P 2(0)〉 and Cqp(0) = 〈{Q(0)− 〈Q(0)〉 , P (0)− 〈P (0)〉}〉 /2. Since
the initial density matrix of the bath is a product of exponentials of quadratic
Hamiltonians, its corresponding Wigner is a product of Gaussian states which are
parameterized, for i = 1, . . . , N , by the moments

〈Qi(0)〉 = 〈Pi(0)〉 = 〈{Qi(0), Pi(0)}〉 = 0,〈
Q2
i (0)

〉
=
E(ωi, T )

ω2
i

,
〈
P 2
i (0)

〉
= E(ωi, T ),

(45)

where

E(ω, T ) =
~ω
2

coth
~ω
2T

. (46)

As a result, the initial total Wigner is also Gaussian.
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3.2. The evolution

At time t > 0 the total density matrix operator will evolve in a unitary way (4) and the
central oscillator and the bath will be correlated. The corresponding total Wigner satisfies
the Liouville-like evolution equation [4, 23]

∂

∂t
W (q, p, t) = [H,W ]PB , (47)

where H (31) is now considered as a function of the phase-space variables (q, p) =
(q0, p0, . . . , qN , pN) and where [. . . , . . .]PB are the Poisson brackets. Again, by the linearity
of the dependence of the solution for (q, p) on the initial conditions, an initial Gaussian
distribution remains Gaussian at later times. This means that the Wigner is a real
Gaussian, positive definite at all times, and fully characterized by its first and second
moments. This also applies to the bath and will be useful for evaluating its entropy, as we
are going to see in section 7.

It was shown in [4, 21] that the reduced Wigner satisfies the following partial
differential equation:

∂

∂t
WS(z , t) =

[
∇T

z · H(t) · z +∇T
z ·D(t) ·∇z

]
WS(z , t), (48)

where the pseudo-Hamiltonian H(t) and diffusion D(t) matrices reported in appendix C
depend on the coupling strength respectively via the damping and noise kernels.

The solution of equation (48) can be found by a Fourier transformation, via the method
of characteristics [21]:

W̃S(k , t) = W̃S(ΦT(t)k , 0) e−(1/2)kTσT (t)k , (49)

which appears as a product of a function depending on the Wigner at time zero W̃S(k , 0),
times a Gaussian one containing the thermal covariance. It clearly assumes a Gaussian
form under our hypotheses where the initial W̃S(k , 0) is the Gaussian (43). The dynamics
of the central oscillator is then fully described by the first and second moments of the
position and momentum operators:

〈z (t)〉 = Φ(t)z0; (50)

σ(t) = Φ(t)σ0Φ
T(t) + σT (t). (51)

The general covariance matrix σ(t) corresponds to the covariance matrix in (42) if the
averages 〈. . .〉 are evaluated with the total density operator at time t (4). It appears as
the sum of the contributions of the evolution of the initial conditions and of the thermal
covariance:

σT (t) =

∫ ∞
0

dω
γ(ω)

ω2
E(ω, T )


∣∣∣∣∫ t

0

dt′ A(t′)eiωt′
∣∣∣∣2 1

2

d

dt

∣∣∣∣∫ t

0

dt′ A(t′)eiωt′
∣∣∣∣2

1

2

d

dt

∣∣∣∣∫ t

0

dt′A(t′)eiωt′
∣∣∣∣2 ∣∣∣∣∫ t

0

dt′ Ȧ(t′)eiωt′
∣∣∣∣2

 . (52)

The same expressions can be found by taking the average over initial conditions of
the operators in the Heisenberg form (33), expressing the Ai0(t) as functions of A(t) (D.1)
and by then using the coupling strength (39) [4]. The elements of the correlation matrix
are reported in more detail in appendix F.
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At finite sizes one expects oscillatory behavior both for the dissipation and the
diffusion coefficients. As in [3], in the following we are going to assume an Ohmic form
with a large cutoff for the couplings ε2i in (39). This choice enables us to obtain time-
independent dissipation coefficients in the continuum frequency limit, while the diffusion
ones only become time independent in certain limits such as the high-temperature limit.
In general, however, this would not be the case: by assuming for example a sub-Ohmic
coupling with a slower decay for larger frequencies, one would have time-dependent and
nonlocal dissipation and diffusion coefficients at all times, even in the high-temperature
limit [21].

4. The thermodynamic limit

The thermodynamic limit of an infinite number of bath oscillators is obtained by
substituting a continuous function γ(ω) into the discrete coupling strength (39). We choose
the Drude-like Ullersma coupling strength [4, 3]

γ(ω) =
2

π

κα2ω2

α2 + ω2
. (53)

The parameter κ tunes the strength of the coupling, while the cutoff α, which is introduced
in order to eliminate ultra-violet divergences, can be associated with the bath memory
time. In fact the damping kernel (38) with this coupling strength is given by

K(t) = κα e−αt, (54)

and thus decays over times of order α−1.
In this situation, the renormalized frequency Ω0 (34) of the central oscillator is simply

given by

Ω2
0 = ω2

0 − κα. (55)

The general form of the propagator A(t) following from the strength (53) can be found
in [4]. It is characterized by three time scales: Ω, Γ and λ, deriving from the poles λ, Γ± iΩ
of the Laplace transform of the propagator (B.4).

The propagator A(t) describes a noisy damped oscillator, where Ω is the characteristic
frequency and λ and Γ characterize the damping rates. When the time scale 1/λ is much
shorter than 1/Γ and 1/Ω, the damping kernel K(t) (38) becomes delta-like and the QLE
(B.2) becomes local in time. This is obtained by taking the large-cutoff limit, defined by

α� κ, ω0. (56)

In this limit the propagator A(t) assumes the form

Aloc(t) =
1

Ω
sin(Ωt)e−Γt, (57)

which is typical of a damped Ornstein–Uhlenbeck process. The equations that determine
Γ, Ω and λ in the general case and in the limit (56) are reported in appendix E, which
also describes the transition between the under-damped and over-damped dynamics.
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The quantum and time dependence features of our process are then contained only in
the noise kernel (40),

ν(t) = −κα2

(
1

2
cot

βα

2
e−αt +

1

π

∞∑
`=1

`

(ατβ)2 − `2
e−`t/τβ

)
, (58)

where we have defined

τβ =
~β
2π
. (59)

We can thus define the following limits:

The low-temperature limit:

α� 1/τβ. (60)

The high-temperature classical limit:

1/τβ � α. (61)

The weak-coupling limit:

Γ� Ω, 1/τβ. (62)

The noise kernel determines the thermal covariance matrix σT (C.3) and, via (C.2),
the diffusion coefficients of the ME. Thus the quantum and time dependence features will
show up in these quantities. One can evaluate the covariance matrix by using the local
propagator (57) inside the general expression (52), up to terms of O (1/α). Using this
propagator instead of the general one (see [ [4], equation (7.10)]) does not affect either
the covariance thermal matrix or the diffusion coefficients in the large-cutoff limit, even
for times t < 1/α, since only corrections of O (1/α) arise [21]. Since the coupling strength
(53) is an even meromorphic function, the integrals appearing in (52) can be evaluated
by a contour integration in the complex plane.

Complete expressions for the thermal correlation matrix in the large-cutoff limit, which
are exploited in the following for the calculation of the entropies, were derived in [4] and
are reported in appendix F. Their quantum features are due to the presence of the function
E(ω, T ), whose poles at ω = ik 2π/τβ with k any integer, giving rise to thermal transients,
i.e., to terms which vanish on a time scale of order τβ. These terms are also responsible
for the time dependence of the diffusion coefficients of the master equation [4]. In the
high-temperature classical limit, where E(ω, T ) approaches T , all the thermal transients
vanish and the expressions of the covariance matrix simplify.

One can deduce from equation (36), (49) and (57) that, since limt→∞Aloc(t) = 0, in the
thermodynamic limit the system eventually loses all information on its initial conditions,
and its distribution assumes the characteristic Gaussian form corresponding to the late-
time thermal covariance matrix, as described in the next subsection.

An important feature of this model is the presence of initial slips in the momentum
average, in the non-thermal part of the averaged square momentum and of the correlation
between Q and P . Using the local propagator (57) from t = 0 implies neglecting an initial
evolution of the system during a short time of order 1/α, in which the central oscillator
is subjected to an initial kick [21, 4]. One can easily observe, indeed, that

Ä(0) = 0 6= Äloc(t = 0+) = −2Γ. (63)
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Our description will thus only be valid for t� 1/α. The effect of initial slips both on the
moments and on the definitions of entropy production is discussed in appendix G.

The late-time covariance matrix

In the thermodynamical limit it is possible to evaluate the long-time behavior of the
diffusion coefficients and of the covariance thermal matrix. They are related by

Dqp(∞) =
〈
P 2(∞)

〉
− Ω2

0

〈
Q2(∞)

〉
; (64)

Dpp(∞) = 2Γ
〈
P 2(∞)

〉
. (65)

Thus the anomalous diffusion coefficients survive, since the right-hand side of the first
equation of (64) does not vanish. This implies that equipartition does not hold in the
general quantum case.

