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Information and entropy

John von Neumann to Claude Shannon:

You should call it entropy for two reasons: first because
that is what the formula is in statistical mechanics but
second and more important, as nobody knows what entropy
is, whenever you use the term you will always be at an
advantage!
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Interpretation of the information rate

Kelly, 1956:

a gambler can use the knowledge given him by the
received symbols to cause his money to grow exponentially.
The maximum exponential rate of growth of the gambler’s
capital is equal to the rate of transmission of information
over the channel.
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Economy, information and evolution

The growth of capital has parallel in the growth of populations
The currency of evolution is fitness, i.e., number of offspring
What is the connection with the information rate?
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Economy, information and evolution

Genet. Res., Camb. (1961), 2, pp. 127-140
With 2 text-figures
Printed in Great Britain

Natural selection as the process of accumulating genetic
information in adaptive evolution*

BY M0T00 KIMURA
National Institute of Genetics, Mishima, Japan

(Received 3 October 1960)

INTRODUCTION
Modern genetic studies have shown that the instructions for forming an organism
are contained in the nucleus of the fertilized egg. In the language of information
theory, we may say that in the process of development the genetic (hereditary)
information of an organism is transformed into its phenotypic (organic) informa-
tion. Thus, to account for the tremendous intricacy of organization in a higher
animal, there must exist a sufficiently large amount of genetic information in the
nucleus.

What is the origin of such genetic information? If the Lamarckian concept of
the inheritance of acquired characters were accepted, one might be justified in saying
that it was acquired from the environment. However, since both experimental
evidence and logical deductions have entirely failed to corroborate such a concept,
we must look for its source somewhere else.

We know that the organisms have evolved and through that process complicated
organisms have descended from much simpler ones. This means that new genetic
information was accumulated in the process of adaptive evolution, determined by
natural selection acting on random mutations.

Consequently, natural selection is a mechanism by which new genetic information
can be created. Indeed, this is the only mechanism known in natural science which
can create it. There is a well-known statement by R. A. Fisher that 'natural selec-
tion is a mechanism for generating an exceedingly high degree of improbability',
owing to which, as will be seen, the amount of genetic information can be measured.
It may be pertinent to note here that the remarkable property of natural selection
in realizing events which otherwise can occur only with infinitesimal probability
was first clearly grasped by Muller (1929).

The purposes of the present paper are threefold. First, a method will be proposed
by which the rate of accumulation of genetic information in the process of adaptive
evolution may be measured. Secondly, for the first time, an approximate estimate
of the actual amount of genetic information in higher animals will be derived which
might have been accumulated since the beginning of the Cambrian epoch (500
million years), and thirdly, there is a discussion of problems involved in the storage
and transformation of the genetic information thus acquired. There is a vast field

* Contribution No. 340 of the National Institute of Genetics, Mishima, Japan.
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Economy, information and evolution

It was demonstrated that the rate of accumulation of
genetic information in adaptive evolution is directly
proportional to the substitutional load, i.e. the decrease of
Darwinian fitness brought about by substituting for one
gene its allelic form which is more fitted to a new
environment.
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Analogies

Gambling Thermodynamics Populations
Currency unit — Individual
Gambler Demon —
Option State Type
Log Capital Extracted Work Log Population Size
Side Information Measurement Acquired information
Memory Non-equilibrium Inherited information

After Rivoire, 2015
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A model of an evolving population

Donaldson-Matasci et al., 2010

• A population of Nt individuals, discrete generations, in a varying
environment

• Environment Xt, phenotype Φt, x = (x0, x1, . . . , xt, . . .)

• Fitness: F(ϕ, x): expected # of offspring with pheno ϕ in
environment x

• Bet hedging: bt(ϕ): probability to assign pheno ϕ to an offspring
at generation t

Growth rate of population size:

Λ(b) =
1

T

⟨
log

NT

N0

⟩
=

1

T
∑
x

px

T −1∑
t=0

log (F(ϕ, xt)bt(ϕ))

6



Kelly case

• No inheritance: bt(ϕ) does not depend on ϕt′ for t′ < t

• Perfect selectivity: F(ϕ, x) = K(x)δϕ,x (can be relaxed: Haccou
and Iwasa, 1995)

Then

Λ(b) =
∑
x

px log (K(x)b(x))

=
∑
x

p(x) logK(x)︸ ︷︷ ︸
⟨logK⟩

+
∑
x

p(x) log p(x)︸ ︷︷ ︸
−H(p)

