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Abstract We derive the equations governing the protocols minimizing the heat released by a
continuous-time Markov jump process on a one-dimensional countable state space during a
transition between assigned initial and final probability distributions in a finite time horizon.
In particular, we identify the hypotheses on the transition rates under which the optimal
control strategy and the probability distribution of the Markov jump problem obey a system
of differential equations of Hamilton-Jacobi-Bellman-type. As the state-space mesh tends
to zero, these equations converge to those satisfied by the diffusion process minimizing the
heat released in the Langevin formulation of the same problem. We also show that in full
analogy with the continuum case, heat minimization is equivalent to entropy production
minimization. Thus, our results may be interpreted as a refined version of the second law of
thermodynamics.

Keywords Nonequilibrium and irreversible thermodynamics · Stochastic processes ·
Markov processes · Optimal control

1 Introduction

Molecular motors and more generally nano-machines operate in viscous, fluctuating en-
vironments. It is therefore useful, if not necessary, to model these systems by means of
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stochastic processes and to describe their behavior in terms of probability distributions.
Fluctuation relations [10, 15, 16, 18, 22, 24, 31, 32] impose general constraints on these
probability distributions which can be and have been extensively tested experimentally see
e.g. [6, 9, 20, 33, 43, 46]. A unified approach to these results from a theoretical standpoint
can be found in [7] while a review with emphasis on experimental aspects and extensive
reference to the literature is [40].

Both in experimental and theoretical investigations of nano-machines it is crucial to dis-
tinguish between fast fluctuating configurational variables and control parameters, i.e., vari-
ables whose state is determined by external macroscopic sources. For example, in an exper-
iment following the trajectory of a micron-sized bead immersed in water and captured in an
optical trap, the control parameter could be the center of the trap measured in the laboratory
frame whereas the configurational variable is the displacement of the bead [1, 46].

An important observation made in [41] is that the knowledge of the control parameters
driving a nano-system in a finite-time transition between two assigned states while mini-
mizing a suitable non-equilibrium thermodynamical functional (the mean work done on the
system in the examples considered by [41]), yields substantial improvements in the mea-
surement from finite-time path sampling of thermodynamical indicators (e.g. free energy
differences) in both numerical and experimental studies.

Recent results [2–4] have shown that the problem posed in [41] admits a precise mathe-
matical formulation in the language of optimal control theory see e.g. [17] and also [44] for a
short, brilliant introduction. A conspicuous consequence is that for fast processes described
by a Langevin dynamics the minimization of the heat released or of the work done in a
transition between assigned states can be exactly mapped into Monge-Ampère-Kantorovich
optimal transport problems [45].

The aim of the present contribution is to extend these results to transitions described by
continuous time Markov jump processes on a countable state space [26, 27]. Markov jump
processes have been often considered in the study of fluctuation theorems see e.g. [13, 14,
23, 32, 34] as model problems for non-equilibrium thermodynamics. The application closest
to the scope of the present contribution can be found in [12]. Namely, the authors of [12]
modeled a single-level fermion system interacting with a thermal reservoir by a two-state
Glauber jump-process with the aim of determining the protocol raising the energy level with
minimal work done on the system. Rigorous optimal control theory for jump processes has
been developed long ago [11, 39]. Adapting it to the minimization of the heat released during
a transition between states leads to a formulation in weak sense of the variational problem
similarly to what happens in stochastic mechanics [21] and Euclidean quantum mechanics
[48]. Heat release minimization is, within our working hypotheses, equivalent to entropy
production minimization. Thus, our results have a straightforward physical interpretation as
refined bounds for the second law of thermodynamics [2, 4] amenable to direct experimen-
tal testing [5]. In this respect, the aforementioned distinction between configurational and
control parameters has an immediate, important consequence for control theory. Identify-
ing without any further specification the jump rates of the process as the controls implies
in physical terms acting at the fastest possible time scale of the system. An intuitive and,
somewhat trivial, consequence is that optimal control will be a jump process. In our view,
a more physically relevant approach is to instead inquire entropy production minimization
with respect to the broadest set of process parameters which lead to smooth, macroscopic
optimal control protocols. The mathematical a-priori condition for this distinction is coer-
civity, a well known concept in control theory [17]: the convexity of the cost functional with
respect to the control. Non-coercivity, e.g. linearity of the cost functional with respect to
an optimization parameter brings generically about singular controls. We interpret here sin-
gular controls as optimization protocols acting on configurational parameters of the system
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and, as such of questionable physical realizability. We will argue in the conclusions of this
paper that the introduction of a control time scale originating from the distinction between
configurational and control parameters is not a peculiarity of Markov jump process but it is
also implied in the Langevin dynamics formulation [2–4].

The structure of the paper is as follows. In Sect. 2 we shortly recall basic properties of
Markov jump processes and introduce the heat functional as a measure of irreversibility
in transition between states. In order to simplify the notation, we restrict the attention to
a one-dimensional state space. As noticed in [4], the heat optimal control problem is most
naturally formulated in the current velocity formalism [38] see also [8, 19] for application
to fluctuation relations. In Sect. 3 we state the optimization problem under the hypothesis
that transition rates satisfy a local detailed balance. We show that in such a case the heat
is a convex functional of the control only if a certain statistical indicator we call “reduced
traffic” [34] is bounded. Under this further hypothesis the optimal control satisfy a system
of differential equations of Hamilton-Jacobi-Bellman type [17]. In Sect. 4 we derive these
equations which we show in Sect. 5 to recover in the limit of vanishing lattice spacing the
optimal mass transport equations of [2–4]. Finally, in Sect. 6 we consider the two and three
state dynamics. For the two state dynamics we show that our optimal protocol corresponds to
an entropy production lower than the one generated by optimizing the Glauber jump process
as in [12]. This is not surprising because using Glauber transition rates is equivalent to fixing
the value of the reduced traffic. We turn then to the case of a three-state space for which we
solve numerically the optimal transport equations.