Interestingly, as observed in [4], one obtains〈
Q2(∞)

〉
=
〈
Q2
〉

eq
,

〈
P 2(∞)

〉
=
〈
P 2
〉

eq
, (66)

namely that the stationary form of the central oscillator density matrix at t =∞ equals
the traced canonical equilibrium one of the total system:

ρS(∞) = ρst
S = trBρ

eq, ρeq ≡ e−βH

Z
, Z = tre−βH . (67)

This does not mean of course that the total system equilibrates: ρ(∞) 6= ρeq [13].
Furthermore, it has been shown in [24] that

ρS(∞) = ρeq
S ≡

e−βH
eq
S

Zeq
S

, Zeq
S = trSe−βH

eq
S , (68)

where the equilibrium effective Hamiltonian Heq
S is given by

Heq
S =

1

2Meff

P 2 +
1

2
Meffω

2
effQ

2. (69)

The effective frequency ωeff and mass Meff are respectively given by

ωeff =
2

β~
coth−1

(
2

~

√
〈Q2〉eq 〈P 2〉eq

)
, Meff =

1

ωeff

√
〈P 2〉eq

〈Q2〉eq

. (70)

Expressions for 〈Q2〉eq and 〈P 2〉eq can be found in [24] and [4], and are reported in (F.15)

and (F.16).
It is worth noticing that the traced canonical equilibrium density matrix (68) can be

equivalently written in the form [10, 11]

ρeq
S =

e−βH
MF
S

ZMF
S

, HMF
S = − 1

β
ln

tre−βH

ZB

, ZMF
S =

Z

ZB

, (71)

where an Hamiltonian of mean force HMF
S has been introduced, which differs from the

effective Heq
S by the additive constant −β(lnZMF

S − lnZeq
S ). Both partition functions have

a well-known analytical expression [24]. For the practical purpose of evaluating the Breuer
entropy flow (16) we will use the effective Hamiltonian. However we emphasize that the
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use of the mean force Hamiltonian leads to exactly the same entropy production (since
only the density matrix is involved) and heat flow (since only differences in energies are
considered).

The identities (66)–(68) do not generally hold in open quantum systems. They are
however an important feature of our bi-linear model and hold independently of the choice
of the continuous limit strength.

5. Explicit forms of the entropy production

We report here the explicit forms of the entropy production, according to the P (9), the
ELB (17) and the ‘Breuer’ expression obtained in (13). To evaluate them, one needs to
know the expressions for the entropy and the entropy flow.

Since the central oscillator density matrix is Gaussian at each time t, its von Neumann
entropy is given by [22]

S(t) = −trSρS(t) ln ρS(t) =
(
∆(t) + 1

2

)
ln
(
∆(t) + 1

2

)
−
(
∆(t)− 1

2

)
ln
(
∆(t)− 1

2

)
, (72)

where we have defined

∆(t) = ~−1
(
σ2
q (t)σ

2
p(t)− C2

qp(t)
)1/2

, (73)

which is a function of the correlation matrix at time t. One notices that S(t) is well defined
if the uncertainty principle is satisfied.

The ‘poised’ entropy production can be written as

∆iS
P = ∆S −∆eS

P; (74)

∆eS
P = tr (ρS(0)− ρS(t)) ln ρ∗S(t). (75)

The ‘poised’ density matrix ρ∗S(t) is Gaussian with vanishing means of Q and P (as shown
in appendix H) and is given by

ln ρ∗S(t) = −1

2
ln

(
∆∗2(t)− 1

4

)
− Λ∗(t)

2~2∆∗(t)
ln

∆∗(t) + 1
2

∆∗(t)− 1
2

, (76)

where we have defined

∆∗(t) = ~−1
(
σ∗q

2(t)σ∗p
2(t)− C∗qp

2(t)
)1/2

; (77)

Λ∗(t) = σ∗p
2(t)Q2 + σ∗q

2(t)P 2 − C∗qp(t){Q,P}. (78)

The variances and correlation σ∗q,p
2(t) and C∗qp(t) are given in appendix H. Then one

obtains

∆eS
P =
〈Λ∗(t)〉t − 〈Λ∗(t)〉0

2~2∆∗(t)
ln

∆∗(t) + 1/2

∆∗(t)− 1/2
, (79)

where we have defined, for any operator O acting on the Hilbert space of S, 〈O〉t =
trρS(t)O.

As for the Breuer entropy flow, ∆eS
Br is straightforwardly given by the change in the

effective energy Heq
S (69). Then one only needs to know position and momentum second

moments at time t, which in the finite case are obtained from the first moments and
from the correlation matrix which appear in (F.1)–(F.6), while in the continuum case one
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exploits the general expressions (50)–(52) with the Ullersma coupling strength (53) (see
(F.8) and (F.9)). The entropy flow ∆eS is instead proportional to the change in the bath
energy (20). To evaluate it, one needs rather to evaluate the average of the interaction
energy term 〈HI〉. By using the Ullersma strength (53) in the large-cutoff limit, it turns
out that for t� 1/α,

〈HI(t)〉 = Dqp(t)− κα
〈
Q2(t)

〉
, (80)

where Dqp(t) is the anomalous diffusion coefficient (C.2). This evaluation is reported in
appendix J. Thus, by comparing definitions (20) and (16), we obtain that the difference
between the two entropy flows is given by

∆Se −∆eS
Br = β

[
∆ 〈HS〉 −∆ 〈Heq

S 〉 − κα
〈
Q2(t)

〉
+Dqp(t)

]
. (81)

The difference in entropy production is the same with opposite sign.
As already mentioned, the expressions that we use in the continuum limit for the three

definitions of entropy only apply for t� 1/α, after the initial slip has taken place. Their
contribution to the entropy, which is reported in appendix G, implies that the entropy
flows and productions often do not start from 0, as one can observe in the following figures.

5.1. The Markovian case

Generally, in the limit of short-lived thermal transients, namely Γτβ � 1, the generator
of the dynamics L can be considered time independent, since the diffusion coefficients
(C.2) are close to their t = ∞ limit (64). As we have seen in section 2.1, in this case
the entropy production definition (13) and its time derivative turn out to be consistently
positive, as the system equilibrium density matrix ρeq

S does not depend on time, and the
entropy flow is given by the average variation of the effective system Hamiltonian Heq

S , as
already observed in equation (16). This holds both in the high-temperature classical and
weak-coupling limits [4].

5.1.1. The classical limit. In the high-temperature classical limit (61) all the quantum
features of the system disappear and the anomalous diffusion coefficient vanishes, thus
recovering equipartition (64), since 〈P 2〉eq = T , and 〈Q2〉eq = T/Ω2

0. In particular the
equation satisfied by the Wigner has exactly the form of the Kramers equation for
an oscillator in contact with a bath at temperature T [25, 26]. In this limit, since we
have ∆(t) � 1, ∀t, the system entropy (72) assumes its classical form for a Gaussian
distribution:

S(t) ' 1 + ln ∆(t). (82)

Moreover the effective equilibrium energy is given by

Heq
S ' 1

2
(Ω2

0Q
2 + P 2). (83)

Thus the definition (16) of the entropy flow reduces to that of stochastic thermodynamics,
which is defined as the average variation of the effective energy of the system, namely the
classical one with the renormalized frequency Ω0 in place of ω0. This means that the
corresponding definition of the entropy production coincides in this limit with the one
introduced in the theory of stochastic thermodynamics for the Kramers equation [27]. In
the over-damped limit Γ � Ω0, the momentum equilibrates much faster than position

doi:10.1088/1742-5468/2013/04/P04005 16

http://dx.doi.org/10.1088/1742-5468/2013/04/P04005


J.S
tat.M

ech.(2013)
P

04005

Entropy production in quantum Brownian motion

and can thus be traced out. The entropy production assumes in this case the form
proposed in the theory of stochastic thermodynamics for the over-damped Fokker–Planck
equation [28]. As long as the momentum has not yet fully equilibrated, the latter expression
constitutes a lower bound to the former one since it results from a coarse graining
procedure (see, e.g., [29]). Let us also note that by taking the weak-coupling limit κ→ 0,
one gets in (83) the bare frequency ω0, and that then the entropy flow becomes exactly
equal to the change in the central oscillator energy, divided by the temperature of the
bath.