−
∑
x

p(x) log
p(x)

b(x)︸ ︷︷ ︸
DKL(p∥b)

Optimal strategy:
b∗(x) = px

Optimal growth rate:

Λopt = ⟨logK⟩ −H(X)

“Fair” gambling: K(x) = 1/p(x), optimal growth rate 0
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Cues

• Assume there is a partially informative cue Y on the
environment

• Joint probability p(x, y) = p(x|y)p(y) for environment x and cue
y

• Conditional probability π(ϕ|y) for pheno ϕ with cue y
• Growth rate:

Λ =
∑
x,y

p(x, y) log
∑
ϕ

π(ϕ|y)F(ϕ, x)

=
∑
x,y

p(x, y) log [π(x|y)K(x)] (Kelly)

=
∑
x

p(x) logK(x) +
∑
x,y

p(x, y) log p(x|y)︸ ︷︷ ︸
−H(X)+I(X;Y )

−
∑
x,y

p(x, y) log
p(x|y)
π(x|y)︸ ︷︷ ︸

DKL(p(x|y)∥π(x|y))
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Fitness value of cues

• Optimal growth rate with π(x|y) = p(x|y):

∆Λopt = Λopt(X|Y )− Λopt = I(X;Y )

• More generally: optimal conditional strategy π∗(x|y) and
optimal unconditional strategy π∗(x)

∆Λopt = I(X;Y )−

DKL(p(x|y)∥π∗(x|y))︸ ︷︷ ︸
with cues

−DKL(p(x)∥π∗(x))︸ ︷︷ ︸
without cues


But it can be shown that

DKL(p(x|y)∥π∗(x|y))−DKL(p(x)∥π∗(x)) ≥ 0

• Thus the fitness value of cues is given by I(X;Y )
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Analogy with work extraction

Vinkler et al., 2014, Rivoire, 2015

• A two-state system: x ∈ {0, 1}
• Energy: Ex, E0 = 0, E1 = ϵ0

• Equilibrium distribution: peqx = e−(Ex−F )/kBT

• A “demon” can switch the states, gleaning (W > 0) or providing
(W < 0) energy ∆E:

W = −∆Ex = Ex − E1−x

• In the absence of cues one expect to provide energy on average:

⟨W⟩eq = ⟨−∆E⟩eq = (peq1 − peq0 ) ϵ0 < 0
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Analogy with work extraction

• In the presence of cues (measurement): p(x|y) probability that
the system is in x given measurement yields y, assume
p(x=y|y) > 1

2

• Switch ϕ: x ϕ=0−−−→ x, x ϕ=1−−−→ (1− x)

∆Ex(ϕ) = E1(x|ϕ)− E0(x) = (2x− 1)ϕ ϵ0

• Optimal conditional strategy: switch (ϕ = 1) if p(1|y) > 1
2 , i.e.,

π(ϕ|y) = δϕ,y

• ⟨W⟩opt = −
∑
x,y p(x|y)p(y)∆Ex(y)
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Analogy with work extraction

y = 1

x = 0

∆E

x = 1

W = +∆E

W = −∆E

y = 0
y = 1
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Analogy with work extraction

• Define π(x|y) = e−E1(x|y)/kBT /
∑
x′

e−E1(x
′|y)/kBT

︸ ︷︷ ︸
Z1(y)

• Average extracted work:

⟨W⟩p(x,y) = −⟨∆Ex(y)⟩p(x,y)

= kBT
∑
x,y

p(x, y) log
π(x|y)
p(x)

(Kelly)

= kBTI(X;Y )− kBT
∑
y

p(y)DKL(p(x|y)∥π(x|y))

• Can be generalized to more states: defining

F1(y) = −kBT logZ1(y) F0 = −kBT logZ0

∆F = ⟨F1(y)⟩ − F0

one has
⟨W⟩ ≤ kBTI(X;Y )−∆F
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Fluctuation relations

Cf. Hirono and Idaka, 2015 (gambling), Kobayashi and Sughiyama,
2015 (populations)

• From the analogy one can obtain fluctuation relations for the
fluctuating growth rate:

Λt = log
Nt+1

Nt

• With a fixed strategy b(x):

eΛt = K(xt)b(xt)

• Define q(x) by K(x) = K0/q(x),
∑
x q(x) = 1, sX(x) = −p(x),

sQ(x) = −q(x), then⟨
eΛ+s−sQ

⟩
= K0

∑
x

b(x) = K0
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Fluctuation relations