2 Continuous Time Markov Jump Process

Let ξt a continuous-time Markov jump process taking values on a one-dimensional count-
able state space S. Let f (x, t) any test function

f : S × R+ �→ R (1)

differentiable at least once with respect to the time variable t ∈ R+. The mean forward
derivative of f along the realizations of ξt specifies the generator of the process

lim
dt↓0

Eξt =x
{

f (ξt+dt , t + dt) − f (ξt , t)

dt

}
:= (∂tf + Lf )(x, t)

= ∂tf (x, t) +
∑
x̃∈S

[
f (x̃, t) − f (x, t)

]
Kt (x̃|x) (2)

The jump rates Kt ’s are positive definite (Kt (x̃|x) ≥ 0 for any pair of states x, x̃) and vanish-
ing on the diagonal (Kt (x|x) = 0 for all x ∈ S). In particular, Kt (x̃|x) denotes the jump rate
from the state x to x̃. We allow here the jump rates to depend upon the time t . The knowl-
edge of the generator characterizes the process. Namely, the evolution of the probability
distribution

P(ξt = x) := m(x, t) (3)

is governed by the Master equation

dm

dt
(x, t) =

∑
x̃∈S

{
Kt (x|x̃)m(x̃, t) − Kt (x̃|x)m(x, t)

}
(4)
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which for assigned Kt ’s is a system of non-autonomous differential equations, infinite di-
mensional if S comprises an infinite number of states. We require the transition rates to be
sufficiently regular for (4) to admit a unique solution for any initial probability distribution
mo(x) assigned at time t = to. It is then expedient to introduce the transition probability Pt,to

as the semi-group solving

dPt,to

dt
(x|xo) =

∑
x̃∈S

{
Kt (x|x̃)Pt,to (x̃|xo) − Kt (x̃|x)Pt,to (x|xo)

}
(5a)

lim
t↓to

Pt,to (x|xo) = 1x,xo (5b)

and to describe the evolution of probability measures as

m(x, t) =
∑
x̃∈S

Pt,to (x|x̃)mo(x̃) := (Pt,tomo)(x) (6)

2.1 Time-Reversal of the Probability Measure

On any finite time horizon T = tf − to, under rather general regularity assumptions on the
transition rates Kt ’s to any Markov jump process ξ ≡ {ξt , t ∈ [to, tf ]} evolving from an initial
probability distribution mo(x), it is possible to associate a time reversed process starting at
the time-evolved distribution mf (x) = m(x, tf ). The corresponding transition probabilities
satisfy the time-reversal condition [28, 37]

Pt2,t1(x2|x1)m(x1, t1) = P̄t1,t2(x1|x2)m(x2, t2) (7)

for any to ≤ t1 ≤ t2 ≤ tf . A straightforward calculation using (7) (sketched in Appendix A)
yields the mean backward derivative of the process

lim
dt↓0

Eξt =x
{

f (ξt , t) − f (ξt−dt , t − dt)

dt

}

:= (∂t − L̄f )(x, t)

= (∂tf )(x, t) −
∑
x̃∈S

[
f (x̃, t) − f (x, t)

]Kt (x|x̃)m(x̃, t)

m(x, t)
(8)

whence we identify the transition rates of the time reversed process

K̄t (x̃|x) := Kt (x|x̃)m(x̃, t)

m(x, t)
(9)

It is propaedeutic to our scopes to consider an alternative derivation of this classical result.
Let us suppose that the process ξ be adapted to the forward sub-sigma algebra of the natural
filtration of a Poisson-clock process η ≡ {ηt , t ∈ [to, tf ]} statistically invariant under time-
reversal and specified by a spatially uniform jump-rate rt . Under these hypotheses, Girsanov
formula (see e.g. [26, 29] or formula (2.5) of [34]) provides us with two equivalent repre-
sentations of the Radon-Nikodym derivative of the measure Pξ of ξ with respect to that Pη

of η. On the one hand, we can write dPξ /dPη in the form of an Pη-martingale with respect
to the time to

dPξ

dPη

(η) = exp

{
−

∫ tf

to

dt

[∑
x∈S

Kt (x|ηt ) − rt

]
+

∑
t∈J(η)

ln Kt (ηt |ηt−)

}
(10)
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On the other hand, Girsanov formula yields also the expression for the Radon-Nykodym
derivative of any process ζ ≡ {ζt , t ∈ [to, tf ]} and transition rates Z, absolutely continuous
with respect to η and, adapted to the its backward filtration in the form of an Pη-martingale
with respect to the time tf

dPζ

dPη

(η) = exp

{
−

∫ tf

to

dt

[∑
x∈S

Zt (x|ηt ) − rt

]
+

∑
t∈J(η)

ln Zt (ηt−|ηt )

}
(11)

In writing (10), (11) we adhere to the convention of considering càdlàg (equivalently, corlol:
“continuous on (the) right, limit on (the) left”) paths. Furthermore, we denote by J(η) the
path-dependent, at most countable set of jumps encountered by the realizations of η. The
requirement

ξ
law= ζ (12)

translates then into the condition

mo(ηto )
dPξ

dPη

(η) = mf (ηtf )
dPζ

dPη

(η) (13)

Upon recalling that increments of a smooth function f evaluated along a “corlol” step-path,
such as the realizations of a pure jump process, are amenable to the form

f (ηt2 , t2) − f (ηt1 , t1) =
∫ t2

t1

dt∂tf (ηt , t) +
∑

t∈J(η)

[
f (ηt , t) − f (ηt− , t)

]
(14)

we can solve (13) for the Z’s to recover (9). Once we determined the analytic expression of
the time-reversed jump rates, we can use it to construct an auxiliary forward process ξ̃ with
measure Pξ̃ absolutely continuous with respect to Pξ . We can then apply again Girsanov
formula to evaluate the Kullback–Leibler divergence [30] of Pξ̃ from Pξ when the two
processes start from the same initial data at time to:

K(Pξ̃ ||Pξ ) := E(ξ) ln
dPξ

dPξ̃ (ξ )

= E(ξ)

{
−

∫ tf

to

dt
∑
x∈S

[
Kt (x|ξt ) − K̄t (x|ξt )

] +
∑

t∈J(ξ)

ln
Kt (ξt |ξt−)

K̄t (ξt |ξt−)

}
(15)