We show in figure 1 the high-temperature limit (61) of the difference between the
different definitions of the entropy production with different coupling strengths. In the
classical limit the anomalous diffusion term in (80) vanishes and the normal diffusion
coefficient is time independent. This means that the poised and Breuer expressions for
the entropy become equal: ∆iS

Br = ∆iS
P. Considering also the expression assumed by

Heq
S (83), the expression (81) for the difference of flows simplifies to

∆eS −∆eS
Br = −β

2
κα
(〈
Q2(t)

〉
+
〈
Q2(0)

〉)
. (84)

The same difference with opposite sign holds for the entropy production. In the classical
limit the thermal part of 〈Q2(t)〉 is proportional to 1/βΩ2

0. This means that the difference
between the two expressions for the entropy production diverges, since for large κ one has

Ω2
0 = ω2

0 − κα→ 0. (85)

This appears clearly in the figure, where the different expressions for the entropy
production ∆iS and for the entropy flow ∆eS are shown for different coupling strengths
κ, both in the under-damped and the over-damped regime.

The difference between the definitions is due to the fact that the expression ∆iS and
the corresponding expression ∆eS of the entropy flow both diverge in the limit (85) as
1/Ω2

0:

∆eS(∞) = 1− 1

2

κα

Ω2
0

− β

2

(
ω2

0

〈
Q2(0)

〉
+
〈
P 2(0)

〉)
. (86)

However, the expression ∆iS
Br diverges only logarithmically like the von Neumann

entropy:

∆S(∞) ' | ln βΩ0| − S(0). (87)

In fact the expression ∆eS
Br does not diverge, since in the effective Hamiltonian (83) only

the renormalized frequency appears: Meffω
2
eff → Ω2

0.
One notices in figure 1 that both expressions for the entropy productions are positive,

but that the ELB one, ∆iS, exhibits damped oscillations yielding a nonpositive time
derivative. This can be directly seen from the fact that the time derivative of ∆iS

Br is
positive, due to the fact that the process is time independent (cf section 5.1), and that
the ELB one differs from it by a constant plus a term proportional to 〈Q2(t)〉, which is
characterized by damped oscillations.

We remark here that usually in the literature the total Hamiltonian is renormalized
by a self-interaction term, such that no positivity condition similar to equation (34) has
to be satisfied. In this case there would not be any divergence of 〈Q2(t)〉, which would
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Figure 1. The different expressions for the entropy production (left) and the
entropy flow (right), for different couplings κ (top and center: under-damped,
bottom: over-damped) in the classical regime. The parameters are: temperature
T = 1000, α = 10, ω0 = 1, σ2

q (0) = 100, σ2
p(0) = 100, Cqp(0) = 10, 〈Q(0)〉 = 100,

〈P (0)〉 = 100.

be proportional to T/ω2
0, but the difference between the two definitions of the entropy

production can be made arbitrarily large by taking κ→∞ [9].

5.1.2. The weak-coupling limit. Another case in which the entropy flow is equal to the one
defined in stochastic thermodynamics is the weak-coupling limit in the general quantum
setting Γ� Ω, τ−1

β . Some care is needed, since the anomalous diffusion coefficient Dqp(t)
does not vanish at long times to first order in the coupling Γ, just like the normal diffusion
coefficient Dpp(t):

Dqp(∞) =
2

π
~Γ Re[ψ(1 + λτβ)− ψ(1 + iΩτβ)] + O

(
Γ2
)

; (88)

Dpp(∞) = 2ΓE(Ω, T ) + O
(
Γ2
)
, (89)

where ψ(z) is the digamma function. Anyway their contribution to 〈Q2〉eq is different, as

Dpp(t) contributes to order 1, while Dqp(t) contributes to order Γ, as seen by inverting
(64). One gets then equipartition to first order in Γ:〈

Q2
〉

eq
= E(Ω, T )/Ω2 + O (Γ) ,

〈
P 2
〉

eq
= E(Ω, T ) + O (Γ) , (90)
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Figure 2. Entropy productions ∆iS
P, ∆iS

Br and ∆iS at different values of the
coupling κ: 0.01 (blue), 0.04 (green), 0.08 (red), 0.09 (cyan) with temperature
T = 0.001 (left), and different temperatures T : 0.001 (blue), 0.01 (green), 0.1
(red), 1.0 (cyan), with κ= 0.09 (right). The initial condition are fixed: σ2

q (0) = 1.0,
σ2
p(0) = 1.0, Cqp(0) = 0, 〈Q(0)〉 = 0, 〈P (0)〉 = 0.

where Ω can be approximated by Ω0 to first order in Γ. This corresponds to an equilibrium
density matrix ρeq

S (68) corresponding to the equilibrium Hamiltonian

Heq
S = 1

2
(ω0Q

2 + P 2) (91)

which is the same as the central oscillator one (31).

5.2. The low-temperature limit

In the low-temperature limit (60), one expects that the Breuer entropy production
expression (13), as well as its time derivative, can become negative. The poised and ELB
expressions (17) instead remain positive, while their time derivative can be negative. As we
observe in figure 2, for sufficiently low temperature and strong couplings, the expression
∆iS

Br becomes negative, exhibiting an oscillatory behavior. At higher temperatures or
weaker couplings the amplitude of the oscillations becomes smaller. Thus in these limits
one obtains a positive-definite entropy production, as well as a positive time derivative.
We observe that the poised and Breuer entropy productions have the same asymptotic
value, as expected, since ρ∗S(∞) = ρeq

S .
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One notices that also in the low-temperature limit (60), the ELB expression can
be orders of magnitude larger than the other two, due to the coupling term κα 〈Q2(t)〉
which appears in the entropy flow. This difference can be much larger with respect to
the classical case, due to the presence of the quantum terms contained in 〈Q2(t)〉, which
actually become more relevant than the classical one.

6. Poincaré recurrences

When the number N of bath oscillators is finite, the dynamics is characterized by
a recurrent behavior, with a period identified by the Poincaré recurrence time tP ∼
2π/min(zν+1 − zν) [3], where the zν are the normal frequencies. We can interpret this
recurrence as an almost periodic return to the initial decoupled state. Interestingly, while
∆iS remains positive by definition, one might have a negative ∆iS

Br, even in the classical
case. When the size of the bath becomes larger, the recurrence time grows, and one
expects the entropy to approach its typical irreversible behavior, eventually relaxing to
the equilibrium asymptotic value.

In the present section we study this behavior in the two specific cases of uniform and
Lorentzian frequency sampling, always assuming that the coupling strength converges to
the Ullersma expression (53). Indeed, the density of states

∑
iδ(ω−ωi) inside the coupling

strength can be arbitrarily chosen. We evaluate the thermal covariance matrix components
σ2
q,T (t), σ2

p,T (t), and the equilibrium symmetrized autocorrelation function C(t), defined
by

C(t) = 1
2
〈{Q(t), Q(0)}〉eq . (92)

We can also consider the Fourier transform of the correlation function C(t). Indeed, in
the classical limit, the finite-size correlation function has the expression

CN(t) = T
N∑
ν=0

X2
0ν

z2
ν

cos(zνt). (93)

We can thus represent the Fourier transform C̃N(ω) of C(t) by setting it equal to
TX2

0ν/(z
2
ν ∆ν), where ∆ν = zν − zν−1, and considering it as a function of ω = zν . This

quantity should approach, as N →∞, the Fourier transform of C(t), which is given by

C̃(ω) = T
κα2/(2π)

(ω2 − ω2
0)2(α2 + ω2) + κ2α4 + 2κα3(ω2 − ω2

0)
. (94)

We will see that the convergence to the large-size irreversible behavior is much slower
for the uniform than for the Lorentzian sampling, and that, in the former case, the
dynamics seems to remain characterized by under-damped oscillations even at large values
of N .

6.1. Sampling

6.1.1. Uniform sampling. The uniform sampling is obtained by consideringN frequencies
ω` (` = 1, 2, . . . , N) spaced by a constant ∆. The maximal frequency N ∆ will be denoted
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by ωc. The corresponding couplings are given by

ε` =

√
∆

2

π

κα2ω2
`

α2 + ω2
`

. (95)

Then the continuous limit Ullersma strength is obtained for N → ∞, ωc → ∞ and
∆ = ωc/N → 0. In this case the Poincaré recurrence time is given by tP ' 2π/∆.

6.1.2. Lorentzian sampling. In order to obtain a faster convergence with longer Poincaré
recurrence times, and a better agreement with the continuum curve both in the under-
damping and in the over-damping cases, one can adopt a Lorentzian sampling of
frequencies. Positive frequencies distributed with a Lorentzian density centered at ω = 0
with width a0 are defined as

ω` = a0 tan

[
`

N + 1

π

2

]
, (96)

with ` = 1 . . . N and with the corresponding couplings

ε` =

√
∆`

2

π

κα2ω2
`

α2 + ω2
`

, (97)

where ∆` = ω`−ω`−1, ` = 2, . . . , N and ∆1 = ω1. This sampling enables a high density of
frequencies in the area around ω = 0, then determining a long recurrence time. One can
adjust the value of ∆N in such a way as to have, for all values of N ,∑

`

ε2`
ω2
`

= κα. (98)

We shall refer to this case as the adjusted Lorentzian sampling.

