Stochastic Thermodynamics and Thermodynamics of Information

Lecture V: Stochastic thermodynamics in biological systems

Luca Peliti
May 18, 2018

Statistical Physics, SISSA and SMRI (Italy)
Table of contents

1. Motivation

2. Stochastic thermodynamics of chemical reactions

3. Molecular motors

4. Thermodynamics of accuracy

5. Summary
Energy scale vs. length scale

□: hydrogen bond; △: phosphate bond; ○: covalent bond

PHILLIPS AND QUAKE, 2006
A rotary motor: ATP synthase

Yasuda et al., 2002
A rotary motor: ATP synthase

ATP Synthase motion is *reversible*: ATP degradation \rightarrow proton gradient

Yasuda et al., 2002
A processing motor: kinesin

Fehr, Asbury and Block, 2008
A signalling network

Ma, Buer and Zeng, 2004
Passive catalysis

Formalism developed in a simple case

- Enzyme E catalyzing the isomerization:

\[
A + E \rightleftharpoons_{k_1^-}^{k_1^+} E^* \rightleftharpoons_{k_2^-}^{k_2^+} B + E
\]

- Define \(\epsilon^* = \epsilon_{E^*} - \epsilon_E \)

- Ratios of reaction rates:

\[
\frac{k_1^+}{k_1^-} = e^{-\left(\epsilon^* - \epsilon_A\right)/k_B T} \quad \frac{k_2^+}{k_2^-} = e^{\left(\epsilon^* - \epsilon_B\right)/k_B T}
\]

- Therefore

\[
\frac{k_1^+ k_2^+}{k_1^- k_2^-} = e^{-\left(\epsilon_B - \epsilon_A\right)/k_B T}
\]
Passive catalysis

• Set

\[
\begin{align*}
 k_1^+ &= \omega_1 \, e^{-(\epsilon^* - \epsilon_A)/k_BT} \\
 k_2^+ &= \omega_2 \\
 k_1^- &= \omega_1 \\
 k_2^- &= \omega_2 \, e^{-(\epsilon^* - \epsilon_B)/k_BT}
\end{align*}
\]

• Rate equations (average):

\[
\begin{align*}
 \frac{d\langle n \rangle}{dt} &= k_2^+ [E^*] - k_2^- [E][B] \\
 \frac{d[E^*]}{dt} &= k_1^+ [E][A] + k_2^- [E][B] - (k_1^- + k_2^+) [E]
\end{align*}
\]

• Production of B-molecules vanishes at equilibrium:

\[
\begin{align*}
 \frac{[B]}{[A]} &= \frac{k_1^+ k_2^+}{k_1^- k_2^-} = e^{-(\epsilon_B - \epsilon_A)/k_BT} \\
 \text{i.e.} \quad [A] \, e^{-\epsilon_A/k_BT} &= [B] \, e^{-\epsilon_B/k_BT}
\end{align*}
\]
Beyond the rate equations:

- Number of B-molecules synthesized: \(n \)
- Enzyme free (0) or bound (1)
- Chemostats fix \([A]\) and \([B]\)
- Master equation for \(p_{in}, i \in \{0, 1\}, n \in \mathbb{Z} \)

\[
\frac{dp_{0n}}{dt} = k_1^- p_{1n} + k_2^+ p_{1,n-1} - (k_1^+ [A] + k_2^- [B]) p_{0n}
\]

\[
\frac{dp_{1n}}{dt} = k_1^+ [A] p_{0n} + k_2^- [B] p_{0,n+1} - (k_1^- + k_2^+) p_{1n}
\]
Non-equilibrium steady state

Chemostat [A] and [B] away from the equilibrium values:

\[[A] e^{-\epsilon_A/k_B T} \neq [B] e^{-\epsilon_B/k_B T} \]

Free-energy imbalance:

\[\Delta G = \epsilon_B - k_B T \log[B] - (\epsilon_A - k_B T \log[A]) = k_B T \log \frac{k_1^+ k_2^+ [A]}{k_1^- k_2^- [B]} \]