The notation E(ξ) emphasizes that the average is with respect to the measure Pξ . The
Kullback-Leibler divergence (15) provides us with a natural probabilistic indicator of the
asymmetry between the forward and the backward evolution. In particular, we will show
in the following section that (15) can be identified as the entropy production during a non-
equilibrium thermodynamic transition from the state mo to the state mf in the time hori-
zon [to, tf ]. With this goal in view, we observe that a straightforward calculation (see Ap-
pendix B) allows us to cast (15) into the form

K(Pξ̃ ||Pξ ) = S(tf ) − S(to) + βQtf ,to (16)

The first term on the right-hand side coincides with the variation of Gibbs-Shannon entropy

S(t) = −
∑
x∈S

(m lnm)(x, t) (17)
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between the states mo and mf across the time horizon [to, tf ]. The second term is

βQtf ,to =
∫ tf

to

dt
∑
x,x̃∈S

ln
Kt (x|x̃)

Kt (x̃|x)
Kt (x|x̃)m(x̃, t) (18)

If we now interpret, following [32, 35], Qtf ,to as the heat released by the process in the tran-
sition between the state mo and mf , and β with the inverse of the temperature in units of the
Boltzmann constant, the identification (18) establishes a “bridge relation” between the the-
ory of stochastic processes and non-equilibrium thermodynamics (see [34] and references
therein). Two observations are in order before closing this section. The first is that the math-
ematical hypothesis of absolute continuity guarantees that the ratios Kt (ξt |ξt−)/K̄t (ξt |ξt−) in
(15) are well defined. Physically we may identify this condition with that of “local detailed
balance” [34]. The second observation is that the relation between the Kullback-Leibler
divergence (15) and the entropy production is not limited to Markov jump processes but
admits a straightforward extension to diffusion processes [36].

3 Heat Release as a “Cost Functional”

Let us consider now two physical states described by assigned probability distributions mo

and mf . We are interested in determining the rates Kt ’s driving the transition between mo

and mf in a fixed and finite time horizon T = tf − to such that the heat released in the
process has a minimum. Physical intuition requires that the problem be well-posed if (18)
provides a good definition of the thermodynamical heat. This means that the heat must be,
as a functional of the transition rates, bounded from below so to specify a well-defined “cost
function” for the aforementioned optimal control problem [17]. This is indeed the case by
virtue of a result of [34]. Using probability conservation

∑
x∈S

(
L†m

)
(x, t) = 0 (19)

it is possible to couch the integrand in (18) into the form

∑
x,x̃∈S

ln
Kt (x|x̃)

Kt (x̃|x)
Kt (x|x̃)m(x̃, t) = σ(t) − dS

dt
(t) (20)

where

σ(t) :=
∑
x,x̃∈S

Kt (x|x̃)m(x̃, t) − Kt (x̃|x)m(x, t)

2
ln

Kt (x|x̃)m(x̃, t)

Kt (x̃|x)m(x, t)
≥ 0 (21)

can be identified as the entropy production rate. Note that (21) can be regarded as a con-
sequence of the positive definiteness of the Kullback-Leibler divergence (15) with which it
coincides. The integral version of (20)

βQ =
∫ tf

to

dt ′σ
(
t ′
) − [

S(tf ) − S(to)
]

(22)

or equivalently the identification

STot.(tf ) − STot.(to) := βQ + S(tf ) − S(to) =
∫ tf

to

dt ′σ
(
t ′
) ≥ 0 (23)
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has two important consequences:

(i) if we interpret βQtf ,to as the entropy variation at constant temperature β−1 of the envi-
ronment during the transformation, (23) is the expression of the second law of thermo-
dynamics [7, 34, 42];

(ii) for transition between given states, optimal heat control [2, 4] reduces effectively to
entropy production minimization as the boundary conditions fully specify the variation
of the Gibbs-Shannon entropy.

As the logarithm of a strictly positive definite matrix can always be expressed as the sum
of a symmetric and an antisymmetric matrix, we write the transition rates as

Kt (x|x̃) = G(x, x̃, t)e
A(x,x̃,t)

2 (24)

where for any fixed time t , G : S × S �→ R is a positive definite, symmetric function of x, x̃,
such that G(x,x, t) = 0 for any x and the function A is antisymmetric in x, x̃.

If we represent the probability distribution of the Markov jump process into the form

m(x, t) = eR(x,t) (25)

then

G(x, x̃, t) = γ (x, x̃, t)e− R(x,t)+R(x̃,t)
2 (26)

where γ using the terminology of [34] is the “traffic” indicator characterizing fluctuations
far from equilibrium of the jump process. At equilibrium

m	(x) = eR	(x) , (27)

the traffic γ = (m(x̃)K(x|x̃)+m(x)K(x̃|x))/2 measures the total number of jumps between
x and x̃. In view of (26), we will interpret G as the state probability distribution discounted
component of the traffic and refer to it as “reduced traffic”. At equilibrium, the antisymmet-
ric function A governs detailed balance relation and reduces to

A	(x, x̃) = R	(x) − R	(x̃) (28)

Out of equilibrium, A is related to the nonequilibrium driving function F as

F(x, x̃, t) := A(x, x̃, t) − [
R(x, t) − R(x̃, t)

]
(29)

Under these definitions, the relation (24), known as local detailed balance condition [25,
34], fixes the values of the symmetric jump rates in terms of the equilibrium density and the
nonequilibrium driving.