6.2. Results

In figure 3 we report the correlation function and the thermal part of second moments
of the central oscillator in the classical continuum limit both for an under-damping and
an over-damping set of parameters. These are compared with the results obtained in the
finite case with N = 600 bath particles, both with a uniform and Lorentzian sampling
of the bath frequencies. The parameters ωc and a0 are chosen such that the Ullersma
spectrum is sampled beyond the cutoff α, and the recurrence time is of the order of the
characteristic relaxation time 1/Γ. Finally curves obtained with the adjusted Lorentzian
sampling are reported, where the parameter a0 is chosen such that the recurrence time is
much longer than 1/Γ.

In the under-damping case, for a finite bath and for times shorter than the recurrence
time, C(t) exhibits the typical damped oscillating behavior of the continuum limit, apart
from a shift in the oscillation frequency Ω. On the other hand, σ2

q,T (t) and σ2
p,T (t) exhibit

in the finite-size case the same dissipative behavior as in the continuum case, with
a characteristic time 1/Γ. However, while σ2

p,T (t) seems to reach, before the Poincaré

recurrence time, the same plateau value kBT as in the continuum case, σ2
q,T (t) appears

to reach a value lower than the one expected, i.e., 1/(βΩ2
0). These effects are due to the
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Figure 3. Plot of C(t), σ2
q,T (t) and σ2

p,T (t) in the continuous limit (dashed),
compared with the corresponding curves obtained for N = 600 with a uniform
frequency distribution with ωc = 30.0 (blue), a Lorentzian distribution of
frequencies with a0 = 20.0 (red) and an adjusted Lorentzian distribution with
a0 = 0.1 (green). They are obtained both for an under-damping set of parameters
(left column) and an over-damping one (right column) in the classical case
T = 1000. The insets show magnifications of the finite-size curves with uniform
sampling.

fact that the frequency shift
∑

`ε
2
`/ω

2
` is different from the continuous limit one κα, which

appears in Ω2
0. In fact [β (ω2

0 −
∑

`ε
2
`/ω

2
` )]
−1

is equal to the plateau value of σ2
q,T (t) reached

before the recurrence.
In the over-damping case, as the effect of the frequency shift is larger, one observes a

larger difference between the continuum and the finite case. In fact, while the continuum
limit curves display the typical over-damped behavior without any oscillations, the finite-
case curves exhibit the same behavior as is observed in the under-damping case. Moreover
the difference between the plateau values before the recurrence for σ2

q,T (t) is also much
larger.

It is clear from figure 3 that with the Lorentzian sampling one obtains curves that
behave more similarly to the continuum ones, for the same bath size and recurrence
times, with respect to the uniform case. This holds both for the oscillation frequency of
C(t) and the plateau value reached by σ2

q,T (t) before the recurrence. One may notice the
optimal agreement of the curves obtained with the adjusted Lorentzian distribution with
the continuum ones.
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Figure 4. Plot of C̃N (ω) versus ω for different values of the size N of the
bath and of the maximal frequency ωc (center) or the width a0, for a uniform
(top), Lorentzian (center) and adjusted Lorentzian (bottom) sampling of bath
frequencies. The continuum limit C̃(ω) corresponds to the dashed line.

The same qualitative behavior of the finite-size frequency sampling appears in the
Fourier transform of C(t). In figure 4, with the same parameters as for figure 3, one
notices that in the under-damping regime, C̃(ω) is characterized by a peak corresponding
to the oscillation frequency Ω. A similar curve characterizes X2

0ν/(z
2
ν∆ν), but the position

of the peak is shifted. This shift corresponds to the change in the oscillation frequency of
CN(t) with respect to C(t). In the over-damping case the N = 600 curve maintains the
look of the under-damping case, while the continuous one loses the peak, thus confirming
that in this case there is a poorer agreement between the continuous and finite cases.

Things improve when ωc and the size N become larger, keeping the frequency density
constant. In this case the peak shifts toward its continuum position in the under-damping
case, while in the over-damping case the peak tends to disappear. This improvement is due
to the fact that the frequency shift

∑
`ε

2
`/ω

2
` approaches

∫∞
0 dω γ(ω)/ω2 = κα. In fact the

difference between these quantities is due to two terms: one given by the difference between
the sum

∑
`ε

2
`/ω

2
` and the integral up to ωc, which is of order 1/N and is negligible for

the sizes reported in figure 4, and one, more relevant, corresponding to the contribution
to the integral arising from frequencies larger than ωc. This term is proportional to κ.
Thus, in order to keep the difference between

∑
`ε

2
`/ω

2
` and κα constant, ωc must increase

as κ increases. In particular for a given set of parameters, which would correspond to
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over-damping in the continuum limit, one would never obtain over-damping behavior if
ωc was too small.

If ωc or a0 is kept fixed, and N increases, the behavior remains the same, except that
the recurrence time tP increases and the smallest frequency z1 decreases.

With the Lorentzian sampling of parameters, convergence improves both in the under-
damping and in the over-damping cases. In fact, by choosing a0 and N such that the
recurrence time is of the same order as in the uniform case, the value of the frequency
shift is closer to κα. This is due to the fact that the highest frequency is much larger.
One has to exercise some care in choosing a0 neither too large (in order to have long
recurrence times) nor too small (in order to avoid too sparse a sampling close to the
highest frequency).

We also show in figures 3 and 4 the effect of adjusting the coupling with the highest-
frequency oscillator. The behavior of the continuum is optimally matched with the choice
a0 = 0.1 and N = 600.

6.3. Finite-size entropy production

We report in figure 5 the behavior of the entropy production according to the three
definitions, i.e., the poised (∆iS

P: equation (9)), the Breuer (∆iS
Br: equation (15)) and

the ELB (∆iS: equation (17)), for different values of N in the uniform case and for N = 600
for the adjusted Lorentzian cases. One notices that in the adjusted Lorentzian case one
already reaches an almost perfect agreement with the continuum limit for N = 600.
In the quantum case the expression for the entropy production ∆iS obtained with the
adjusted Lorentzian binning does not perfectly approximate the continuum limit. This is
due to the poor convergence of the term 〈Q(t)η(t)〉 which is contained in the averaged
interaction energy 〈HI〉 (J.1). The same can be observed for ∆SP

i , due to the noisy behavior
of Ȧ(t) and Ä(t). At finite sizes the Breuer expression ∆iS

Br can assume negative values,
whereas both ∆iS and ∆iS

P remain positive. However, in the uniform case, one obtains
a slower convergence with respect to the Lorentzian case, both in the adjusted and in the
non-adjusted case (not shown).

7. The bath entropy

The bath entropy at time t is given by

SB(t) = −trρB(t) ln ρB(t), (99)

where ρB(t) = trSρ(t) is the reduced bath density matrix. Since the total density matrix
is not a product state ρS ⊗ ρB at times t > 0, one cannot simply split the total entropy
into system entropy plus bath entropy. Thus one introduces the correlation entropy Sc:

Stot = −trρ(t) ln ρ(t) = S(t) + SB(t) + Sc(t). (100)

We note that −Sc(t) is the mutual information between the central oscillator and the
bath [30]. Since the total entropy is conserved and the initial correlations vanish, one has
Sc(0) = 0 and, according to this definition,

Sc(t) = −∆S(t)−∆SB(t). (101)
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Figure 5. Entropy production versus time t, according to the three definitions
∆iS

P, ∆iS
Br and ∆iS, for a uniform distribution of bath frequencies with a cutoff

ωc = 30, for different sizes N : 3 (blue), 25 (green), 600 (red), and for the adjusted
Lorentzian distribution with a0 = 0.1 (yellow) for N = 600. The dashed black line
corresponds to the continuum limit. The initial conditions are those of figure 1 in
the classical case, apart from the first moments

〈
Q2(0)

〉
= 10 and

〈
P 2(0)

〉
= 10,

while they are those of figure 2 in the quantum case.

We can easily verify that [18]

Sc(t) = −D
[
ρ(t)

∥∥∥ρs(t)∏
r

ρr(t)

]
≤ 0. (102)

Thus the correlation entropy is always negative or zero. By comparing this last equation
with equation (17), one finds [18]

∆iS(t) + Sc(t) = −β 〈∆HB〉 −∆SB(t) = D[ρB(t)‖ρeq
B ] ≥ 0. (103)

One notices that if the approximation of a bath remaining at equilibrium (ideal bath)
were valid, i.e., ρB(t) = ρeq

B , the correlation entropy would be equal to minus the entropy
production Sc(t) = −∆iS(t). In this case the variation of the bath entropy would be equal
to the heat flow.