Steady-state probability of charged enzyme:

\[p_1 = \frac{k_1^+ [A] + k_2^- [B]}{k_1^- - k_1^+ [A] + k_2^+ - k_2^- [B]} \]

Net production rate (cf. rate equation):

\[\frac{d \langle n \rangle}{dt} = \frac{k_1^+ k_2^+ [A] - k_1^- k_2^- [B]}{k_1^- - k_1^+ [A] + k_2^+ - k_2^- [B]} \]
Large deviations

Generating function:

\[\Psi_\alpha(\mu, t) = \sum_{n=\infty}^{+\infty} e^{\mu(n+\alpha/2)} p_{\alpha,n}(t) \quad \alpha \in \{0, 1\} \]

Evolution equation:

\[
\frac{d}{dt} \begin{pmatrix} \Psi_0 \\ \Psi_1 \end{pmatrix} = \mathcal{L}(z) \begin{pmatrix} \Psi_0 \\ \Psi_1 \end{pmatrix} \quad z = e^{\mu/2}
\]

\[
\mathcal{L}(z) = \begin{pmatrix} - (k_1^+ [A] + k_2^- [B]), & z^{-1}k_1^- + zk_2^+ \\ zk_1^+ [A] + z^{-1}k_2^- [B], & -(k_1^- + k_2^+) \end{pmatrix}
\]

\[\Psi \sim e^{t\theta(\mu)} \quad \theta(\mu) : \text{largest e.v. of } \mathcal{L}\]
Large deviations

Distribution function of n: $P(n, t) = e^{-t \omega(J)}$, $J = n/t$

$$\theta(\mu) = \max_J (\mu J - \omega(J))$$

E.v.'s of $\mathcal{L}(z)$ depend only on $z^{-2}k_1^+ k_2^+ [A] + z^2 k_1^- k_2^- [B]$

Gallavotti-Cohen symmetry: $z \rightarrow \bar{z}$:

$$\bar{z}^{-2}k_1^- k_2^- [B] = z^2 k_1^+ k_2^+ [A] \iff \mu \rightarrow \bar{\mu} = \Delta G/k_B T - \mu$$

$$\theta(\mu) = \theta(\Delta G/k_B T - \mu)$$

$$J(\mu) = -J(\Delta G/k_B T - \mu)$$

$$\omega(J) - \omega(-J) = J \Delta G/k_B T = \dot{S}$$
Active catalysis

Reaction scheme: \(\text{ATP} + A \Leftrightarrow \text{ADP} + P + B \)
Rate equations

\[
\frac{d[E]}{dt} = k_4^+ [E_3] + k_1^- [E_1] - k_1^+ [E][ATP] - k_4^- [E][B]
\]

\[
\frac{d[E_1]}{dt} = k_1^+ [E][ATP] + k_2^- [E_2] - k_1^- [E_1] - k_2^+ [E_1][A]
\]

\[
\frac{d[E_2]}{dt} = k_2^+ [E_1][A] + k_3^- [E_3][ADP][P] - (k_2^- + k_3^+)[E_2]
\]

\[
\frac{d[E_3]}{dt} = k_3^+ [E_2] + k_4^- [E][B] - (k_4^+ + k_3^- [ADP][P])[E_3]
\]

Detailed balance:

\[
\frac{k_i^+}{k_i^-} = e^{-\Delta \epsilon_i / k_B T}
\]

\[
\frac{k_1^+ k_2^- k_3^+ k_4^+}{k_1^- k_2^- k_3^- k_4^-} = e^{-(\Delta \epsilon_A + \Delta \epsilon_{ATP}) / k_B T}
\]

\[
\Delta \epsilon_A = \epsilon_B - \epsilon_A
\]

\[
\Delta \epsilon_{ATP} = \epsilon_{ADP} + \epsilon_P - \epsilon_{ATP}
\]
Generating function