In terms of reduced traffic and driving function the total entropy variation satisfies

S := STot.(tf ) − STot.(to)

=
∫ tf

to

dt
∑
x,x̃∈S

G(x, x̃, t)F(x, x̃, t) sinh
F(x, x̃, t)

2

[
m(x̃, t)m(x, t)

]1/2
(30)

We will now show that this representation of the total entropy variation provides a well-
defined cost functional to describe the minimization of the heat release in terms of the control
fields respectively specified by the reduced traffic and the driving function. In Appendix C
we detail an alternative formulation to the control problem closer to the approach followed
in [3].
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4 Optimal Control of the Total Entropy Variation

Inspection of (30) reveals three important facts. First, the total entropy variation is a bilinear
form in the probability amplitude

φ(x, t) = √
m(x, t) (31)

evolving by (4) according to the linear law

∂tφ(x, t) = (Hφ)(x, t) (32a)

(Hφ)(x, t) :=
∑
x̃∈S

G(x, x̃, t) sinh
F(x, x̃, t)

2
φ(x̃, t) (32b)

The “Hamiltonian” operator H : S×S×R+ �→ R is for any fixed time t ∈ R+ anti-symmetric
under states (x, x̃) permutation

H† = −H (33)

thus enforcing at any time probability conservation:

∑
x∈S

φ2(x, t) = 1 ∀t (34)

As a consequence, the optimal control problem can be treated in full analogy with the vari-
ational techniques described in [48] in the context of Euclidean quantum mechanics. The
second fact is that (30) is linear in the reduced traffic. Cost functionals linear in the control
are known in general to lead to singular solutions i.e. not satisfying smooth (partial) differ-
ential equations [17]. The third fact is that the total entropy variation is a convex functional
of the current potential F. We expect therefore that if the reduced traffic is bounded from
below or simply constrained to a fixed value, the optimal control problem admits a unique
solution with F specified by a differential equation of Hamilton-Jacobi-Bellman type [17,
44]. Using (31), we write the cost functional specified by the heat release between two given
states as

S :=
∫ tf

to

dt
∑
x,x̃∈S

φ(x, t)U(x, x̃, t)φ(x̃, t) ≡
∫ tf

to

dtφ · U · φ (35a)

U(x, x̃, t) := G(x, x̃, t)F(x, x̃, t) sinh
F(x, x̃, t)

2
(35b)

In (35a), (35b) we regard the reduced traffic G and the driving function F as independent
controls only restricted by the requirement that the time boundary conditions on the prob-
ability amplitudes be satisfied. As a consequence the total variation of the cost functional
decomposes into

S ′ = S ′
G + S ′

F (36)

where

S ′
X =

∫ tf

to

dt
{
φ · U′

X · φ + φ′
X · U · φ + φ · U · φ′

X

}
(37)
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for X = (G,F). In (37) and in what follows we define the first variation as

O′
X :=

∑
y,ỹ∈S

X′(y, ỹ, t)
∂O

∂X(y, ỹ, t)
(38)

we also assume that X′ has the same parity of X under permutation of its state space argu-
ments. Bellman principle states that the optimal Markov control corresponds to the station-
ary variation of a local functional J, named the value function, of the stochastic process. We
will now show that for heat release minimization the interpretation of Bellman principle in
a weak sense similar to [21] yields the optimal control strategy of physical interest. We start
by defining the value function as the solution of

∂tJ(x, x̃, t) = [H, J](x, x̃, t) − U(x, x̃, t) (39)

where as usual

[H, J](x, x̃, t) =
∑
y∈S

{
H(x,y, t)J(y, x̃, t) − J(x,y, t)H(y, x̃, t)

}
(40)

We require J to satisfy the final boundary conditions

J′
F(x, x̃, tf ) = J′

G(x, x̃, to) = 0 (41)

These conditions stem from the fact that admissible controls are only those driving the
Markov process between assigned probability distributions at the ends of the control hori-
zon. For this reason, we require J(·, tf ) to be a pure functional of φf whence (41) follows.
An immediate consequence of (39) is

S = (φ · J · φ)(to) − (φ · J · φ)(tf ) (42)

Using (39) and performing a time-integration by parts we can recast (37) into the form

F ′
X = (

φ · J′
X · φ)

(to) +
∫ tf

to

dtφ · (∂tJ − [H, J] + U
)′

X
· φ

= (
φ · J′

X · φ)
(to) (43)

we can now discriminate between three different cases.

4.1 Bellman Principle in Strong Sense

Interpreted in strong sense, Bellman principle implies

∂J(x, t)

∂X(y, ỹ, t)
= 0 ∀t ∈ [to, tf ] (44)

The stationarity conditions take therefore the general form

0 = [
H′

X, J
] − U′

X (45)

which reduce to the system of equations

0 = {
δy,xJ(ỹ, x̃, t) − δỹ,x̃J(x,y, t) − δy,xδỹ,x̃F(x, x̃, t)

}
sinh

F(y, ỹ, t)

2
(46a)
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0 = δy,xJ(ỹ, x̃, t) − δỹ,x̃J(x,y, t)

2
G(y, ỹ, t) cosh

F(y, ỹ, t)

2

− δy,xδỹ,x̃

{
sinh

F(x, x̃, t)

2
+ F(x, x̃, t)

2
cosh

F(x, x̃, t)

2

}
G(y, ỹ, t) (46b)

Regarding J as a square matrix in the state-space variables, (46a) imposes that only diagonal
element be non-vanishing. The condition

J(x̃, x̃, t) − J(x,x, t) − F(x, x̃, t) = 0 (47)

is, however, consistent with (46b) for G > 0 only if

F(x, x̃, t) = 0 ∀x, x̃ ∈ S (48)

The conclusion is that an optimal control strategy compatible with the boundary conditions
must be singular. This means that the entropy production attains its infimum on a protocol
instantaneously switching at any time during the control horizon from a state of equilibrium
with the initial condition mo to a state in equilibrium with the final mf . We won’t delve any
deeper here on singular control but we will return to it in the conclusions.

4.2 Bellman Principle in Weak Sense

The equality

(
φ · J′

X · φ)
(to) =

∫ tf

to

dt
(
φ · (U′

X − [
H′, J

]) · φ)
(t) (49)

yields the weak-sense stationarity conditions

0 = φ(y, t)F(y, ỹ, t)φ(ỹ, t)

−
∑
x∈S

{
φ(y, t)J(ỹ,x, t)φ(x, t) − φ(x, t)J(x,y, t)φ(ỹ, t)

}
(50a)

0 =
∑
x∈S

[
φ(y, t)J(ỹ,x, t)φ(x, t) − φ(x, t)J(x,y, t)φ(ỹ, t)

]

− φ(y, t)φ(ỹ, t)

{
2 tanh

F(y, ỹ, t)

2
+ F(y, ỹ, t)

}
(50b)

The conditions are satisfied if J is symmetric under permutation of the state variables. Fur-
thermore, if we define the auxiliary field B

φ(y, t)B(y, t) =
∑
x∈S

J(y,x, t)φ(x, t) (51)

the pair (50a), (50b) simplifies to

0 = B(y, t) − B(ỹ, t) + F(y, ỹ, t) (52a)

0 = B(y, t) − B(ỹ, t) + 2 tanh
F(y, ỹ, t)

2
+ F(y, ỹ, t) (52b)
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4.3 Unbounded Reduced Traffic Leads to Singular Control

As in the strong sense case, if the reduced traffic can be varied without any lower bound
(52a), (52b) is satisfied by (48). The optimal control strategy is again singular.