The method used to numerically evaluate the bath entropy is detailed in appendix K.
This calculation relies on the fact that the bath density matrix is Gaussian at each
time, and therefore is fully characterized by the time-evolving bath covariance matrix
appendix L. We now turn to the discussion of the results.

doi:10.1088/1742-5468/2013/04/P04005 25

http://dx.doi.org/10.1088/1742-5468/2013/04/P04005


J.S
tat.M

ech.(2013)
P

04005

Entropy production in quantum Brownian motion

Figure 6. Entropy change in the bath ∆SB, correlation entropy SC and
Kullback–Leibler distance between ρB(t) and ρeq

B in the high-temperature T =
1000 regime, for different values of the coupling κ, for a uniform sampling of
frequencies with ωc = 30 (blue), and for an adjusted Lorentzian one with a0 = 0.1
(red). The bath size is N = 600 and other relevant parameters are set as for
figure 5.

As observed before for the central oscillator entropy, with an adjusted Lorentzian
sampling of frequencies the Poincaré recurrence times are much longer, and one can
observe a convergence toward an asymptotic plateau of the different quantities, as shown
for the classical case in figure 6. In particular, the asymptotic value of ∆SB does not
depend on the coupling constant κ, while, in agreement with (K.10), it depends on the
initial variances of the central system (see appendix L). Interestingly, in the over-damping
case, ∆SB increases at the beginning, reaching a maximum independently of the initial
conditions, before decreasing to the equilibrium value, much as minus the interaction
energy (80) does (not shown). The relaxation time is longer than that of the central
oscillator. This does not happen in the under-damped regime.

Once the bath entropy ∆SB is evaluated, one also gets the correlation entropy Sc using
(101) and then the distance D[ρB(t)‖ρeq

B ] using (103). Sc is negative by definition (102),
and its absolute value grows with the coupling as − ln(ω2

0 − κα), since κα approaches ω2
0,

similarly to the entropy of the system ∆S (87). Like the interaction energy term (80),
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Figure 7. Same as figure 6 but for the low-temperature case T = 0.001, with the
other parameters set as in figure 2.

the asymptotic value of Sc does not depend on the initial conditions of the central system
(data not shown). It turns out instead that the asymptotic value of Sc vanishes as κ→ 0.
This is confirmed by the fact that the coupling-independent asymptotic value of ∆SB

equals minus the central oscillator entropy change in the limit of vanishing coupling:

∆SB(∞) = −∆S(∞)|κ→0 = −
[
ln
T

ω0

− ln ∆(0)

]
. (104)

The distance D(ρB(t)‖ρeq
B ) increases with the coupling as κα/(ω2

0 − κα), like the
negative entropy flow (cf equation (86)). This quantity does not vanish for κ→ 0, where
it equals the entropy production:

D(ρB(∞)‖ρeq
B )|κ→0 = ∆Si|κ→0 = [∆S(∞)−∆eS(∞)]κ→0

= ln
T

ω0

− ln ∆(0)− β
[
T − 1

2
(ω2

0

〈
Q2(0)

〉
+
〈
P 2(0)

〉
)

]
. (105)

As a consequence, the bath density matrix operator is always changed and the
Kullback–Leibler distance from the density operator at canonical equilibrium becomes
larger on increasing the coupling. This suggests that for our model the ideal bath
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approximation, namely the assumption that ρB(∞) ' ρeq
B , which would imply that

∆SB ' −∆eS = β∆ 〈HB〉, (103), is not valid even in the thermodynamic limit. One
observes in figure 7 that in the quantum case the asymptotic value of the bath entropy
change appears to grow with the coupling, which could be an effect of the entanglement or
quantum correlations between the bath and the system. The dependence on the coupling is
apparently weaker than that exhibited by the entropy flow. This means that also here the
Kullback–Leibler distance between ρB(t) and ρeq

B is relevant and strongly increases with the
coupling. Due to the quantum contribution in the interaction term, its asymptotic value
can be orders of magnitude larger than the one assumed in the high-temperature limit, like
that for the ELB entropy production. In the limit of vanishing coupling, considerations
analogous to those for the classical case can be given, since the correlation entropy Sc

vanishes.

8. Conclusions

In this paper we studied the thermodynamic description of a process of transient relaxation
in the QBM model where a central harmonic oscillator initially prepared in a Gaussian
nonequilibrium state is bi-linearly coupled with a bath of harmonic oscillators initially
prepared at equilibrium.

We compared two ways of defining entropy production during the ensuing process of
relaxation of the central oscillator. Both definitions are expressed in terms of the change in
the von Neumann entropy of the system minus the heat divided by the temperature of the
reservoir. The ‘ELB’ one is based on defining this heat as minus the energy change in the
bath and thus has a straightforward physical interpretation, while the ‘poised’ one (beyond
non-Markovian transients) defines heat in a less transparent way in terms of the change
in an effective ‘mean force’ Hamiltonian. Both expressions are positive by definition, but
in a general non-Markovian quantum regime they both may exhibit oscillations. However,
in the Markovian limit, while the ‘ELB’ one may still exhibit oscillations, the ‘poised’
one becomes a monotonically increasing function of time. The two definitions coincide
for vanishing coupling, but we have shown that for finite coupling the ‘ELB’ one is
always larger than the ‘poised’ one. Their difference contains the expectation value of the
interaction Hamiltonian and can thus be made arbitrarily large. In the low-temperature
limit the contribution due to the quantum corrections in the interaction term can make
this difference orders of magnitude larger than in the classical case. Finally, we showed that
in the classical over-damped regime the ‘poised’ one converges to the entropy production
defined in stochastic thermodynamics.

We numerically studied the exact dynamics of our system for a finite number of
oscillators in the bath, using two different samplings of the bath frequencies: a uniform
one and a Lorentzian one. In both cases the period of the Poincaré recurrences increases
with growing density of bath frequencies, but the Lorentzian sampling guarantees a faster
convergence to the continuum limit curves as a function of N .

Finally, we numerically studied the evolution of the von Neumann entropy of the
bath which results from the relaxation process of the central oscillator. This enabled us
to calculate the evolution of the system–bath correlation entropy (or minus the mutual
information) and the Kullback–Leibler divergence between the bath density matrix at time
t and its initial thermal equilibrium form. We observed that for a given initial condition
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of the central oscillator, the asymptotic value of the bath entropy change does not depend
on the coupling in the classical limit, while it slightly does in the quantum regime. In the
limit of vanishing coupling strength the correlation entropy vanishes, which means that
the change in the von Neumann entropy of the bath becomes equal to minus the change
in the central system entropy. We also observed that the Kullback–Leibler divergence of
the bath density matrix never vanishes, thus indicating that the assumption of an ideal
bath which always remains at equilibrium is not satisfied. As expected, this divergence
grows significantly with the coupling, as the ELB expression of the entropy production
does.

While our study revealed important features in the QBM model, it also indicates that
no definite formulation of a consistent thermodynamics of out-of-equilibrium quantum
systems in the presence of non-vanishing coupling with the bath is yet available.
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Appendix A. Ullersma’s solution

Solution (33) is obtained by first finding a matrix transformation into new conjugate
operators {Q′µ, P ′µ} which diagonalize the Hamiltonian into a set of N+1 normal harmonic
oscillators, then writing the Heisenberg solutions in that basis, and finally transforming
back to the original operators.

The functions Aµν(t) can be expressed in terms of the function

g(z) = z2 − ω2
0 −

N∑
i=1

ε2i
z2 − ω2

i

, (A.1)

whose zeros zν , ν = 0, . . . , N , are the normal frequencies of the harmonic oscillators in the
new basis. We have in fact

Aµν(t) =
N∑
ρ=0

XµρXνρ
sin(zρt)

zρ
, (A.2)

where the elements Xµν of the transformation matrix are given by

X0ν =

[
1

2z

dg(z)

dz

∣∣∣∣
z=zν

]−1/2

, ν = 0, . . . , N ; (A.3)

Xiν =
εi

z2
ν − ω2

i

X0ν , i = 1, . . . , N ; ν = 0, . . . , N. (A.4)
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Appendix B. The quantum Langevin equation

In order to obtain the QLE, we first exploit the explicit solution to write down the
equations of motion for the position operators in the bath as integro-differential equations
involving the position operator of the central oscillator:

Qi(t) = Qi(0) cos(ωit) +
Pi(0)

ωi
sin(ωit)−

εi
ωi

∫ t

0

ds sin[ωi(t− s)]Q(s). (B.1)

Then the central oscillator satisfies the following quantum Langevin equation (QLE) which
we express in a matrix representation:

ż (t) + H ∗ z (t) = −η(t)− F (t). (B.2)

In this expression, ∗ represents the time convolution, and H (t) is given by

H (t) =

[
0 −δ(t)

Ω2
0δ(t) K(t)

]
; (B.3)

here K(t) is the damping kernel and F(t) = (0, K(t)Q(0)) is the forcing term, which is
responsible in the continuum limit for a fast slip of the initial conditions (see section 4).