• Note that for a Kelly optimal strategy b∗ one has

Λt = K(xt)p(xt) = K0
p(xt)

q(xt)
= K0e

sQ(xt)−s(xt)

thus the exponent is given by the growth-rate loss:

Λ(b)− logK0 + s− sQ = Λ(b)− Λ(b∗)

• In the presence of cues, with conditional strategy π(x|y):
defining ix,y = log[p(x, y)/(p(x)p(y))]⟨

eΛ−logK0+sX−sQ−ix,y
⟩
= 1

which can be again expressed in terms of the growth-rate loss
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Common and individual information

Rivoire and Leibler, 2011

• In thermodynamics and gambling, decisions are centralized
• In population dynamics, each individual has its own sensor
• C(ψ|y) conditional probability of sensor output ψ with cue y
• π0(ϕ|ψ) conditional probability of pheno ϕ with output ψ
• Optimal growth rate:

Λopt = ⟨logK⟩+
∑
x

p(x) log π(x|x)

π(x|x) = Prob(ϕ=x|x) =
∑
ψ

π0(x|ψ)C(ψ|x)

∑
x

p(x) log π(x|x) =
∑
x

p(x) log ⟨π0(x|ψ)⟩Ψ|X︸ ︷︷ ︸
annealed

≥
∑
x,ψ

p(x, ψ) log π0(x|ψ)︸ ︷︷ ︸
quenched

• Thus Λopt is larger when individual sensors are available
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Inheritance, memory and non-equilibrium

Inheritance:

• We assume that the environment is described by a Markov
chain: x Wx′x−−−→ x′

• We focus on one time step: X0 −→ X1 (can be generalized to
history dependence)

• The pdf of X1 depends on both X0 and the current cue Y1:
PX(X1|X0, Y1)

• The pheno Φ1 = X1 also depends both on X0 and on the cue
Y1: π(X1|X0, Y1)

• The growth rate is given by

Λ = ⟨logK⟩ −H(X1|X0) + I(X1;Y1|X0)

− ⟨DKL(P (X1|X0, Y1)∥π(X1|X0, Y1))⟩P (X0,X1)
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Inheritance, memory and non-equilibrium

• Value of acquired information: optimal strategy
π∗ = P (X1|X0, Y1), optimal growth rate

Λopt = ⟨logK⟩ −H(X1|X0) + I(X1;Y1|X0)︸ ︷︷ ︸
Iacquired

• Value of inherited information: rewrite the growth rate

Λ = ⟨logK⟩ −H(X1|Y1) + I(X1;X0|Y1)
− ⟨DKL(P (X1|X0, Y1)∥π(X1|X0, Y1))⟩P (X0,X1)

• Optimal growth rate

Λopt = ⟨logK⟩ −H(X1|Y1) + I(X1;X0|Y1)︸ ︷︷ ︸
Iinherited

• Total information

Itot = I(X1;X0) + I(X1;Y1|X0) = I(X1;Y1) + I(X1;X0|Y1)

N.B.: Inequalities hold in general for imperfect selectivity
(Iacquired ≤ I(X1;Y1|X0)) etc. 13



Inheritance, memory and non-equilibrium

• Fluctuation theorem in population with inheritance:⟨
eΛ−logK0−sQ−ix1x0y1

+sX−ix0y1

⟩
= 1

Generalized by Kobayashi and Sughiyama by the consideration
of the reverse trajectories…

• Interpretation of inheritance in stochastic thermodynamics:
• System described by coordinate x, potential E(x, λ)

• Noisy measurement of x made at regular intervals τ
• A demon can act on λ to change E(x) and extract work
• τ smaller than equilibration time (Cf. Pal and Reuveni, 2017)

• One can consider optimizing the output power ⟨W ⟩ /τ
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Summary

• There is a deep analogy between the role of information
acquisition in population dynamics, in gambling and in
stochastic thermodynamics

• Some aspects of population dynamics are however peculiar to
it, e.g., the role of distributed information (sensing)

• These analogies may help in identifying new relations in each of
the different contexts

• I did not discuss learning, i.e., how the optimal strategies can be
approached

• For the case of gambling, this leads to portfolio management
(Cover and Ordentlich, 1996)

• For the case of evolution, to genotype selection with genotypes as
bet-hedging strategies, subject to Darwinian selection (see, e.g.,
Xue and Leibler, 2016 )

• For the case of work extraction, to adaptive control protocol
(Vinkler et al., 2015)
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Thanks!
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