4.4 A Constraint on Reduced Traffic Leads to an Hamilton-Jacobi-Bellman Equations

A more interesting and presumably more physically relevant situation occurs when the re-
duced traffic is bounded from below by a given constraint. In such a case we expect the
control to consists of a singular part pushing G to its lower bound and then of a smoother
part, which minimizes the entropy variation versus F for fixed G. The limit case is when G
is constrained from the very beginning to a given value e.g.

G(x, x̃, t) = 1 − δx,x̃

tc
(53)

for tc a constant specifying the characteristic time-scale of the process and the variation is
taken only with respect to the driving function F. In such a case the stationarity condition
reduces to (52b) alone. Upon averaging the equation for the value function (39) with respect
to a probability amplitude and using (52b) we obtain the equation for the auxiliary field B

∂tB(x, t) = 2

tc

∑
ỹ∈S

φ(ỹ, t)

φ(x, t)
sinh

F(ỹ,x, t)

2
tanh

F(ỹ,x, t)

2
(54)

Observing that

∂t

[
B(x, t) − B(x̃, t)

] = −
[

2 − tanh2 F(x, x̃, t)

2

]
∂tF(x, x̃, t) (55)

we get into the equations satisfied by the driving function

∂tF(x, x̃, t)

= −
∑
y∈S

φ(y,t)

φ(x,t)
sinh F(y,x,t)

2 tanh F(y,x,t)

2 − φ(y,t)

φ(x̃,t)
sinh F(y,x̃,t)

2 tanh F(y,x̃,t)

2

tc[1 − 1
2 tanh2 F(x,x̃,t)

2 ] (56)

Degrees of freedom counting reveals, however, that not all transition rates of the optimal
process can be non-vanishing. Let us suppose first |S| = N and then deduce the result for
infinite lattice from the limit N ↑ ∞. Because of probability conservation (34), the bound-
ary conditions impose 2N − 2 independent conditions. By virtue of H† = −H, the evolu-
tion of probability amplitudes is probability preserving and brings forth N − 1 independent
equations. We conclude that (56) can only describe the dynamics of other N − 1 degrees
of freedom. We identify these degrees of freedom by reasoning that N − 1 independent
non-vanishing transition rates are exactly those needed to describe a process jumping only
to nearest neighbors states. If we posit that the state space lattice spacing is dx > 0, we
achieve a convenient parametrization of the nearest-neighbor dynamics if we define the dis-
crete current velocity

V (x, t) := F(x+ dx,x, t) = −F(x,x+ dx, t) (57)
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Gleaning the considerations expounded above we infer that the transition between two as-
signed states releasing the minimal amount of heat is specified by the following system of
Hamilton-Jacobi-Bellman [17] and probability amplitude transport equations

tc∂tV (x, t) = 2 sinh V (x,t)

2 tanh V (x,t)

2

2 − tanh2 V (x,t)

2

[
φ(x+ dx, t)

φ(x, t)
− φ(x, t)

φ(x+ dx, t)

]

+ 2 sinh V (x−dx,t)

2 tanh V (x−dx,t)

2

2 − tanh2 V (x,t)

2

φ(x− dx, t)

φ(x, t)

− 2 sinh V (x+dx,t)

2 tanh V (x+dx,t)

2

2 − tanh2 V (x,t)

2

φ(x+ 2dx, t)

φ(x+ dx, t)
(58a)

tc∂tφ(x, t) = −
{

sinh
V (x, t)

2
φ(x+ dx, t) − sinh

V (x− dx, t)

2
φ(x− dx, t)

}
(58b)

with boundary conditions

φ(x, to) = φo(x), φ(x, tf ) = φf (x) (59)

The value of the total entropy variation along the stationary control (52b)

S	 = 2
∫ tf

to

dt

tc

∑
x∈S

V (x, t) sinh
V (x, t)

2
φ(x+ dx, t)φ(x, t) (60)

with the convention φ(y, t) = 0 if y /∈ S in case |S| < ∞.

4.5 Second Variation in the Presence of Constrained Reduced Traffic

We now show that the second variation of the total entropy with respect to the driving func-
tion is positive definite around the stationary point specified by (52b) for fixed reduced
traffic. For any admissible control, we can write

F ′′
F = (

φ · J′′
F · φ)

(to) =
∫ tf

to

dtφ · (U′′
F − 2

[
H′

F, J′
F

] − [
H′′

F, J
]) · φ (61)

The first and third integrands in (61) give positive definite contributions to the second vari-
ation when evaluated at stationarity. Namely

∂2U(x, x̃)

∂F(x, x̃, t)∂F(x, x̃, t)
= 1

tc

[
cosh

F(x, x̃, t)

2
+ F(x, x̃, t)

4
sinh

F(x, x̃, t)

2

]
≥ 0 (62)

and, since H′′
F is anti-symmetric,

φ · [H′′
F, J

] · φ =
∑
x,x̃∈S

H′′
F(x, x̃, t)φ(x, t)φ(x̃, t)

B(x, t) − B(x̃, t)

2

= −
∑
x,y∈S

H′′
F(x, x̃, t)φ(x, t)φ(x̃, t)

{
2 tanh

F(x, x̃, t)

2
+ F(x, x̃, t)

}

(63)
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whence it follows

φ · [H′′
F, J

] · φ|X′′=0 ≤ 0 (64)

Finally, we observe that

∫ tf

to

dt
(
φ · [H′

F, J′
F

] · φ)
(t) = 0 (65)

since we can re-write it as the trace of the product of a symmetric and an anti-symmetric
matrix. As a consequence we proved that