\[
\begin{align*}
\frac{\partial \Psi_0}{\partial t} &= k_4^+ e^{\mu_1/2} \Psi_3 + k_1^+ e^{-\mu_2/2} \Psi_1 - \left(k_1^+ [\text{ATP}] + k_4^-\right) \Psi_0 \\
\frac{\partial \Psi_1}{\partial t} &= k_1^+ [\text{ATP}] e^{\mu_2/2} \Psi_0 + k_2^- e^{-\mu_1/2} \Psi_2 - \left(k_1^- + k_2^+ [\text{A}]\right) \Psi_1 \\
\frac{\partial \Psi_2}{\partial t} &= k_2^+ [\text{A}] e^{\mu_1/2} \Psi_1 + k_3^- [\text{ADP}][\text{P}] e^{-\mu_2/2} \Psi_3 - \left(k_2^- + k_3^+\right) \Psi_2 \\
\frac{\partial \Psi_3}{\partial t} &= k_3^+ e^{\mu_2/2} \Psi_2 + k_4^- [\text{B}] e^{-\mu_1/2} \Psi_0 - \left(k_4^- + k_3^+ [\text{ADP}][\text{P}]\right) \Psi_3 \\
\frac{\partial \Psi}{\partial t} &= \mathcal{L}_\mu \Psi,
\end{align*}
\]

The Gallavotti-Cohen symmetry involves the simultaneous change of \(\mu_1, \mu_2\):

\[
\mathcal{L}_{\bar{\mu}} = Q^{-1} \mathcal{L}_\mu^\dagger Q
\]

\[
e^{\bar{\mu}_1} = \frac{k_2^- k_4^- [\text{B}]}{k_2^+ k_4^+ [\text{A}]} e^{-\mu_1} \quad \quad e^{\bar{\mu}_2} = \frac{k_1^- k_3^- [\text{ADP}][\text{P}]}{k_1^+ k_3^+ [\text{ATP}]} e^{-\mu_2}
\]
Fluctuation relations

Chemical Reaction Network:

\[
\sum_{\sigma} \nabla_{+\rho}^\sigma X_{\sigma} + \sum_{\tau} \nabla_{+\rho}^\tau A_{\tau} \stackrel{k_{-}\rho}{\rightleftharpoons} \sum_{\sigma} \nabla_{-\rho}^\sigma X_{\sigma} + \sum_{\tau} \nabla_{-\rho}^\tau A_{\tau}
\]

Stoichiometric matrix:

\[
\nabla_{\pm\rho} = (\nabla_{\pm\rho}^{\sigma,\tau}) \quad \nabla_{\pm\rho}^{\sigma,\tau} \in \mathbb{N}
\]

\[
\nabla_{\rho} = \nabla_{-\rho} - \nabla_{+\rho} \quad \nabla_{\rho}^{\sigma,\tau} \in \mathbb{Z}
\]

Chemical species: \(X = (X_{\sigma}) \), \(A = (A_{\tau}) \)

\(X_{\sigma} \): intermediate \quad \(A_{\tau} \): chemostatted
Transitions

Elementary transitions:

\[X \xrightarrow{\pm \rho} X' : \quad X' - X = \pm \nabla_{\rho} \]

Mass-action law:

\[
\begin{align*}
R_{X',X}^{\pm \rho} &= \delta_{X',X\pm \nabla_{\rho}} \Omega k_{\pm \rho} \prod_{\tau} [A_{\tau}]^{\nu_{\pm \rho}} \\
\times \prod_{\sigma} \left(\frac{X^{\sigma}}{\Omega} \frac{X^{\sigma} - 1}{\Omega} \ldots \frac{X^{\sigma} - \nabla_{\pm \rho}^{\sigma} + 1}{\Omega} \right)
\end{align*}
\]

Master equation:

\[
\frac{dp_X}{dt} = \sum_{\epsilon = \pm 1} \sum_{\rho} \left[R_{X,X'}^{\epsilon \rho} p_{X'} - R_{X',X}^{-\epsilon \rho} p_X \right] = (\mathcal{L} p)_X
\]

