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Chapter 2. Basics

2.1 Thermodynamics

• Page 10, line 8. Read:

we have 1/T1 > 1/T2
correct to:

we have 1/T1 ≥ 1/T2

2.4 Statistical mechanics

• Page 15, line 4 from bottom, eq.(2.41). Read:

kB ≈ 1.384 · 10−23 J/K. (2.41)

correct to:

kB ≈ 1.381 · 10−23 J/K. (2.41)

2.5 Stochastic dynamics

• Page 21, line 7, eq.(2.72. Read:

+

∫ t

t0

dt1

∫ t

t′
dt0
∑
x0

Lxx0(t1)Lx0x′(t0) + · · · .

correct to:

+

∫ t

t′
dt0

∫ t

t0

dt1
∑
x0

Lxx0(t1)Lx0x′(t0) + · · · .

2.6 Master equations

• P.22, fig.2.1. Interchange k32 and k23 in the figure.



2.7 Trajectories of master equations

• Page 25, line 8, eq. (2.90). Read:∏
ℓ∈dwell

pxℓ;tℓ−1+dt|xℓ;tℓ−1
=
∏
ℓ

(
1− dtℓ k

out
)
≈ e−

∑
ℓ k

out
xℓ

dtℓ ≈ e
−

∫
dt kout

x(t)
(t)
. (2.90)

correct to:∏
ℓ∈dwell

pxℓ;tℓ−1+∆t|xℓ;tℓ−1
=
∏
ℓ

(
1−∆t kout

)
≈ e−

∑
ℓ k

out
xℓ

∆t ≈ e
−

∫
dt kout

x(t)
(t)
. (2.90)

• Page 25, line 6 from bottom, eq. (2.91). Read:

Px = e−
∫ tf
tn

dt′ koutn (t′)kxnxn−1(tn) e
−

∫ tn−1
tn

dt′ koutxn−1
(t′) · · ·

× e−
∫ t1
t2

dt′ koutx1
(t′) e−

∫ t0
t1

dt′ koutx0
(t′)px0(t0).

(2.91)

correct to:

Px = e−
∫ tf
tn

dt′ koutn (t′)kxnxn−1(tn) e
−

∫ tn
tn−1

dt′ koutxn−1
(t′) · · ·

× e−
∫ t2
t1

dt′ koutx1
(t′) e−

∫ t1
t0

dt′ koutx0
(t′)px0(t0).

(2.91)

2.12 Exercises

• p.36, line 12 from bottom. Read:

Another sequence x = (x0, x1,2, . . .)
correct to:

Another sequence x = (x0, x1, x2, . . .)

2.10 Information

• Page 34, line 3 from bottom, eq. (2.141). Read:

+DKL(p(S1|S2)∥q(S2∥S1)),

correct to:

+DKL(p(S1|S2)∥q(S2|S1)),

• Page 34, line last, eq. (2.142). Read:

DKL(p(S1|S2)∥q(S2∥S1)) =

correct to:

DKL(p(S1|S2)∥q(S2|S1)) =

2



Chapter 3. Stochastic thermodynamics

3.7 Stochastic entropy and entropy production in a manipulated two-level
system

• Page 49, caption to fig. 3.3, line 6. Read:

probability of occupation p1(1)
correct to:

probability of occupation p1(t)

3.8 Average entropy production rate

• Page 50, line 3rd from bottom, eq. (3.37). Read:

dssys

dt
= −kB

dλ

dt

∂

∂λ
ln px =

kB
px

dλ

dt

∂px
∂λ

.

correct to:

dssysx

dt
= −kB

dλ

dt

∂

∂λ
ln px = −kB

px

dλ

dt

∂px
∂λ

.

• Page 50, line last, eq. (3.38). Read:〈
dssys

dt

〉
= kB

∑
x

px
dssysx

dt
= kB

dλ

dt

∑
x

dpx
dλ

= 0.

correct to: 〈
dssys

dt

〉
=
∑
x

px
dssysx

dt
= −kB

dλ

dt

∑
x

dpx
dλ

= 0.