F ′′
F	

=
∫ tf

to

dtφ · (U′′
F − [

H′′
F, J

]) · φ|F	 ≥ 0 (66)

5 Continuum Limit

The limit of vanishing lattice spacing dx for short distance interactions is most straightfor-
ward to derive if we posit

Kt (x ± dx|x) = 1

2tc

{
2 ± βb(x, t)dx

} := k±(x, t)

tc
(67)

We define the continuum limit of the Markov jump process with jump rates (67) by letting
dx tend to zero while fine-tuning the characteristic time as

tc = β(dx)2τ (68)

for some finite τ > 0 and measuring β in units such that βdx2 is non-dimensional. In such
a case the limit

(Lf )(x) := lim
dx↓0

(Lf )(x)

= lim
dx↓0

[f (x + dx) − f (x)]k+(x, t) + [f (x − dx) − f (x)]k−(x, t)

(dx)2τ
(69)

is finite and yields

Lx = b(x, t)

τ
∂x + 1

βτ
∂2

x (70)

which is the generator of the stochastic process described by the stochastic differential equa-
tion

dξt = b(ξt , t)
dt

τ
+

√
2

βτ
dωt (71)

driven by a Wiener process ωt .
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5.1 Heat Density

Under the hypotheses formulated above, the heat functional reduces to

∑
x,x̃∈S

ln
Kt (x|x̃)

Kt (x̃|x)
Kt (x|x̃)

= −
[

βb(x, t)

2
+ βb(x + dx, t)

2

]
2 + b(x, t)dx

2β(dx)2τ

− 1

(dx)2τ

[
−βb(x, t)

2
− βb(x − dx, t)

2

]
2 − b(x, t)dx

2β(dx)2τ
+ O(dx)2 (72)

whence finally we get into

∑
x,x̃∈S

ln
Kt (x|x̃)

Kt (x̃|x)
Kt (x|x̃) = βb2(x, t) − ∂xb(x, t)

τ
+ O(dx)2 (73)

We thus recover the expression of the heat density released by Langevin dynamics see e.g.
[3]. Thus, it is a-priori justified to expect that (58a), (58b) admits as continuum limit the
optimal transport equations found in [3, 4]. In order to derive explicitly this result, we define
the continuous limit current velocity v by Taylor expanding its lattice counter-part in powers
of the mesh dx:

V (x, t)

τ
≡ F(x + dx, x, t)

τ

= v(x, t)dx + 1

2
∂xv(x, t)(dx)2 + O(dx)3 (74)

5.2 Probability Density Equation

Upon inserting (74) into (58b) and rescaling time according to (68), we obtain

∂tφ(x, t)

= −
{

dxv(x, t) + (dx)2

2 ∂xv(x, t)

2(dx)2τ

}{
φ(x, t) + dx∂xφ(x, t)

}

+
{

dxv(x, t) − (dx)2

2 ∂xv(x, t)

2(dx)2τ

}{
φ(x, t) − dx∂xφ(x, t)

} + O(dx) (75)

which yields

∂tφ(x, t) = −φ(x, t)

{
v(x, t)∂xφ(x, t) + 1

2
∂xv(x, t)

}
(76)

Multiplying (76) by 2φ recovers the probability transport equation by the current velocity.

5.3 Control Equation

Since

∂tF(x + dx, x, t) = dx∂tv(x, t) + O
(
dx2

)
(77)
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the continuum limit of (58a) calls for an expansion up to third order in dx:

dx3τ(∂tv)(x, t)

= 1

4
(dx)2

[
v(x, t) + dx

2
(∂xv)(x, t)

]2

2dx∂x lnφ(x, t)

+ 1

4
(dx)2

[
v(x, t) − dx

2
(∂xv)(x, t)

]2[
1 − dx∂x lnφ(x, t)

]

− 1

4
(dx)2

[
v(x, t) + 3

dx

2
(∂xv)(x, t)

]2[
1 + dx∂x lnφ(x, t)

]

+ O(dx)4 (78)

Unfolding the products we get into

τ∂tv(x, t) + v(x, t)∂xv(x, t) = 0 (79)

which is the equation for the current velocity found in [3, 4].

6 Examples: Two- and Three-State Systems

To simplify the notation it is expedient to measure time in units of the traffic rate, tc = 1,
and to consider a unit lattice spacing, dx = 1.

6.1 Two-State System: Comparison with Optimal Control for Glauber Transition Rates

In the case of a two-state jump process, probability conservation yields a closed single equa-
tion for the evolution of the probability amplitude of the first state

∂tφ(0, t) = −
√

1 − φ(0, t)2 sinh
V (0, t)

2
(80)

We can, thus, proceed as in [12] and write the entropy production (60) as a functional of the
occupation probability

p(t) = φ(0, t)2 (81)

of the first state. We obtain

S =
∫ tf

to

dtσ (p, ṗ) (82a)

σ(x, y) = −y ln
[√4x(1 − x) + y2 − y]2

4x(1 − x)
≥ 0 (82b)

A straightforward and somewhat tedious calculation shows that the Euler-Lagrange equation
specifying the trajectory of p corresponding to an extremal point of (82a), (82b) coincides
with the one obtained by differentiating (80) and using
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Fig. 1 Numerical illustration of
the inequality
(σGl − σ)(x, y) ≥ 0. We plot the
difference between the entropy
production of the Glauber σGl

and of the
Hamilton-Jacobi-Bellman
optimal σ jump processes for
fixed value of the occupation
probability x ≡ p as a function of
y. The continuous curve
corresponds to x = 0.05, the
dotted to x = 0.35, the dashed to
x = 0.65 and the dash-dotted to
x = 0.95. The inequality is
proved analytically in the main
text

∂tV (0, t) − 2 sinh V (0,t)

2 tanh V (0,t)

2

2 − tanh2 V (0,t)

2

(√
1 − p

p
−

√
p

1 − p

)
(83)

to write a closed expression for the evolution of the occupation probability of the first state

p̈ = 2(1 − 2p)ṗ2

8p(1 − p) + ṗ2
(84)