Steady state \(p^{ss}(X) \) (not trivial to evaluate)
Average entropy production

Entropy of a state p_X:

$$S(P) = \sum_X S^{(0)}(X)p_X - k_B \sum_X p_X \log p_X$$

"internal" Shannon

Total average entropy production:

$$\dot{S}^{\text{tot}} = \frac{dS}{dt} - \frac{dS^{(r)}}{dt}$$

$$J_\rho(X; t) = R_{X', X}^\rho p_X - R_{X, X'}^{-\rho} p_{X'}$$

$$A_\rho(X; t) = k_B \log \frac{R_{X', X}^\rho p_{X'}}{R_{X, X'}^{-\rho} p_X}$$

$$- \frac{dS^{(r)}}{dt} = \sum_{X, \rho} S^{(0)}(X) J_\rho(X; t) - \frac{1}{2} \sum_{X, \rho} J_\rho(X; t) \log \frac{R_{X, X'}^\rho}{R_{X', X}^{-\rho}}$$

advection Heat flow Q/T

$$\dot{S}^{\text{tot}} = \frac{1}{2} \sum_{X, \rho} J_\rho(X; t) A_\rho(X; t) \geq 0$$
Fluctuation relation

• Trajectory:

\[\mathbf{X} = (X(t)) = (X_0, t_0) \xrightarrow{\rho_1} (X_1, t_1) \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_n} (X_n, t_n) \to t_f \]

• Time-reversed trajectory \(\hat{\mathbf{X}} \)

• Probability density of a path \(\mathcal{P}(\mathbf{X}) \)

• Detailed fluctuation relation:

\[
\frac{\mathcal{P}(\mathbf{X}|X_0)}{\mathcal{P}(\hat{\mathbf{X}}|X_f)} = \prod_{k=1}^{n} \frac{R_{X_k}X_{k-1}}{R_{X_{k-1}}X_k} = e^{Q(\mathbf{X})/k_B T}
\]

• \(Q/T \neq -\Delta S^{(r)} \) because of the advection term

• Integral fluctuation relation:

\[
\frac{\mathcal{P}(\mathbf{X})}{\mathcal{P}(\hat{\mathbf{X}})} = e^{(Q(\mathbf{X})-\Delta S(\mathbf{X}))/k_B T}
\]

• \(\Delta S \) cancels the advection term...

Thus

\[\left\langle e^{-(Q-\Delta S)/k_B T} \right\rangle = 1 \]
Define

$$
\Psi_X(\mu; t) = \int dX \ P^{ss}(X) \delta_{X(t)X} e^{-\mu Q(X)/k_B T}
$$

it satisfies

$$
\Psi_X(\mu; t_0) = p^{ss}_X
$$

$$
\frac{\partial \Psi_X}{\partial t} = (\mathcal{L} \Psi)_X - \sum_\rho \sum_{X' (\neq X)} \left(\frac{R^\rho_{XX'} R^{-\rho}_{X'X}}{R^\rho_{XXX'}} \right)^\mu \Psi_{X'} = (\mathcal{L}_\mu \Psi)_X
$$

Therefore

$$
\Psi \sim e^{-t \theta(\mu)} \quad \text{as} \quad t \to \infty
$$

where

$$
\theta(\mu) = - \log \Lambda_{max}(\mathcal{L}_\mu)
$$
We have of course

\[\mathcal{P}^{ss}(X) \left(\frac{\mathcal{P}^{ss}(\hat{X})}{\mathcal{P}^{ss}(X)} \right)^\mu = \mathcal{P}^{ss}(\hat{X}) \left(\frac{\mathcal{P}^{ss}(X)}{\mathcal{P}^{ss}(\hat{X})} \right)^{1-\mu} = \mathcal{P}^{ss}(X) \left(\frac{\mathcal{P}^{ss}(X)}{\mathcal{P}^{ss}(\hat{X})} \right)^{1-\mu} \]

which implies the Gallavotti-Cohen symmetry:

\[\theta(\mu) = \theta(1 - \mu) \]

