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Universal and nonuniversal properties of a lattice gas model with
kinetic constraints
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Abstract

Ž .We study by numerical simulation the Kob–Andersen KA model of a lattice gas with kinetic constraints on a
Ž .face-centered cubic FCC lattice, both in its canonical and in its grand-canonical version, and for different dynamical rules.

The model exhibits a dynamical transition at a threshold value of the density, where the diffusion constant vanishes as a
power law. We confirm that the corresponding exponent is independent of the details of the dynamics, while the threshold
density is nonuniversal. On the other hand, the fluctuation–dissipation ratio X appears to be nonuniversal. q 2000 Elsevier
Science B.V. All rights reserved.
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Ž .The Kob–Andersen KA model is a very simple
model of a structural glass which, in spite of its
simplicity, exhibits a remarkably wide range of gen-

w xuinely glassy properties 1 . Its equilibrium proper-
Žties are trivial being those of an interaction-free

.lattice gas , but it exhibits a purely dynamical transi-
tion as a function of density. As the density r

approaches a threshold value r from below, thec
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diffusion constant D of the particles forming the gas
vanishes as

< < bD; ryr . 1Ž .c

Ž . 3On a simple cubic SC lattice of size 20 , the
simulations performed by Kob and Andersen yield
r s0.88 and bs3.1. The arguments reported byc
w x1 suggest that the threshold density reaches r s1max

in the thermodynamic limit. The approach is how-
Žever so slow like lnln L, where L is the size of the

.system that it is warranted to take the transition as a
bona fide one for finite systems.

It is tempting to assimilate the vanishing of the
Ž .diffusion constant to a purely dynamical glassy

w xtransition. In fact, Kurchan et al. 2 have slightly
generalized the model, allowing the system to ex-
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change particles with a reservoir via an open bound-
ary. They were able therefore to perform numerically
the analogs of cooling and quenching experiments,
obtaining distinctly glassy behavior. In particular, the
outcome of the quenching experiment was an aging
behavior, exhibited, e.g., by the two-time correlation
functions, which could be analyzed via a simple

w xmean-field theory 3 . In this case, it appears that the
aging behavior is a consequence of the fact that the
density approaches its critical value as a power law
in time. Other nontrivial aspects of aging behavior,
like the presence of a Fluctuation–Dissipation Ratio
Ž .FDR smaller than one, have also been numerically

w xexhibited 4 .
The power-law dependence of the diffusion con-

stant as a function of the density is reminiscent of a
critical point. If the analogy holds water, we would
expect the exponent b to be independent of the
details of the dynamics, while the threshold density
r depends on them. This conjecture is hard to checkc

in the original model, which does not allow enough
parameter freedom. By putting the model on a face-

Ž .centered cubic FCC lattice, we provide us with an
extra parameter which allows for a limited test of
universality. We are thus able to confirm the univer-
sality of the exponent b , while the threshold density
r and the FDR turn out to be nonuniversal.c

The KA model is defined as a lattice gas model of
N sites, in which particles can evolve according to
the following dynamical rules. At each step, a parti-
cle and one of its neighboring sites are chosen at
random. The particle moves to the site if the follow-
ing conditions are all satisfied:

1. The site is empty;
2. The particle has m or fewer occupied nearest

neighbor sites;
3. In its new position, the particle would have m or

fewer occupied nearest neighbor sites.

With these rules, detailed balance is satisfied and all
possible configurations have the same weight.

In the original version, the lattice is isolated from
Žthe environment and the number M and thus the

.density rsMrN of particles is conserved. This is
the ‘canonical’ version of the model. Kurchan et al.
w x2 introduced a ‘grand canonical’ version by allow-

Žing particle exchange with a reservoir at chemical

.potential m on a single two-dimensional surface. In
this version, the above rules are supplemented by the
following rule:

1. A site on the surface is chosen at random;
2. If the site is empty, a new particle is added;
3. If the site is occupied, the particle is removed

with probability eym , where m)0 is the chemi-
cal potential.

The equation of state giving the equilibrium density
r as a function of the chemical potential m iseq

1
r m s . 2Ž . Ž .eq ym1qe

We have mentioned above the results obtained by
w xKob and Andersen 1 on the SC lattice, with the

threshold m set to 3: the diffusion coefficient D
Ž .vanishes as r approaches r as shown in 1 , withc

the critical density r equal to 0.88 and the exponentc

b equal to 3.1. It is not feasible to check the
universality of these results on a SC lattice, since 3 is
the only reasonable value of m.

We have therefore defined the KA model on a
FCC lattice, which has coordination number equal to
12, and we have used different values of m to check
for the universality of the parameters r and bc

Ž .appearing in 1 . We have evaluated the diffusion
constant as a function of the density in the canonical
version of the model. We have also evaluated the

Ž .fluctuation–dissipation ratio FDR in the aging state
after a quench in the grand canonical version of the
model.