This is a consequence of the well-known fact (see e.g. [21]) that any system of Euler-
Lagrange equations is equivalent to a suitable deterministic control problem via Hamilton-
Jacobi theory. In writing (82a), (82b) we fixed the reduced traffic to a constant, p-
independent value as required by the optimal control equations of Sect. 4. It is interesting
to compare the entropy production in (82a), (82b) with the one corresponding to a Glauber
jump process with transition rate

Kt (0|1) = 1

eh + 1
(85)

since this is the jump process considered in [12]. We obtain

SGl =
∫ tf

to

dtσGl(p, ṗ) (86a)

σGl(x, y) = −y ln
x(1 − x − y)

(1 − x)(x + y)
≥ 0 (86b)

A preliminary observation is that whilst (82a), (82b) is well-defined for any 0 < x < 1,
(86a), (86b) restricts admissible controls to those satisfying the additional condition −x ≤
y ≤ 1 − x. Furthermore, the difference

(σGl − σ)(x, y) = y ln
(x + y)[y2 + 2x(1 − x) − y

√
4x(1 − x) + y2]

2x2(1 − x − y)
(87)

is positive-definite for any 0 < x < 1 and admissible value of y, Fig. 1. To prove the claim
it is sufficient show that

g(x, y) := (x + y)[y2 + 2x(1 − x) − y
√

4x(1 − x) + y2]
2x2(1 − x − y)

≥ 1 (88)
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if y is positive while 0 ≤ g(x, y) < 1 if y is negative. Indeed (88) reduces to

y
{(

y2 + x(2 + y)
) − (x + y)

√
4x(1 − x) + y2

} ≥ 0 (89)

the argument of the curly brackets being positive whenever

1 − x − y + (x + y)2 ≥ 0 (90)

The Glauber transition rate (85) corresponds to fixing the reduced traffic to

G(0,1) = 1

2 cosh h
2

(91)

and the identification A(0,1) = −h. These modeling choices can be advocated with con-
vincing physical arguments. The existence of “local” optimal controls for special choices of
the reduced traffic suggests that the reduced traffic can be consistently, and perhaps should
be, more appropriately thought as a configurational rather than a control parameter of a
physical system.

6.2 Optimal Control of the Three-State System

One of the simplest non-trivial application of the full-fledged optimal transport equations
(58a), (58b) is to a system with three states. The probability amplitude is governed by the
equations

∂tφ(0, t) = −φ(1, t) sinh
V (0, t)

2
(92a)

∂tφ(2, t) = φ(1, t) sinh
V (1, t)

2
(92b)

while the current velocity satisfies

∂tV (0, t) − 2 sinh V (0,t)

2 tanh V (0,t)

2

2 − tanh2 V (0,t)

2

[
φ(1, t)

φ(0, t)
− φ(0, t)

φ(1, t)

]

+ 2 sinh V (1,t)

2 tanh V (1,t)

2

2 − tanh2 V (0,t)

2

φ(2, t)

φ(1, t)
= 0 (93a)

∂tV (1, t) − 2 sinh V (1,t)

2 tanh V (1,t)

2

2 − tanh2 V (1,t)

2

[
φ(2, t)

φ(1, t)
− φ(1, t)

φ(2, t)

]

− 2 sinh V (0,t)

2 tanh V (0,t)

2

2 − tanh2 V (1,t)

2

φ(0, t)

φ(1, t)
= 0 (93b)

with

φ(1, t) =
√

1 − φ2(0, t) − φ2(2, t) (94)

The equations specify the minimal heat release protocol once we specify the initial and final
states through (59).
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Fig. 2 Numerical solution of the three state process versus time. On the left (a) the behavior of the occupation
probability of the first m(0, t) and the second m(1, t) state. On the right (b) the current velocity components
V (0, t), V (1, t) driving the transition

6.2.1 Numerical Solution

We considered the problem of minimizing the heat release during the transition between the
states

[
m(0,0),m(1,0),m(2,0)

] = [0.9,0.05,0.05]
�→ [

m(0,1),m(1,1),m(2,1)
] = [0.05,0.05,0.9] (95)

We integrated numerically the system governing the evolution of the occupation probabili-
ties [m(0, t),m(1, t)] and the discrete current [V (0, t),V (1, t)] using Wolfram’s Mathemat-
ica (editions 7.0 and 8.0.1) [47] default shooting method with at most 4 × 105 number of
iterations. We used an initial Ansatz for the pair V (0,0),V (1,0) which we afterwards im-
proved using the candidate solutions produced by the shooting algorithm. The improvement
of the Ansatz shifted further in time the blow up of the candidate solutions. After few manual
iterations we obtained the pair [V	(0,0),V	(1,0)] = [3.150,1.156] which yields a smooth
solution over the full control horizon [0,1] matching the boundary conditions, see Fig. 2.
The entire procedure takes few minutes using an old Pentium M powered laptop. We also
checked that the same results can be recovered using the probability amplitude equations
but we noticed that this approach seems to increase the numerical stiffness of the problem.

The probability of the first state is always decreasing while the probability of the interme-
diate state has a maximum at t = 0.5 and then symmetrically decays to match its boundary
condition. The constant line corresponds to 0.05 and is plotted to emphasize the conver-
gence of the two occupation probabilities to the assigned boundary condition. The optimal
controls are fast varying near the boundaries while varying more slowly in the bulk of the
control horizon. This is the characteristic behavior of optimal controls of thermodynamics
functionals described in [2–4, 12, 41]. Since the Gibbs entropy vanishes for this symmetric
transition the heat release coincides with the entropy production. The numerical evaluation
of (60) for the three state system then yields

βQ	 = S	 = 4.096 (96)