The large-deviation (Cramér) function \(\omega(s) \) is defined by

\[\text{Prob}(Q, t) \xrightarrow{t \to \infty} e^{-t \omega(s)}, \quad \frac{Q}{k_B T} = s t \]

since

\[\int dQ \ \text{Prob}(Q, t) e^{-\mu Q/k_B T} = \sum_X \Psi_X(\mu; t) \sim e^{-t \theta(\mu)} \]

we have (if the saddle-point integration can be inverted!)

\[\omega(s) = \max_\mu(\theta(\mu) - \mu s) \]

and \(\omega(s) - \omega(-s) = -s \)
Chemical reaction rates with a given number of particles:

\[
\sum_{\sigma} \nabla_{+\rho}^{\sigma} X_{\sigma} + \sum_{\tau} \nabla_{+\rho}^{\tau} A_{\tau} \xrightleftharpoons[k_{\rho}^{-\rho}, k_{\rho}^{+\rho}] \sum_{\sigma} \nabla_{-\rho}^{\sigma} X_{\sigma} + \sum_{\tau} \nabla_{-\rho}^{\tau} A_{\tau}
\]

Rates for reaction \(\rho \) (= \(\pm \rho \)):

\[
R_{X',X}^\rho = \delta_{X',X+\nabla_{\rho}} \Omega k_{\rho} \prod_{\tau} [A_{\tau}]^{\nu_{\rho}^{\tau}}
\times \prod_{\sigma} \left(\frac{X_{\sigma} X_{\sigma} - 1}{\Omega} \cdots \frac{X_{\sigma} - \nabla_{\rho}^{\sigma} + 1}{\Omega} \right)
\]
Simulation algorithm:

1. Given the time \(t \) number \(\{n_\sigma\} \) of all species involved, evaluate the rates \(R_\rho \) of all possible reactions.
2. Define \(R = \sum_\rho \) and extract the time \(\tau \) to the next reaction, exponentially distributed with average \(R^{-1} \): update \(t \) to \(t + \tau \).
3. Choose the next reaction \(\rho^{\text{next}} \) with probability \(R_\rho / R \).
4. Change the number of the affected species according to the stoichiometry of the reaction \(\rho^{\text{next}} \) and return to step 1.

Difficulties:

- The number of possible reactions can become large.
- Thus \(\tau \) can become too small—simulation sluggish!
- Several tricks have been invented to speed up the simulation, at some cost in precision.
Simulation of chemical reactions

Schlögl model (1972)

FIX: A B

Reactions
R1:
 A + \{2\} X \rightarrow \{3\} X
 \frac{1}{2}c1*A*X*(X-1)

R2:
 \{3\} X \rightarrow A + \{2\} X
 \frac{1}{6}c2*X*(X-1)*(X-2)

R3:
 B \rightarrow X
 c3 * B

R4:
 X \rightarrow B
 c4*X

Fixed species
A = 100000
B = 200000

Variable species
X = 250

c1 = 3*10**-7
c2 = 10**-4
c3 = 10**-3
c4 = 3.5
Simulation of chemical reactions

Python module: stochpy
The motor is kept in a nonequilibrium state by the chemical imbalance of the ATP \rightleftharpoons ADP + P reaction:

$$\frac{[\text{ATP}]}{[\text{ADP}][\text{P}]} \neq e^{(\epsilon_{\text{ATP}} - \epsilon_{\text{ADP}} - \epsilon_{\text{P}})/k_B T}$$

The “product” is displacement
The model

NISHINARI ET AL., 2005 et al.
The model

States:

1: Bound to ATP
2: Bound to ADP or empty

Moves:

Brownian motion: \((i, 2) \xrightarrow{\omega_B} (i \pm 1, 2)\)
ATP binding: \((i, 2) \xrightarrow{\omega_s} (i, 1)\)
Ratchet: \((i, 1) \xrightarrow{\omega_+} (i + 1, 2)\)
Reverse ratchet: \((i, 2) \xrightarrow{\omega_-} (i - 1, 1)\)
Hydrolysis: \((i, 1) \xrightarrow{\omega_h} (i, 2)\)