3.15 Exercises

• Page 65, line 5 from bottom. Read:

ϵ and different values of the
correct to:

ϵf and different values of the

3.13 Continuous systems (*)

• Page 64, line 7. Read:

rule presented in eq. (2.127), obtaining
correct to:

rule presented in eq. (2.128), obtaining

Chapter 4. Fluctuation relations

4.1 Irreversibility and entropy production

• Page 68, line 6, eq. (4.2). Read:

Px|x0
(λ) = e−

∫ tf
tn

koutxf
dtkxfxn−1(tm) e

−
∫ tn
tn−1

koutn−1(t) · · ·
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correct to:

Px|x0
(λ) = e−

∫ tf
tn

koutxn dtkxnxn−1(tn) e
−

∫ tn
tn−1

koutxn−1
(t) · · ·

4.5 Detailed fluctuation relation

• Page 78. Fig. 4.4 should be replaced by the following:
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4.7 Instantaneous quench

• Page 80, line 9 from bottom, eq.(4.56. Read:

Stot =W −∆F =
∑
x

[ϵx(tq)− ϵx(t0)] e
(F (t0)−ϵx(t0))/kBT −∆F, (4.56)

correct to:

Stot =
W −∆F

T
=

1

T

{∑
x

[ϵx(tq)− ϵx(t0)] e
(F (t0)−ϵx(t0))/kBT −∆F

}
, (4.56)

4.9 Adiabatic and nonadiabatic entropy production and the Hatano-Sasa re-
lation

• P. 83, line 7, eq. (4.69). Read:

= −kB
n∑

k=0

ln
pstxj

(tk+1)

pstxk
(tj)

=

correct to:

= −kB
n∑

k=0

ln
pstxk

(tk+1)

pstxk
(tk)

=

4.14 Brownian motion with inertia (*)

• Page 92, line 5, eq. (4.121) and the beginning of the following line. Read:

−µP
dr

dt
+
√
2Dξ(t),
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where r is the particle position and µP dr/dt represents the effects of friction.
correct to:

−µ−1P

dr

dt
+
√
2σ2ξ(t),

where r is the particle position, µ−1P dr/dt represents the effects of friction, and σ2 is a
measure of the noise amplitude.

• p.92, second line of eq. (4.122). Read:

−µP
dr

dt
+
√
2Dξ(t),

correct to:

−µ−1P

dr

dt
+
√
2σ2ξ(t),

• p.92, second line of eq.(4.123). Read:

+
∂

∂r

[(
∂U

∂r

µP
m
pr

)
p(pr, r; t) +D

∂p(pr, r; t)

∂pr

]
.

correct to:

+
∂

∂r

[(
∂U

∂r

1

mµP
pr

)
p(pr, r; t) + σ2

∂p(pr, r; t)

∂pr

]
.

• Page 92, line 10 from bottom. Read:

Provided the Einstein relation (3.84) holds
correct to:

Provided the Einstein relation σ2 = kBT/µP holds

Chapter 5. Thermodynamics of Information

5.3 Information in stochastic thermodynamics

• Page 108, line 12 from bottom. Read:

peqx (t0) = peqx p0y, where p
0
y is. . .

correct to:

peqx,y(t0) = peqx py(t0), where py(t0) is. . .

• Page 108, line 5 from bottom to eq. (5.9) included. Read:

We write the final distribution. . . . . . we obtain

∆Ssys = −kBI(obj : dev)−∆Sdev. (5.9)

correct to:
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We now subtract and add Sdev(tm) = −kB ln
∑

x.y px,y(tm) ln py(tm), and Sobj(tm) =
−kB ln

∑
x.y px,y(tm) ln px(tm), obtaining

∆Ssys = −kB
∑
x,y

[
px,y(tm) ln

px,y(tm)

px(tm)py(tm)

+ px,y(tm) ln (px(tm)py(tm))− px,y(t0) ln py(t0)] .

(5.8)

Since the object and the device are independent at t0, and the state of the object is not
affected by the measurement, we have px,y(t0) = px(t0)py(t0) = px(tm)py(t0). Therefore
the contribution of ln px(tm) in the last two terms cancel out, and we obtain

∆Ssys = −kBI(obj : dev) + ∆Sdev, (5.9)

where ∆Sdev = −kB
∑

x,y [px,y(tm) ln py(tm)− px,y(t0) ln py(t0)].