7 Conclusions

We have shown that if the traffic is constrained to a constant value the driving function
governing the transition between two states with minimal heat release in a finite time hori-
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zon obeys Hamilton-Jacobi-Bellman type equations. The corresponding dynamics is short-
ranged as it permits only jumps to nearest-neighbor sites. Our results are the counter-part
for Markov jump processes of the entropy bounds derived in [2] for the Langevin dynamics.
In this sense, they can also be regarded as refinement of second law of thermodynamics for
Markov jump processes. We have also shown that entropy production is not convex in the
traffic. As a consequence, interpreting traffic as a control parameter results into singular op-
timal control strategy. This means that any eventual heat release occurs in a zero Lebesgue
measure time interval. It is worth noticing here that jump protocols solutions survive also in
the Langevin continuum limit. Namely, if we express as in [4] the heat functional in terms
of the current velocity it is readily seen that the lower bound provided by the variation of the
Gibbs-Shannon entropy becomes tight for a jump protocol for which the current velocity is
vanishing throughout the control horizon. This latter condition then just means that the drift
must remain in equilibrium so that the resulting protocol is precisely the one found here in
the case of unconstrained traffic. In the Langevin case, this kind of solutions for the heat
functional can be ruled out a-priori by restricting admissible control to smooth diffusions.
The current velocity representation also evinces the subtle problems in which we incur when
turning to thermodynamic work minimization. For the work it is not possible to find a min-
imizer by restricting admissible protocols to smooth diffusions because of the non-coercive
functional dependence on the control occasioned by the boundary cost term specified by the
internal energy variation. Justifying in which sense variations for fixed terminal value of the
internal energy may still define to an optimality criterion for a cost functional compatible
with the interpretation of non-equilibrium thermodynamic work calls then for a more refined
analysis such as that carried out in [4]. An comprehensive discussion of these results can be
found in [36].

To summarize, we can say that the analysis of optimal control of Markov jump process
helps to shed further light on the interpretation of the result previously available for the
Langevin dynamics. Restricting admissible controls to those determining the driving func-
tion provide then a simplified model for the continuous limit Langevin dynamics. Such an
approach is particularly beneficial because, as exemplified by the three state jump process,
numerical solutions of the Hamilton-Jacobi-Bellman equations become extremely comput-
ing time inexpensive in comparison to the Monge-Ampère-Kantorovich scheme solving the
Langevin dynamics [2]. Still, the three state Markov jump process captures relevant quali-
tative features of the Langevin dynamics. The discrete dynamics is therefore very useful for
capturing the qualitative features of the optimal control of non-equilibrium thermodynamics
statistical indicators, such as higher moments of the heat functional itself, the Hamilton-
Jacobi-Bellman equations thereof are not amenable, at least as far as it is currently known,
to any fast integration scheme in the Langevin limit.
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Appendix A: Mean Backward Derivative

Local detailed balance (7) ensures that the chain of equalities

Ex,t+dtf (ξt ) =
∑
x̃∈S

f (x̃)P̃t,t+dt (x̃|x)
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=
∑
x̃∈S

Pt+dt,t (x, t + dt |x̃, t)x̃
m(x̃, t)

m(x, t + dt)
(97)

Expanding in Taylor series, neglecting terms O(dt2) and using the Master equations (4),
(5a), (5b) yields the proof of (8).

Appendix B: Evaluation of the Kullback-Leibler Divergence (15)

The first term on the right hand side of (15) is vanishing on average

E(ξ)

∫ tf

to

dt
∑
x∈S

[
Kt (x|ξt ) − K̄t (x|ξt )

]

=
∫ tf

to

dt
∑
x,y∈S

[
Kt (x|y) − Kt (y|x)

m(y, t)

m(x, t)

]
m(x, t) = 0 (98)

The second addend

E(ξ)
∑

t∈J(ξ)

ln
Kt (ξt |ξt−)

K̄t (ξt |ξt−)
≡

∫ tf

to

dt
∑
x,y∈S

ln
Kt (x|y)m(y, t)

Kt (y|x)m(x, t)
Kt (x|y)m(y, t) (99)

carries two contributions. The first is the Shannon-Gibbs entropy of the transformation

∫ tf

to

dt
∑
x,y∈S

ln
m(y, t)

m(x, t)
Kt (x|y)m(y, t)

=
∫ tf

to

dt
∑
x,y∈S

ln m(y, t)
[
Kt (x|y)m(y, t) − Kt (y|x)m(x, t)

]

= −
∫ tf

to

dt
∑
y∈S

ln m(y, t)∂tm(y, t) = −Eξ ln
mf (ξtf )

mo(ξto )
(100)

by probability conservation equation (19). The second specifies the thermodynamic heat and
is given in the main text.

Appendix C: Alternative Treatment of the Variational Problem

We may state the optimization problem directly for the heat functional using as independent
control the reduced traffic and the driving functional A:

βQ =
∫ tf

to

dt ′
∑
x,x̃∈S

A(x, x̃, t)G(x, x̃, t)e
A(x,x̃,t)

2 m(x̃, t) (101)

The corresponding value function in such a case is the solution of the backward Kolmogorov
equation

[
(∂t + L)J

]
(x̃, t) +

∑
x∈S

A(x, x̃, t)G(x, x̃, t)e
A(x,x̃,t)

2 = 0 (102)
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where, as in the main text, we require the variation of J to vanish at tf as we regard J (·, tf )

as a functional of m(·, tf ). By Dynkin formula (see e.g. [27]) we must have

βQ =
∑
x̃

{
m(x̃, to)J (x̃, to) − m(x̃, tf )J (x̃, tf )

}
(103)

whence using the boundary conditions it follows that

βQ′ =
∑
x̃

m(x̃, to)J
′(x̃, to) (104)

The weak sense variation of (102) yields the conditions

0 = J (x, t) − J (x̃, t) + A(x, x̃, t) (105a)

0 = {
m(x, t)e

A(x,x̃,t)
2 + m(x̃, t)e− A(x,x̃,t)

2
}J (x, t) − J (x̃, t)

2

+ {
e

A(x,x̃,t)
2 m(x̃, t) − e− A(x,x̃,t)

2 m(x, t)
}

+ A(x, x̃, t)

2

{
e

A(x,x̃,t)
2 m(x̃, t) + e− A(x,x̃,t)

2 m(x, t)
}

(105b)

Upon inserting the Ansatz

A(x, x̃, t) = F(x, x̃, t) + lnm(x, t) − lnm(x̃, t) (106a)

J (x, t) = B(x, t) − lnm(x, t) (106b)

we recover the stationary point equations (52a), (52b).
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