Rates \(\omega = \{\omega(f, \Delta\mu)\}\) with a few measurable and 4 adjustable kinetic parameters, constrained by a thermodynamic relation
Application to kinesin

Data from Schnitzer and Block, 1995
Lines for $f = -1.05, -3.59, -5.63 \text{pN}$
Inset: v vs. f for fixed [ATP] 2µM 5µM
The phase diagram

$\Delta \mu$ f

$v=0$

$r=0$

Modes: A: ATP consumed, work performed; B: work consumed to produce ATP
C: ADP consumed to produce work; D: Work consumed to produce ADP

v: average velocity r: average ATP consumption rate

LACOSTE, LAU AND MALLICK, 2008
Normalized eigenvalue of $\mathcal{L}(fd/k_B T)\eta, -\Delta \mu / 2k_B T$ vs. η (parameter of the generating function) for various values of $(fd/k_B T, \Delta \mu / k_B T)$: $(5, 0)$ (dashed), $(5, 10)$ (solid), $(2, 10)$ (dotted)
• The Gallavotti-Cohen symmetry appears in the pdf of the fluxes \(v, r \):

\[
\ln \frac{P(v, r, T)}{P(-v, -r, T)} \sim \left[(f/k_B T) v + (\Delta \mu/k_B T) r \right] \mathcal{T}
\]

entropy production

• The reduced distribution \(P_i(n, t) = \sum_y P_i(n, y, t) \) does not exhibit the symmetry:

Lack of symmetry hints at the existence of hidden dynamical variables
Information processing in the cell:

Copy: Transcription (DNA → RNA), Replication (DNA → DNA)

Translation: DNA → Proteins

tRNA aminoacylation: The “interpreters” of the genetic code are tRNA, carrying the *anticodon* on one side and the corresponding amino acid on the other. Amino acids are charged by *activation enzymes*

Sensing: All processes which monitor the environment

“High fidelity” is a requirement
Transcription, translation, replication are instances of *template-assisted polymerization*

r: Right residue
w: Wrong residue
Template-assisted polymerization
Template-assisted polymerization

- Elongation speed v
- Error rate η
- Rate of “right” incorporations: $v^r = (1 - \eta) v$
- Rate of “wrong” incorporations: $v^w = \eta v$
- Equation for the error η:

$$\frac{\eta}{1 - \eta} = \frac{v^w(\eta)}{v^r(\eta)}$$
Reaction rates

Rates: μ_{ij} chemical driving, δ_{ij} kinetic barrier

\[k_{ij}^r = \omega_{ij} \exp[(\Delta E_j^r + \mu_{ij} + \delta_{ij})/T] \]
\[k_{ij}^w = \omega_{ij} \exp[(\Delta E_j^w + \mu_{ij})/T] \]
\[k_{ji}^f = \omega_{ij} \exp[(\Delta E_i^f + \delta_{ij})/T] \]
\[k_{ji}^w = \omega_{ij} \exp[\Delta E_i^w / T] \]

Dictionary: $k \rightarrow R$, $T \rightarrow k_B T$
Definitions:

- Entropy produced per incorporated monomer: ΔS_{tot}
- Entropy produced per \textit{wrong} incorporated monomer: $\Delta S_{\text{tot},w}$

\[
\Delta W = \sum_{(ij), \alpha \in \{r, w\}} J_{ij}^\alpha \mu_{ij} / v
\]

\[
\Delta F_{\text{eq}} = -k_B T \log \sum_{\alpha} e^{-\Delta E_{\alpha} / k_B T}
\]

\[
\eta_{\text{eq}} = \exp \left[(-\Delta E^w + \Delta F_{\text{eq}}) / k_B T \right]
\]

\[
D_{\text{KL}}(\eta||\eta_{\text{eq}}) = \eta \log \frac{\eta}{\eta_{\text{eq}}} + (1 - \eta) \log \frac{1 - \eta}{1 - \eta_{\text{eq}}}
\]

\[
\Delta W^w = \sum_{(ij)} J_{ij}^w \mu_{ij} / v^w
\]
Main results

In the steady state:

\[T \Delta S^{\text{tot}} = \Delta W - \Delta F^{\text{eq}} - k_B T D_{\text{KL}}(\eta || \eta^{\text{eq}}) \geq 0 \]

\[T \Delta S^{\text{tot},w} = \Delta W^w - \Delta F^{\text{eq}} - k_B T \log \frac{\eta}{\eta^{\text{eq}}} \geq 0 \]