A quench can be realized in this model by a
sudden compression, i.e., by letting the chemical
potential m increase suddenly from below to above
the critical value m defined byc

r m sr . 3Ž . Ž .eq c c

Following a quench at ts0, two-time correlation
and response functions start exhibiting aging proper-
ties. Consider, e.g., the displacement autocorrelation

Ž .function B tq t ,t defined byw w

B tq t ,tŽ .w w

M1
2< <s r tq t yr t . 4² :Ž . Ž . Ž .Ý i w i wM is1
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It turns out that, if t and t are large enough, thisw

function depends on trt rather than on ty t , asw w
w xwould be the case at equilibrium. In Ref. 3 , this

behavior is connected to the power-law decay of the
average diffusion constant following a quench.

w xFollowing the method developed in Ref. 4 , we
consider the response of the system to a perturbation
of the form

M

H sye t f Pr , 5Ž . Ž .Ýe i i
is1

Ž a.where f s f is a random vector associated withi i

each particle in the system, and

0, for tF t ,w
e t s 6Ž . Ž .½ e , for t) t .0 w

We choose f a s"1 for as1,2,3 and is1, . . . , M.i

In the presence of the perturbation, a move which
displaces particle i by the vector d r , if it satisfiesi

all other criteria, takes place with probability
min 1,exp e fPd r rT . Since only the ratio e rTŽ .Ž .0 i 0

has physical relevance, we set Ts1 without loss of
generality. The integrated response function to this
perturbation is defined by

M1
² :x tq t ,t s f PDr tq t , 7Ž . Ž . Ž .Ýw w i i w3M is1

Ž .where Dr t is the difference between the positioni

of particle i at time t in the presence of a perturba-

² 2:Fig. 1. Log-log plot of Dx for different densities as function of
Žthe time, ms6. From top left to bottom right: r s 0.1, 0.2, 0.3,

.0.4, 0.5, 0.6, 0.65, 0.675, 0.7, 0.725, 0.75, 0.775 .

Ž Ž . .Fig. 2. Diffusion constant D versus r m y r for ms4, 6 andc
< < b7. The power law DA r y r , with b s3.1, is represented byc

the dotted line.

Ž .tion 5 applied between time t and time tq t ,w w

and the position reached in the absence of the pertur-
bation.

w xThe generalized Einstein–Stokes law 5,6 yields
Ž . Ž .a relation between x tq t ,t and B tq t ,t :w w w w

e Ž .B tqt , t0 w w
x tq t ,t s d B X B . 8Ž . Ž . Ž .Hw w 2 0

Ž .If the FDT holds, X B is equal to 1 and it follows
that

e0
x tq t ,t s B tq t ,t , 9Ž . Ž . Ž .w w w w2

Ž . Žso that x tq t ,t is a linear function of B tqw w
.t ,t with slope e r2.w w 0

w xSellitto 4 finds that, for the grand canonical KA
model on a SC lattice, one has Xs0.79, so that the
FDT is violated. He shows moreover that the FDR X
does not depend on the supercritical value of ms

used to perform the compression. This allows us to
use a single value m , for each value of m.s

We use an FCC lattice with 203r2 sites, with
ms4, 6, 7, and e s0.05. We have checked that0

with this value of e linear response theory holds.0

Following the method used by KA, we deter-
mined the diffusion constant of our FCC model by

² 2:measuring the mean square displacement Dx of
the particles as a function of the time. In Fig. 1,
² 2:Dx is plotted as function of the time, on a
log-log scale, for ms6 and for different values of
the density. For low densities the curves have unit
slope, which corresponds to normal diffusion, while
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Ž . Ž .Fig. 3. Plot of 2 x tq t ,t re versus B tq t ,t for ms4,w w 0 w w

6 and 7, with t s104. The dotted line has slope 1.w

for higher densities the slopes become one only for
long times.

Since

² 2:Dx
Ds , 10Ž .

2nt

where n is a factor depending on the dimensionality,
D can be obtained by fitting the long time behaviour

² 2: Ž .of Dx . Then, we fit the D r data, for the
different values of m, with a power law:

bDs r yr , 11Ž . Ž .c

finding the results reported in the following table:

m r bc

4 0.647 3.10
6 0.806 3.10
7 0.876 3.09

Ž .In Fig. 2, we plot a data collapse of D r,m
Ž Ž . .versus r m yr for the different values of m,c

and show that the laws we find well fit the data.
While the values of b are in agreement with the one
found by KA, the critical density r depends on m.c

Our second aim is to test if the Fluctuation–Dis-
sipation Ratio X is a universal quantity. We then

w xreproduce the compression experiment of Ref. 4 in
the FCC lattice. Namely, we prepare our system at

Ž .the subcritical density r -r m , then we compress0 c
Ž .it with a supercritical m )m m , measuring thes c

Ž .response function 7 , and the mean square displace-
Ž . 4ment of the particles 4 , after waiting t s10w

MonterCarlo steps since the compression.

Ž . Ž .We plot 2 x tq t ,t re versus B tq t ,tw w 0 w w
Ž .Fig. 3 and fit the long-time data in order to obtain
X, for the three values of m. The values of X are
collected in the following table.

m X

4 0.50"0.01
6 0.507"0.006
7 0.50"0.01

These values are different from the one found by
w x Ž .Sellitto in 4 Xs0.79 for the SC lattice. How-

ever, they are equal to one another within the errors.
One would thus obtain the strange result that X is a
function just of the lattice, whereas it does not
change with the critical density.

The behavior of the diffusion constant D as a
function of r is reminiscent of critical phenomena:
our results on the universality of b support this
analogy and suggest that the singular behavior of D
should be related to the existence of a diverging
length, whose nature still has to be identified. On the
other hand we do not expect to obtain the value of
the fluctuation–dissipation ratio X via a simple ap-
proach, like the mean-field approach that has proved
so successful in the derivation of the aging properties

Ž . w xof B tq t ,t 3 . The KA model remains a sur-w w

prisingly rich field for further investigations.
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