The solution of the differential form equation (B.2) can be easily obtained by taking
the Laplace transform and then transforming back. One obtains expression (35) where
both terms contain the matrix propagator Φ(t) depending on the damping kernel K(t)
via the propagator A(t). The Laplace transform of A(t) is given by

Â(s) =
1

s2 + sK̂(s) + Ω2
0

. (B.4)

In appendix D we show that the Ullersma solution (33) and the Fleming one (B.1)
and (35) are equivalent.

Appendix C. Master equation matrices

The pseudo-Hamiltonian H(t) and diffusion D(t) matrices [21] are defined as

H(t) ≡
[

0 −1

Ω2
R(t) 2Γ(t)

]
= −Φ̇(t)Φ−1(t), (C.1)

D(t) ≡
[

0 −1
2
Dqp(t)

−1
2
Dqp(t) Dpp(t)

]
= 1

2

[
H(t)σT (t) + σT (t)HT(t) + σ̇T (t)

]
, (C.2)

where Φ(t) is the matrix propagator (36) and the thermal covariance matrix σT (t) is
defined by

σT (t) =

[
σ2
q,T Cqp,T

Cqp,T σ2
p,T

]
=

∫ t

0

dτ

∫ t

0

dτ ′ Φ(t− τ)

[
0 0

0 ν(τ − τ ′)

]
ΦT(t− τ ′). (C.3)

where ν is the noise kernel.
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Appendix D. The equivalence of the Ullersma and Fleming solutions

The convolution with the noise in (35) corresponds to the sum over the bath operators in
(33) and the expression for the bath operators in (33) corresponds exactly to that in (B.1).
This equivalence is recovered thanks to the following equation relating the quantities Ai0(t)
to the propagator A(t), and to the equation relating quantities Aij(t) to Ai0(t), where i
and j are bath indices:

Äi0(t) + ω2
iAi0(t) = −εiA(t); (D.1)

Äij(t) + ω2
jAij(t) = −εjAi0(t). (D.2)

Given the initial conditions Ȧi0(t) = Ai0(t) = Aij(t) = 0 and Ȧij(t) = δij, these equations
imply that

Ai0(t) = −εi
∫ t

0

dτ A(τ)
sin[ωi(t− τ)]

ωi
; (D.3)

Aij(t) =
sin(ωjt)

ωj
δij − εj

∫ t

0

dτ Ai0(τ)
sin[ωj(t− τ)]

ωi
. (D.4)

Appendix E. Time scales of the propagator

Time scales Ω, Γ and λ are obtained by solving the following equations in which the bare
central oscillator frequency ω0, the coupling κ and the cutoff α appear:

λ+ 2Γ = α, Ω2 + Γ2 + 2Γλ = ω2
0,

(
Ω2 + Γ2

) λ
α

= ω2
0 − κα. (E.1)

Figure E.1. Transition between real (white) and imaginary (yellow) Ω. In the
large-cutoff limit (56) it corresponds to the transition between under-damping
Γ < Ω0 and over-damping Γ > Ω0. For α/ω0 ≤

√
3 (on the left of the dotted line)

one always has Ω2 > 0.
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In the large-cutoff limit, (56) can then approximate (E.1) via

λ ' α, Γ ' κ/2, Ω2
0 ' Γ2 + Ω2, (E.2)

The pseudo-Hamiltonian H(t) in (48), at O (1/α) and for t� 1/α, becomes equal to the
time-independent matrix

Hloc =

[
0 −1

Ω2
0 2Γ

]
(E.3)

which is characteristic of a Ornstein–Uhlenbeck process. Since Ω0 is real, the transition
between real and imaginary Ω corresponds to the transition between the under-damped
(Γ < Ω0) and the over-damped regimes (Γ > Ω0) (see figure E.1).

Appendix F. The covariance matrix

In order to evaluate the covariance matrix of the central oscillator, one evaluates the
first and second moments for position and momentum Heisenberg operators. From the
Heisenberg solutions (33), one obtains by averaging over initial conditions (2) (42) (45)
the following expressions:

〈Q(t)〉 = Ȧ(t) 〈Q(0)〉+ A(t) 〈P (0)〉 ; (F.1)

〈P (t)〉 = Ä(t) 〈Q(0)〉+ Ȧ(t) 〈P (0)〉 ; (F.2)

σ2
q (t) =

〈
Q2(t)

〉
− 〈Q(t)〉2 = Ȧ2(t)σ2

q (0) + 2Ȧ(t)A(t)Cqp(0) + A2(t)σ2
p(0) + σ2

q,T (t); (F.3)

σ2
p(t) =

〈
P 2(t)

〉
− 〈P (t)〉2 = Ä2(t)σ2

q (0) + 2Ä(t)Ȧ(t)Cqp(0) + Ȧ2(t)σ2
p(0) + σ2

p,T (t); (F.4)

Cqp(t) =
1

2
〈{Q(t)− 〈Q(t)〉 , P (t)− 〈P (t)〉}〉 =

1

2

d

dt
σ2
q (t). (F.5)

The thermal parts of the covariance matrix for a finite bath have the form

σ2
q,T (t) =

N∑
`=1

[Ȧ2
`0(t)/ω2

` + A2
`0(t)]E(ω`, T ); (F.6)

σ2
p,T (t) =

N∑
`=1

[Ä2
`0(t)/ω2

` + Ȧ2
`0(t)]E(ω`, T ). (F.7)

The latter can also be generally written in integral form as shown in (52). By combining
equations (F.1)–(F.7) one easily obtains also the second moments of the momentum and
position operators.

With the continuous bath with the Ullersma coupling strength (53) and the high-cutoff
limit (56), by inserting (57) in equation (52), one obtains

σ2
q,T (t) = {1 + a2

loc(t)}
〈
Q2
〉

eq
+ A2

loc(t)
〈
P 2
〉

eq
+ 2

[
Aloc(t)Ċ(t)− aloc(t)C(t)

]
; (F.8)

σ2
p,T (t) = Ω4

0A
2
loc(t)

〈
Q2
〉

eq
+ {1− Ȧ2

loc(t)}
〈
P 2
〉

eq

+ 2
[
Ω2

0Aloc(t)Ċ(t) + Ȧloc(t)C̈(t)
]

; (F.9)
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where aloc(t) = Ȧloc(t)+2ΓAloc(t), and the position equilibrium correlation function (F.10)
is given by

C(t) =
1

2
〈{Q(t), Q(0)}〉eq =

∫ ∞
0

dω
γ(ω)

ω2
E(ω, T )

∣∣∣∣∫ ∞
0

dt′ Aloc(t
′)eiωt′

∣∣∣∣2 ; (F.10)∫ ∞
0

dt′Aloc(t
′) eiωt′ =

1

(Γ− iω)2 + Ω2
. (F.11)

When calculated with Aloc(t), it differs from the exact one by corrections of O (1/α):

C(t) =
1

βΩ2
0

aloc(t) +
~

2πΩ
Im{e−(Γ+iΩ)t[ψ(1 + (Γ + iΩ)τβ)

− ψ(1 + (Γ− iΩ)τβ)]}+ Cα,τβ(t), (F.12)

Cα,τβ(t) = κ~
[

1

2α2

cot(πατβ)e−αt

((1 + Γ/α)2 + (Ω/α)2)((1− Γ/α)2 + (Ω/α)2)

− 1

π

∞∑
`=1

(ατβ)2

(ατβ)2 − `2

`τ 2
βe−`t/τβ

((Ωτβ)2 + (`+ Γτβ)2)((Ωτβ)2 + (`− Γτβ)2)

]
. (F.13)

In this expression, ψ(z) = d ln ΓE(z)/dz is the digamma function, and τβ was defined in
(59). The last term contains the so-called thermal transients, which vanish slowly in the
low-temperature limit. By discarding terms of O (1/α2), in the quantum limit ατβ � 1 it
can be approximated for t� 1/α by the series [4]

Cα,τβ(t) ' ~
πΩ

Im
∞∑
`=1

`e−`t/τβ

(Γ + iΩ)2τ 2
β − `2

. (F.14)

One should remark however that its second time derivative diverges at t = 0, and that
other terms should be taken in account in order to remove this divergence. We truncate
this sum to 50 terms, which guarantees a good description for t� 1/α. One has however
to take into account the fact that our approximations do not describe well the behavior
for t ≤ 1/α.

The equilibrium second moments that one gets from the equilibrium correlation
function (F.10) at t = 0 are given by [4]

〈
Q2
〉

eq
= C(0) =

T

Ω2
0

+
~
πΩ

Imψ(1 + (Γ + iΩ)τβ); (F.15)

〈
P 2
〉

eq
= −C̈(0) = T +

2

π
~Γ Re (lnατβ − ψ(1 + (Γ + iΩ)τβ))

+
~(Ω2 − Γ2)

πΩ
Imψ(1 + (Γ + iΩ)τβ). (F.16)

Here the average is taken over the equilibrium density matrix ρeq (68). This time, in
order to correctly evaluate 〈P 2〉eq to O (1/α), one has to consider all the terms contained

in Cα,τβ(t). One should keep in mind that 〈P 2〉eq contains a contribution lnα/ν, which
explains the necessity of introducing a high-frequency cutoff.
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Appendix G. The effect of initial slips

As we have recalled in section 4, slips in the averaged momentum operator and in the
correlation matrix are produced by the kick-like force term F (t) in the QLE (B.2), acting
during an initial time interval of duration ∼1/α ' 1/λ. The local propagator (57) actually
contains such slips from t = 0+, so it is correct apart from corrections of O (1/λ) only for
t� 1/λ (see equation (63)), namely when the kick vanishes. In fact, while A(0) contains
corrections of the kind (1/λ2)e−λt with respect to Aloc(0), its second time derivative
contains a term e−λt, so it is negligible only for t � 1/λ. With the local propagator
(57) we are not going to consider the detail of the evolution in the initial time interval of
duration 1/α, which is considered to be much shorter than the other time scales in the
large-cutoff limit.

The initial slips correspond to a fast shift of the initial conditions:

〈P (0)〉 → −2Γ 〈Q(0)〉+ 〈P (0)〉 ;〈
P 2(0)

〉
→ 4Γ2

〈
Q2(0)

〉
− 2Γ

〈
{Q(0), P (0)}

2

〉
+
〈
P 2(0)

〉
;〈

{Q(0), P (0)}
2

〉
→ −2Γ

〈
Q2(0)

〉
+

〈
{Q(0), P (0)}

2

〉
.

(G.1)

Let us now discuss the effect of the initial slips (G.1) on the Breuer (13) and ELB (17)
entropy definitions. They appear as non-vanishing values for limt→0+∆eS(t) = ∆eS(0+)
and limt→0+∆S(t) = ∆S(0+).

For the Breuer entropy flow one has, by using the expressions for the moments reported
in (F.1),

∆eS
Br(0+) = β

[
1

Meff

(2Γ2
〈
Q2(0)

〉
− ΓCqp(0))

]
, (G.2)

which is due to the shift on 〈P 2(0)〉. For the entropy change one has

∆S(0+) = (∆is(0) + 1) ln(∆is(0) + 1)−∆is ln ∆is

− (∆(0) + 1) ln(∆(0) + 1)−∆(0) ln ∆(0); (G.3)

∆is = (σ2
q (0)σ2

p(0)− Cqp(0)(Cqp(0)− 2Γσ2
q (0)))

1
2 − 1

2
, (G.4)

where ∆(0) is given in (72). ∆is > ∆(0)≥ 0 satisfies the Heisenberg principle, and therefore
∆S(0+) is always positive.

For the ELB entropy flow one has

∆eS(0+) = β
[
4Γ
〈
Q2(0)

〉
− 2ΓCqp(0)− κα

〈
Q2(0)

〉]
. (G.5)

Here the sign is determined by the last term, which is generally larger than the first
one, due to the large value assumed by α. In principle one should also consider a slip
term (4/π)~Γψ(1 + λτβ) in 〈P 2(0)〉, because we used the approximate formula (F.14) to
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calculate (F.9). However, the effect of neglecting this term as well as the effect of the
truncation of the sum in (F.14) are negligible compared to the slips considered above.

Appendix H. Calculation of the poised entropy production

In order to evaluate the poised entropy production ∆iS
P in (9), we have to find the poised

density matrix ρ∗S(t). Once it is known, one can evaluate ∆iS
P as

∆iS
P = ∆S −∆eS

P = ∆S − TrS(ρS(0)− ρS(t)) ln ρ∗S(t). (H.1)

In order to evaluate ρ∗S(t), we rewrite equation V (t)ρ∗S(t) = ρ∗S(t) in the Fourier
transform space associated with the corresponding Wigner W ∗

S (q, p, t). Using equation (49)
we get

W̃ ∗
S (ΦT(t)k , t) e−(1/2)kTσT (t)k = W̃ ∗

S (k , t). (H.2)

Since we only consider initial Gaussian distributions, we have seen that the solution
remains Gaussian at any time. Therefore, to solve (H.2), we look for solutions of the
form

W̃ ∗
S (k , t) = e−(1/2)kTσ∗(t)k−ikTz∗(t), (H.3)

where σ∗(t) is a symmetric 2× 2 covariance matrix:

σ∗(t) =

[
σ∗q

2(t) C∗qp(t)

C∗qp(t) σ∗p
2(t)

]
, (H.4)

and the vector z ∗(t) contains the first moments q∗(t) and p∗(t). By using expression (H.3)
in equation (H.2) one straightforwardly finds the relation between the covariance matrices
and the first moments:

Φ(t)σ∗(t)ΦT(t) + σT (t) = σ∗(t); (H.5)

Φ(t)z ∗(t) = z ∗(t). (H.6)

From equation (H.6), one finds z ∗(t) = 0 at all times. equation (H.5) for the covariance
matrix is equivalent to a system of three equations. One gets

σ∗q
2(t) =

σ2
q,T (t)S11(t) + Cqp,T (t)S12(t) + σ2

p,T (t)S13(t)

D11(t)D12(t)D21(t)
;

C∗qp(t) =
Cqp,T (t)S22(t) + σ2

q,T (t)S21(t) + σ2
p,T (t)S23(t)

D12(t)D21(t)
;

σ∗p
2(t) =

σ2
p,T (t)S33(t) + Cqp,T (t)S32(t) + σ2

q,T (t)S31(t)

D11(t)D12(t)D21(t)
.

(H.7)
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Here

S11 = S33 = 1− 2Ȧ2 + Ȧ4 − AÄ− Ȧ2AÄ;

S12 = −2ȦA(1− Ȧ2 + AÄ);

S13 = −A2(1 + Ȧ2 − AÄ);

S21 = ȦÄ;

S22 = 1− Ȧ2 − AÄ;

S23 = AȦ;

S31 = −Ä2(1 + Ȧ2 − AÄ);

S32 = −2ȦÄ(1− Ȧ2 + AÄ);

D11 = 1− Ȧ2 + AÄ;

D12 = 1− 2Ȧ+ Ȧ2 − AÄ;

D21 = 1 + 2Ȧ+ Ȧ2 − AÄ.

(H.8)

Thus the elements of the matrix σ∗(t) are expressed as linear combinations of thermal
covariance elements, whose coefficients are functions of the propagator matrix elements.
Expressions (H.7) are valid both in the finite-size case and in the thermodynamic limit.
In order to get the poised covariance matrix at t = 0, one has to evaluate the t→ 0+ limit
of (H.7).

Appendix I. The Liouvillian operator of the adjoint dynamics

In the adjoint dynamics, the system and bath Heisenberg operators satisfy the following
equations:

Q̇µ(t) = − i

~
[H,Qµ(t)] , Ṗµ(t) = − i

~
[H,Pµ(t)] , (I.1)

where one has a change of sign with respect to the usual Heisenberg dynamics (32). By
proceeding in the same way as in the usual case, we find the following modifications
involving the matrix QLE satisfied by the central oscillator (B.2):

H (t)→ H̃ (t) =

[
0 δ(t)

−Ω2
0δ(t) K(t)

]
, (I.2)

η(t)→ η̃(t) =
N∑
i

εi

[
−Qi(0) cosωit+

Pi(0)

ωi
sinωit

]
. (I.3)

This implies that the evolution is given as in equation (35), but with a change in the
off-diagonal elements of the matrix propagator (36):

Φ(t)→ Φ̃(t) =

[
Ȧ(t) −A(t)

−Ä(t) Ȧ(t)

]
, (I.4)

while the noise kernel (58) remains unchanged. By considering the above modifications,
one straightforwardly finds from (48) the FP-like equation satisfied by the reduced Wigner
for the central oscillator for the adjoint dynamics: it remains exactly the same except for
a change in the signs of the drift term, the harmonic forcing term and the anomalous
diffusion coefficient. This implies that the limits generally considered in section 4 for the
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usual process also apply for the adjoint; moreover the late-time density matrix is the same
as in (4).

Appendix J. The interaction energy term

A way to express the average of HI, which is useful in the continuum limit, is the following.
By plugging the Heisenberg formal solutions for the bath operators as functions of Q(t)
(B.1) into the interaction term, one gets

〈HI(t)〉 =

〈∑
i

Q(t)Qi(t)

〉
= 〈Q(t)η(t)〉+

〈∫ t

0

ds K̇(t− s)Q(t)Q(s)

〉
, (J.1)

where η(t) is the fluctuating force term defined in (37). Using (35) and the initial absence
of system–bath correlation, which implies 〈Q(0)η(t)〉 = 0, one gets

〈Q(t)η(t)〉 = −
∫ t

0

dt′ A(t− t′) 〈η(t′)η(t)〉

= −
∫ ∞

0

dω
γ(ω)

ω2
E(ω, T )

∫ t

0

ds A(s) cos(ωs). (J.2)

Interestingly the use of the Ullersma strength (53), from which one obtains that the
damping coefficients are time independent in the large-cutoff limit, implies exactly the
same integral form for the anomalous diffusion coefficient, so 〈Q(t)η(t)〉 = Dqp(t).

In fact in the case of the Ullersma strength (53) with large cutoff, the diffusion matrix
(C.2) can be approximated by [21]

D(t) = 1
2

∫ t

0

dτ
[
ν(t− τ)ΦT(t− τ) + Φ(t− τ)νT(t− τ)

]
. (J.3)

This straightforwardly leads to the equivalence between 〈Q(t)η(t)〉, which is part of the
average interaction term (80), and the anomalous diffusion term Dqp(t).

The integration in (J.2) is done by using the local propagator Aloc(t) (57), by first
integrating over time and then in the complex ω plane. One obtains

Dqp(t) =
〈
P 2
〉

eq
− Ω2

0

〈
Q2
〉

eq
−
{
Ȧloc(t) + Aloc(t)

(
2Γ− d

dt

)}
FC(t); (J.4)

FC(t) = −(C̈(t) + Ω2
0C(t) + 2ΓĊ(t)). (J.5)

The time-dependent term contained in (J.4) vanishes, so one recovers the late-time
anomalous diffusion coefficient (64), which is a positive quantity. Here we have made
use of the approximate equilibrium correlation function (F.12). It follows that

FC(t) = κ~

[
−1

2

cot(πατβ)e−αt

(1 + (Γ/α))2 + (Ω/α)2
+

1

π

∞∑
`=1

(ατβ)2

(ατβ)2 − `2

`e−`t/τβ

(`+ Γτβ)2 + (Ωτβ)2

]
, (J.6)

which can be approximated for t� 1/α by

FC(t) ' κ~
π

∞∑
`=1

`e−`t/τβ

(`+ Γτβ)2 + (Ωτβ)2
. (J.7)

In the classical limit the anomalous diffusion coefficient vanishes.
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To evaluate the second term of the sum in (J.1), we can use the fact that for large
cutoff, K̇(t) ∼ −καδ(t). Then one gets for the interaction term the complete expression
(80).

In the finite case one has, by using the solutions (33) and the initial conditions (2),〈
N∑
i=1

Q(t)Qi(t)

〉
=

N∑
i=1

{
εiȦ00Ȧi0

〈
Q2(0)

〉
+ A00Ai0

〈
P 2(0)

〉
+ (Ȧ00Ai0 + Ȧi0A00)Cqp(0)

+
N∑
j=1

(
Ȧ0iȦji
ω2
i

+ A0iAji

)
E(ωi, T )

}
. (J.8)

This expression is useful for a numerical calculation in the finite case. By using the
expressions for the Ai0(t) and the Aij(t) as a function of the propagator A(t), one obtains
the expressions (J.1) and (J.2) exploited in the continuum limit.

Appendix K. Evaluation of the bath entropy

One can straightforwardly evaluate the general quantum bath entropy (99) if one finds a
coordinate transformation that puts the density operator ρB in a normal form, namely a
product of independent oscillator thermal states:

ρB =
⊗
`

(1− e−β`) e−β`n` , (K.1)

where n` = a†`a`, with a` = (q` + ip`)/
√

2, and where the β` are suitable effective inverse
temperatures. In fact, by putting the density operator in this form, the calculation of
entropy is easily obtained by taking the trace over the space of the eigenstates of the
number operator: |n1, n2, . . . , n`, . . . , nN〉. One obtains

SB =
∑
`

((k` + 1/2) ln(k` + 1/2)− (k` − 1/2) ln(k` − 1/2)), (K.2)

where k` = 1
2

coth
(

1
2
β`
)

= 〈q2
` 〉 = 〈p2

`〉 = 〈n`〉+ 1
2
. For simplicity we have put here ~ = 1.

We know from (3.2) that the reduced density matrix for the bath is Gaussian. Here
first moments can be shifted to 0, as this transformation leaves the entropy invariant.
Then from an informational point of view the bath is fully characterized by the covariance
matrix σB

ij (L.1).
The normal form (K.1) and values of the k` can be actually recovered by a

‘pseudo-diagonalization’ of the correlation matrix. This can be done using a symplectic
transformation, ξ 7→ Sξ where S is a 2N × 2N -matrix, i.e. a transformation preserving
the bosonic commutation rules:

β = SβST, (K.3)

where

β =

(
0 1

−1 0

)
; 1 = (δk,`), k, ` = 1, 2, . . . , N. (K.4)
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One then chooses S such that the correlation matrix in the new basis is diagonal:

σB 7→ σ′
B

= SσBST = diag(κ1, κ2, . . . , κN , κ1, κ2, . . . , κN). (K.5)

This can always be done, as affirmed by Williamson’s theorem [31], due to the fact that
the correlation matrix is symmetric and positive definite. Due to the particular block form
of the correlation matrix, the k` are doubly degenerate, as shown in [32].

The pseudo-eigenvalues and the symplectic matrix S can be obtained, as explained
in [33], by diagonalizing the symmetric matrix KβσBβTKT, where the matrix K is
obtained by a Cholesky decomposition of the correlation matrix:

σB = KTK. (K.6)

This can actually be carried out, since σB is positive definite. The eigenvalues that one
finds are actually the doubly degenerate squares of the pseudo-eigenvalues k`.

Given an operator Â, its Wigner transform is defined by [34]

A(p, q) =

∫
dz eipz/~

〈
q − z

2

∣∣∣ Â ∣∣∣q +
z

2

〉
. (K.7)

In the general quantum case, the Wigner transform of ln ρB is −ξTMξ − lnZB, since one
has

ρB = exp{−ξTMξ}/ZB, (K.8)

where M is a square 2N × 2N matrix. This matrix transforms under a symplectic
transformation of the phase-space operators (K.3) like (σB)−1:

M 7→M ′ = (ST)−1MS−1. (K.9)

In the classical limit the diagonalized matrices M ′ and (σ′B)−1 coincide and therefore also
(σB)−1 and M have to coincide. Therefore in the classical limit the Wigner distribution
corresponding to the density operator ρB has the same expression as the classical
probability distribution apart from multiplicative coefficients, i.e.,

WB(q, p, t) = exp{−1
2
ξ†(σB)−1ξ}

/[
(2π)N(detσB)1/2

]
. (K.10)

where σB is given in equation (L.1). Then the entropy of the bath can be easily calculated
via a Gaussian integral:

SB = −
∫

dq dp WB(q, p, t)CL ln
[
(2π)NWB(q, p, t)CL

]
= N + ln(detσB)1/2. (K.11)

This result can be also be obtained by noticing that in the classical limit, where k`� ~/2,
the expression (K.2) for the bath entropy reduces to

SB = N + ln
N∏
`=1

k` = N + ln(detSσBST)1/2. (K.12)

Thus, since detS = 1 (K.3), we recover (K.11).
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Appendix L. The bath covariance matrix

The covariance matrix of the bath is defined as

σB
ij = 1

2
〈{ξi, ξj}〉 − 〈ξi〉〈ξj〉, (L.1)

where ξ = (Q1, . . . , QN , P1, . . . , PN), and i and j identify the bath oscillators.
Using the Heisenberg solutions (33), the variance of a bath position operator with the

average taken over the initial conditions (2) gives, with the help of (45),〈
Q2
i (t)
〉
− 〈Qi(t)〉2 = Ȧ2

i0σ
2
q (0) + Ai0σ

2
p(0) + 2Ȧi0A

2
i0Cqp(0)

+
N∑
`=1

[
Ȧ2
i`

ω2
`

+ A2
i`

]
E(ω`, T ). (L.2)

The last sum can be rewritten, using expression (D.4) for the Ai`, as follows:

N∑
`=1

[
Ȧ2
i`

ω2
`

+ A2
i`

]
E(ω`, T ) =

N∑
`=1

ε2`
ω2
`

∣∣∣∣∫ t

0

dτ Ai0(τ)eiω`τ

∣∣∣∣2E(ω`, T )

+
E(ωi, T )

ω2
i

+
2εi
ω2
i

∫ t

0

dτ Ai0(τ) cos(ωiτ)E(ωi, T ). (L.3)

It contains a term explicitly depending on the initial conditions of the central oscillator,
and a thermal part. The latter is made up of a term explicitly depending on the initial
conditions of the bath oscillator, a sum of the kind

∑
`=1ε

2
` . . ., which is easily put into

integral form by using the strength (39), plus an integral containing Ai0(t) and an
oscillating function of time, multiplied by the coupling εi of the oscillator. The same
structure is obtained for every term of the bath covariance matrix σB

ij, connecting any
momentum and bath operators.
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