Therefore

\[\eta = \eta^{\text{eq}} \exp \left[(\Delta S^{\text{tot},w} + (\Delta W^w - \Delta F^{\text{eq}})) / k_B T \right] \]

Possible copying regimes:

Error amplification: \(\Delta W^w - \Delta F^{\text{eq}} > 0 \) and \(\eta > \eta^{\text{eq}} \)

Demon: \(\Delta W^w - \Delta F^{\text{eq}} < 0 \) and \(\eta < \eta^{\text{eq}} \) (but \(\Delta W - \Delta F^{\text{eq}} > 0 \) due to right matches)

Error correction: \(\Delta W^w - \Delta F^{\text{eq}} > 0 \) and \(\eta < \eta^{\text{eq}} \), thus

\[\eta \geq \eta^{\text{eq}} e^{-\Delta S^{\text{tot},w} / k_B} \]
Single-step polymerization machines

Two regimes:

Energetic discrimination: \(\Delta E = \Delta E^w - \Delta E^r \geq \delta \)

Kinetic discrimination: \(\Delta E < \delta \)

In energetic discrimination:

- \(\eta \geq \eta^{eq} \) (error amplification)
- \(\eta \) monotonically decreases as \(v \) decreases, minimum error at zero dissipation

In kinetic discrimination:

- \(\eta^{eq} \geq \eta \geq \eta^{min} = e^{-\delta/k_BT} \)
- \(\eta \) decreases as \(v \) and dissipation increases
Single-step polymerization machines
Proofreading

NINIO, HOPFIELD, 1974, 1975

Extra pathway with negative velocity $v_p \leq 0$ preferentially removes wrong monomers
Since $\dot{S}_{p}^{\text{tot},w} \geq 0$ and $v_p \leq 0$ one can show

$$\eta \geq \eta^{\text{eq}} \exp \left(\frac{-\Delta W_p + \Delta F^{\text{eq}}}{k_B T} \right)$$
Proofreading

$$\eta_{\text{eq}} e^{-\left(\Delta W_p - \Delta F_{\text{eq}}\right)/T}$$

$$\eta_{\text{min}} \approx e^{-\delta + \delta_p + \Delta E^w + \Delta E^r}/k_B T$$
Stochastic polymerization dynamics

- State of the growing polymer: $rrwr\ldots$
- State of the machine: $i \in \{1, \ldots, n\}$
- Intermediate states (with a tentatively matched monomer): $rrwri$ or $rrwri$
- Copying protocol: network of transitions $j \rightarrow i$ with rates $R_{ij}^{r,w}$
- Discrimination is due to differences in rates
- Probabilities: $P(\ldots r)$, $P(\ldots w)$, $P(\ldots ri)$, $P(\ldots wi)$ satisfying master equations:

$$\frac{d}{dt}P(\ldots ri) = \sum_{j=0}^{n+1} J_{ij}^{r}(\ldots)$$
$$\frac{d}{dt}P(\ldots wi) = \sum_{j=0}^{n+1} J_{ij}^{w}(\ldots)$$

- Currents: $J_{ij}^{r}(\ldots) = R_{ij}^{r}P(\ldots rj) - R_{ji}^{r}P(\ldots ri)$
- $j = 0 \rightarrow j = n + 1$ corresponds to the incorporation of a monomer
- All transitions are reversible
Stochastic polymerization dynamics