• Page 109, line 11. Read:

kBI(obj : dev) = −∆Sdev

correct to:

kBI(obj : dev) = ∆Sdev

5.4 The Sagawa-Ueda relation

• Page 110, line 16 from bottom. Read:

stot = w −∆F
correct to:

stot = (w −∆F )/T

5.5 The Mandal-Jarzynski machine

• Page 112, line 10. Read:

H(p) = H(peq),
correct to:

H(p) = H(p′), where p′ is the probability distribution of the output,

5.6 Copying information

• Page 114, line 20. Read:

δstall = ϵR + kBT ln(1− ηeq).
correct to:

δstall = ϵr + kBT ln(1− ηeq).

• Page 114, line 23. Read:

δ ≫ 1,
correct to:

δ ≫ kBT ,

• p.115, fig. 5.5. The figure should be replaced by the following one.
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Figure 1: Error rate η vs. the elongation speed v in energetic and kinetic discrimination. We
have ϵ = ∆ϵw−∆ϵr = 1.5 kBT . We set ωr/ωw = eκ/kBT , with κ = κ1 = 0.7 kBT for the energetic
discrimination and κ = κ2 = 2.7 kBT for the kinetic discrimination The asymptotic values of
the error rate are ηeq = 1/(1 + eϵ/kBT ) for v → 0 and η1,2 = 1/(1 + eκ1,2/kBT ) for v → ∞. Both
axes are logarithmic.

5.7 Information cost in sensing

• p.118, line 18 from bottom, first line of eq.(5.32). Read:

ln
px|ei,efpei,ef (t)

px(t)pef
,

correct to:

ln
px|ei,ef (t)pei,ef
px(t)pef

,

• Page 118, line 14 from bottom. Read:

I(sys : env(t0))
correct to:

I(sys(t0) : env(t0))

• Page 118, line 7 from bottom. Read:

W =
∑

ei,ef
⟨ϵx,ef ⟩peqx,ei pei,ef ≥ 0.

correct to:

W =
∑

ei,ef
⟨ϵx,ef − ϵx,ei⟩peqx,ei pei,ef ≥ 0.

• Page 118, line 5 from bottom. Read:

peqx,ef
correct to:

peqx|ef
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• Page 118, line last, eq.(5.34). Read:

. . .−H(px|ei,ef (0))
]
,

correct to:

. . .−H(px|ei,ef (t0))
]
,

5.8 Information reservoirs

• Page 123, line 11f. Read:

which is also the probability that the system is in state u immediately after an interaction,
correct to:

which is also the probability that the state swap takes place,

Chapter 6. Large Deviations: Theory and Practice

6.7 Fluctuation relations in a model of kinesin

• Page 148, 12th line from bottom, eq. (6.84). Read:

A1 = kBT ln
k↗0 k

→
1

k←0 k
↙
1

= −2fd+∆µ;

A2 = kBT ln
k→0 k

→
1

k←0 k
←
1

= −2fd.

correct to:

A1 = kBT ln
k↗0 k

→
1

k←0 k
↙
1

= 2fd+∆µ;

A2 = kBT ln
k→0 k

→
1

k←0 k
←
1

= 2fd.

• Page 149. Caption to fig. 6.4, third line. Read:

where J (r) > 0 and J (n) < 0,
correct to:

where J (r) > 0 and J (n) > 0,

• Page 149. 5th line of the text. Read:

J (r) < 0 and J (n) > 0.
correct to:

J (r) < 0 and J (n) < 0.

• Page 149. 7th line from bottom. Read:

∆µJ (n) < 0,
correct to:

∆µJ (n) > 0,
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• Page 149, 4th line from bottom, eq. (6.86). Read:

T Ṡ = A0J0 +A1J1 +A2J2 = −2fd J (r) +∆µJ (n).

correct to:

T Ṡ = A0J0 +A1J1 +A2J2 = 2fd J (r) +∆µJ (n).

Chapter 8. Developments

8.2 Uncertainty relations

• Page 176, line 9 from bottom. Eq. (8.15), second line. Read:

· · · δ (J − J (x)) es
tot P(x̂)

correct to:

· · · δ (J − J (x)) es
tot/kB P(x̂)

• p.177, l.12 from bottom, to the end of paragraph. For any nonnegative variable. . .
take into account that

〈
J 2
〉
=
〈
J 2
〉+

.
correct to:

We have 〈
tanh2

(
stot

2kB

)〉
+

≤ tanh

(〈
stot
〉

2kB

)
, (8.22)

where the first average is over the probability distribution p+(stot,J ) defined on the pos-
itive real half-line, and the second over p(stot,J ). This inequality follows from the chain
of inequalities〈

tanh2
(
stot

2kB

)〉
+

≤
〈
tanh

[
stot

2kB
tanh

(
stot

2kB

)]〉
≤ tanh

(
stot

2kB

)
.

Denote stot/kB by σ. Define

∆(σ) =
σ

2
tanh

(σ
2

)
− atanh

[
tanh2

(σ
2

)]
.

We then have ∆(0) = 0 and

∆′(σ) =
σ − tanhσ

4 cosh2(σ/2)
,

which is positive for σ > 0. Thus ∆(σ) ≥ 0 for σ ≥ 0. Since tanh(σ) is a strictly increasing
function, the first inequality follows. Now, since tanhσ is concave for σ ≥ 0, by the Jensen
inequality we obtain〈

tanh
[σ
2
tanh

(σ
2

)]〉
+
≤ tanh

[
1

2

〈
σ tanh

(σ
2

)〉
+

]
.
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Now, by eq. (8.20) we have ⟨σ⟩ = ⟨σ tanh(σ/2)⟩+, which implies the second inequality in
the chain above. Summarizing, we have obtained

⟨J ⟩2 ≤
〈
J 2
〉
+

〈
tanh2

(
stot

2kB

)〉
+

≤
〈
J 2
〉
+
tanh

(〈
stot
〉

2kB

)
.

From this inequality, by simple algebraic manipulations one obtains the following ther-
modynamic uncertainty relation

σ2J

⟨J ⟩2
≥ 2

eStot/kB − 1
, (8.23)

where σ2J =
〈
J 2
〉
− ⟨J ⟩2 and we take into account that

〈
J 2
〉
=
〈
J 2
〉
+
.

• Page 179, line 1. Read:

J st
α = limT →0+ ⟨Jα⟩ /T

correct to:

J st
α = ⟨Jα⟩ /T

• Page 179, line 2. Read:

σ̃2 =
(
σ̃2αβ

)
= limT →0+ Cαβ/T

correct to:

σ̃2 =
(
σ̃2αβ

)
= (Cαβ)/T

8.4 First-passage times

• Page 182, line last, eq.(8.50). Read:

ψ
(fp)
± (q) = − 1

ψ
(j)
± (−q)

. (8.50)

correct to:

ψ
(fp)
± (q) = −ψ−1± (−q), (8.50)

where ψ−1± (q) is the inverse function of ψ
(j)
± (q).

8.9 Population genetics

• Page 199. Add to last line:

For instance, in a Moran model with constant population size one has Λ = 0 and

rx = hx −
1

T ln
(
1− pchr(ext, T )

)
,

where pchr(ext, t) is the chronological probability that a lineage becomes extinct before
time t. This is given by

1− pchr(ext, T ) =
〈
2−ρ
〉ret

,

where the average is taken over all lineages surviving to time T . An example is shown in
fig. 8.6.

• Page 200. Fig. 8.6 should be replaced by the following:
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• Page 200. Caption to fig. 8.6. Read:

The dotted line is a fit to h = r + const. The average number of divisions per lineage in
this run is 5.64.
correct to:

The dotted line corresponds to h = r. The average number of divisions per lineage in this
run is 9.01.

Appendixes

A.8 Ito formula and Stratonovich-Ito mapping

• Page 223, line 6 from bottom. Read:

into the Ito convention, obtaining eq. (A.74).
correct to:

into the Ito convention, obtaining eq. (A.82).

11