- Rates of incorporation:

\[
\frac{d}{dt} P(\ldots w) = \sum_{j=0}^{n+1} \left[\mathcal{J}_{n+1,j}^{\text{w}} (\ldots) - \mathcal{J}_{j0}^{\text{r}} (\ldots w) - \mathcal{J}_{j0}^{\text{w}} (\ldots w) \right]
\]

and analog for \(r \)

- Assume errors are uncorrelated:

\[
P(\ldots) \propto \eta^{N_w} (1 - \eta)^{N - N_w}
\]

- Then

\[
P(\ldots r) = P(\ldots)(1 - \eta) \quad P(\ldots w) = P(\ldots) \eta
\]

- Assume states \(i \)-occupancy \(p_i^{r,w} \) to be independent of \((\ldots) \). Then

\[
P(\ldots r_i) = P(\ldots) p_i^r \quad P(\ldots w_i) = P(\ldots) p_i^w
\]

- Occupation fluxes:

\[
J_{ij}^r = \mathcal{N} \left(R_{ij}^r p_j - R_{ji}^r p_i \right) \quad \mathcal{J}_{ij}^r (\ldots) = P(\ldots) J_{ij}^r / \mathcal{N}
\]
Entropy production rate

\[
\frac{dS^{\text{tot}}}{dt} = k_B \sum \frac{P(\ldots)}{N} \sum_{(i,j), \alpha \in \{r, w\}} J_{ij}^\alpha \log \left(\frac{R_{ij}^\alpha p_j^\alpha}{R_{ji}^\alpha p_i^\alpha} \right)
\]

\[
\frac{dS^{\text{tot}}}{dt} = k_B \sum_{(i,j), \alpha} \frac{J_{ij}^\alpha \mu_{ij}}{k_B T} - \eta v \left(\log \eta + \frac{\Delta E^w}{k_B T} \right) + (1-\eta) v \left(\log \left(1 - \eta + \frac{\Delta E^r}{k_B T} \right) \right)
\]

Thus \(\Delta S^{\text{tot}}\) per incorporated monomer is given by

\[
\Delta S^{\text{tot}} = \frac{1}{v} \frac{dS^{\text{tot}}}{dt} = \frac{1}{T} \left(\Delta W - \Delta F^{\text{eq}} - k_B T D_{\text{KL}}(\eta || \eta^{\text{eq}}) \right) \geq 0
\]

Entropy production per wrong incorporated polymer:

\[
\Delta S^{\text{tot}, w} = \frac{1}{T} \left(\Delta W^w - \Delta F^{\text{eq}} - k_B T \log \frac{\eta}{\eta^{\text{eq}}} \right) \geq 0
\]
Summary

- ST helps in setting up a unified frame for discussing dissipation in several biochemical processes
- Several regimes can be exhibited: we discussed no general “tradeoff” principle

The interplay between speed, dissipation and accuracy has been addressed in the so-called “uncertainty relations” in ST
Thank you!
D. Andrieux and P. Gaspard.
Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors.

D. Andrieux and P. Gaspard.
Nonequilibrium generation of information in copolymerization processes.

D. Andrieux and P. Gaspard.
Molecular information processing in nonequilibrium copolymerizations.

D. T. Gillespie.
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions.

D. T. Gillespie.
Exact stochastic simulation of coupled chemical reactions.

J. J. Hopfield.
Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity.

J. Ninio.
La précision dans la traduction génétique.

K. Nishinari, Y. Okada, A. Schadschneider, and D. Chowdhury.
Intracellular transport of single-headed molecular motors KIF1A.

The biological frontier of physics.

R. Rao and L. Peliti.
Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs.

P. Sartori and S. Pigolotti.
Kinetic versus energetic discrimination in biological copying.

P. Sartori and S. Pigolotti.
Thermodynamics of error correction.
J. Schnakenberg.

Network theory of microscopic and macroscopic behavior of master equation systems.

M. J. Schnitzer and S. M. Block.

Statistical kinetics of processive enzymes.

R. Yasuda, N. Hiroyuki, K. Kinosita, Jr., and M. Yoshida.

F$_1$-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps.