Population Genetics and Evolution - III

 Statistics of Genealogies: The CoalescentLuca Peliti

Dipartimento di Fisica and Sezione INFN
Università di Napoli "Federico II"

Helsinki / June 2013

Outline

Introduction

The Coalescent

The Coalescent with selection

Introduction

Genealogies

- How far in the past must we go to reach the last common ancestor of n individuals? of the whole population?
- How many different genotypes can we expect to find by sampling n individuals?
- How do the times to the last common ancestor depend on the particular chosen sample? on the population size?
- How do they fluctuate as the population evolves in time?
- How are they affected by selection?

These questions can be addressed by using the concept of the Coalescent

The Coalescent

JFC Kingman

The Wright-Fisher model

Two ways of looking at the Wright-Fisher model:

The Wright-Fisher model

Two ways of looking at the Wright-Fisher model:

Iterating the process

Iterating the process

Neutral Wright-Fisher process:

- Set $t=0$ for the present, and count generations backward from the present
- Individual labels: $\{1, \ldots, N\}$
- At each generation, define the application $p: i \mapsto p_{t}(i)$ from i to its parent
- $p_{t}(i)$ is extracted at random, independently for each i and each t
- Ancestor: $a_{t}(i)=\underbrace{p_{t}\left(p_{t-1}\left(\cdots p_{2}\left(p_{1}\right.\right.\right.}_{t \text { times }}(i))))$
- Lineage: $L(i)=\left(a_{0}(i)=i, a_{1}(i), a_{2}(i), \ldots\right)$
- Lineage coalescence: $a_{t}(i)=a_{t}(j), i \neq j$
- Coalescence time: $\tau(i, j): a_{\tau}(i)=a_{\tau}(j), a_{\tau-1}(i) \neq a_{\tau-1}(j)$

Iterating the process

Disclaimer:
In this [lecture] gene genealogies will sometimes be referred to simply as genealogies. It should be understood that this refers to the genetic ancestry of a sample at some locus in the genome and not to the usual definition of a genealogy, being the family relationship of a set of individuals.
J. Wakeley, 2009

Iterating the process

Questions:

- How many generations to the MRCA?
- What is the distribution of $\tau(i, j)$?
- What are the consequences for quantities we can measure?
N.B.: When treating diploids, set $N=2$ • population size Discussion of the effective population size: later!

Coalescent statistics

Hypotheses:

1. Equal fitness for all types (neutral process)
2. No subdivisions in the population (geographical or otherwise)
3. Constant population size

Assumptions 1. and 2. lead to exchangeability: the number of offspring of any individual is statistically the same random variable as for any other individual

Coalescent statistics

- Probability that n individuals have all different parents:

$$
\begin{aligned}
w_{n} & =\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{n-1}{N}\right) \\
& \simeq 1-\frac{n(n-1)}{2 N} \quad n \ll N
\end{aligned}
$$

- $\Pi_{n}(t)$: probability of n independent lineages at time t

$$
\Pi_{n}(t+1)=w_{n} \Pi_{n}(t) \simeq\left(1-\frac{n(n-1)}{2 N}\right) \Pi_{n}(t)
$$

- $\Pi_{n}(t)=\left(1-\frac{n(n-1)}{2 N}\right)^{t} \simeq \mathrm{e}^{-n(n-1) t /(2 N)}$
- In particular $\Pi_{2}(t) \simeq \mathrm{e}^{-t / N}$

Coalescent statistics

- Averages over the process are expressed by $[\ldots]_{\mathrm{av}}$
- Averages over the population are expressed by $\langle\ldots\rangle$
- Thus $[\tau(i, j)]_{\mathrm{av}}=N$
- Mutation rate u per genome and generation, infinite site model
- Expected \# of mutations wrt the common ancestor: Nu
- Expected \# of mutations between i and $j: 2 N u=\theta$

Distribution of coalescent times

$N=50$

Universality of the coalescent

- Reproduction model: Distribution of offspring size $m: \pi_{m}$

WF model: $\pi_{m}=\mathrm{e}^{-1} / m!\quad$ (Poisson)
Moran model: $\pi_{0}=\pi_{2}=\frac{1}{N}\left(1-\frac{1}{N}\right), \pi_{1}=1-\frac{2}{N}\left(1-\frac{1}{N}\right)$

- $[m]_{\mathrm{av}}=\sum_{m} m \pi_{m}=1$
- Probability of coalescence for n lineages:

$$
1-w_{n}=\binom{n}{2} \frac{1}{N} \sum_{m} m(m-1) \pi_{m}=\frac{n(n-1)}{2 N}\left(\left[m^{2}\right]_{\mathrm{av}}-1\right)
$$

- Define $[m(m-1)]_{\mathrm{av}}=\left[m^{2}\right]_{\mathrm{av}}-1=\kappa$
- Thus $w_{n}=1-\frac{n(n-1)}{2} \frac{\kappa}{N}$
- If $\left[\mathrm{m}^{2}\right]_{\mathrm{av}}<\infty$, all results hold, up to a time rescaling
- Choose time units so that $w_{n}=1-\frac{n(n-1)}{2}$

Probability of a genealogy

Each τ_{k} is independent, with distribution $\mathcal{P}_{k}(\tau)=\binom{k}{2} \mathrm{e}^{-\binom{k}{2} \tau}$

Distribution of the total length

- Define $T_{\text {total }}=\sum_{k=2}^{n} T_{k}, T_{k}=k \cdot \tau_{k}$
- Then each T_{k} is an exponentially distributed random variable, of average $\left[T_{k}\right]_{\mathrm{av}}=2 /(k-1)$

Distribution of the total length

$$
\begin{gathered}
\mathcal{P}_{\text {totala }}(T)=\operatorname{Prob}\left(T_{\text {total }}=T\right)=\int_{0}^{\infty} \prod_{k=2}^{n}\left(\mathrm{~d} T_{k} \frac{(k-1) \mathrm{e}^{-(k-1) T_{k} / 2}}{2}\right) \\
\times \delta\left(\sum_{k=2}^{N} T_{k}-T\right) \\
=\int_{-\mathrm{i} \infty}^{+\mathrm{i} \infty} \frac{\mathrm{~d} \lambda}{2 \pi \mathrm{i}} \int_{0}^{\infty} \prod_{k=2}^{n}\left(\mathrm{~d} T_{k} \frac{k-1}{2} \mathrm{e}^{-(k-1) T_{k} / 2}\right) \\
\times \exp \left[-\lambda\left(\sum_{k=2}^{N} T_{k}-T\right)\right] \\
=\int_{-\mathrm{i} \infty}^{+\mathrm{i} \infty} \frac{\mathrm{~d} \lambda}{2 \pi \mathrm{i}} \mathrm{e}^{\lambda T} \prod_{k=2}^{n}\left(\frac{k-1}{2 \lambda+(k-1)}\right)
\end{gathered}
$$

Distribution of the total length

Summing over the residues

$$
\begin{aligned}
\mathcal{P}_{\text {total }}(T) & =\sum_{k=2}^{n} \frac{k-1}{2} \mathrm{e}^{-(k-1) T / 2} \prod_{j(\neq k)} \frac{j-1}{j-k} \\
& =\sum_{k=2}^{n}(-1)^{k}\binom{n-1}{k-1} \frac{k-1}{2} \mathrm{e}^{-(k-1) T / 2} \\
& =\frac{n-1}{2} \mathrm{e}^{-T / 2}\left(1-\mathrm{e}^{-T / 2}\right)^{n-2}
\end{aligned}
$$

Tavaré, 1984; Wiuf and Hein, 1999

Distribution of the age of the MRCA

- Define $T_{\text {MRCA }}$ as the age of the MRCA of n samples
- Then $T_{\text {MRCA }}=\sum_{k=2}^{n} \tau_{k}$
- Each τ_{k} is exponentially distributed, with average

$$
\left[\tau_{k}\right]_{\mathrm{av}}=\left[\binom{k}{2}\right]^{-1}
$$

Distribution of the age of the MRCA

Using the same method one obtains

$$
\begin{aligned}
\mathcal{P}_{\mathrm{MRCA}}(T)= & \operatorname{Prob}\left(T_{\mathrm{MRCA}}=T\right) \\
= & \sum_{k=2}^{n}\binom{k}{2} \mathrm{e}^{-\binom{k}{2} T} \prod_{j(\neq k)} \frac{\binom{j}{2}}{\binom{j}{2}-\binom{k}{2}} \\
= & \sum_{k=2}^{n}\binom{k}{2}(-1)^{k}(2 k-1) \frac{n(n-1) \cdots(n-k+1)}{n(n+1) \cdots(n+k-1)} \mathrm{e}^{-\binom{k}{2} T} \\
& \quad \text { TAVARÉ, 1984; TAKAHATA AND NEI, } 1985
\end{aligned}
$$

Coalescence and mutations

The probability of a mutation occurring is uniform per unit length of the genealogy

Coalescence and mutations

- Assume mutation rate u per genome and generation, infinite allele model
- Two individuals carry the same allele if they encounter no mutation before their last common ancestor
- The probability of not having a mutation in a generation in a lineage is $1-u$
- The probability that neither lineage exhibits a mutation is $(1-u)^{2 \tau(i, j)} \simeq \exp (-2 u \tau(i, j))$
- Thus the probability that two individuals have the same allele is

$$
\begin{aligned}
p_{\text {same }} & =\frac{1}{N} \int_{0}^{\infty} \mathrm{d} \tau \mathrm{e}^{-2 u \tau-\tau / N} \\
& =\frac{1}{1+2 u N}=\frac{1}{1+\theta}
\end{aligned}
$$

Ewens' sampling formula

- Infinite-allele model
- Take n samples from a large population with $\theta=2 N u$
- Samples belong to the same group if they exhibit the same allele
- What is the probability that there are b_{1} groups with 1 element, b_{2} groups with 2 elements,... b_{k} with k elements,... ?

Ewens' sampling formula

$$
n=\sum_{k=1}^{n} k b_{k} \quad \# \text { of samples }
$$

$$
P\left(b_{1}, \ldots, b_{n}\right)=\frac{n!}{\theta(\theta+1) \cdots(\theta+n-1)} \frac{1}{1^{b_{1}} \cdot 2^{b_{2}} \cdots n^{b_{n}}} \frac{\theta^{\sum_{k} b_{k}}}{b_{1}!b_{2}!\cdots b_{n}!}
$$

The Chinese Restaurant Process

The Chinese Restaurant Process

At each step, when there are n customers:

- The customer sits at a new empty table with probability $\theta /(\theta+n)$, or
- The customer picks up one of the customers at random and sits at the same table

The Chinese Restaurant Process

- At each step, we get a factor $1 /(\theta+n)(n=0,1, \ldots)$
- Each new table gets a factor θ
- In going from k to $k+1$, each table gets a factor k
- Thus the probability that the (labeled) customers sit at ℓ tables, $i=1, \ldots, \ell$ of size $k_{i}, \sum_{i=1}^{\ell} k_{i}=n$ is given by

$$
P^{\mathrm{lab}}\left(k_{1}, \ldots, k_{\ell}\right)=\frac{\theta^{\ell}}{\theta(\theta+1) \cdots(\theta+n-1)} \prod_{i=1}^{\ell}\left(k_{i}-1\right)!
$$

- There are $n!/\left(k_{1}!\cdots k_{\ell}!\right)$ distributions of the customers compatible with $\left(k_{1}, \ldots, k_{\ell}\right)$, thus

$$
\begin{aligned}
P\left(k_{1}, \ldots, k_{\ell}\right) & =\frac{n!}{k_{1}!\cdots k_{\ell}!} \frac{\theta^{\ell}}{\theta(\theta+1) \cdots(\theta+n-1)} \prod_{i=1}^{\ell}\left(k_{i}-1\right)! \\
& =\frac{n!\theta^{\ell}}{\theta(\theta+1) \cdots(\theta+n-1)} \prod_{i=1}^{\ell} \frac{1}{k_{i}}
\end{aligned}
$$

The Chinese Restaurant Process

- Labelling the tables has introduced an overcounting: only the sizes of the tables matter! Thus defining

$$
b_{j}=\sum_{i=1}^{\ell} \delta_{k_{i}, j}
$$

we obtain

$$
P\left(b_{1}, \ldots, b_{n}\right)=\frac{n!\theta^{\ell}}{\theta(\theta+1) \cdots(\theta+n-1)} \frac{1}{1^{b_{1} \cdots n^{b_{n}}}} \underbrace{\frac{1}{b_{1}!\cdots b_{n}!}}_{\text {Table permutations }}
$$

Observables

- Distribution of the number k of segregating alleles:

$$
\begin{aligned}
p_{k}(n+1) & =\frac{n}{\theta+n} p_{k}(n)+\frac{\theta}{\theta+n} p_{k-1}(n) \\
{[k(n+1)]_{\mathrm{av}} } & =[k(n)]_{\mathrm{av}}+\frac{\theta}{\theta+n}=\theta \sum_{j=1}^{n-1} \frac{1}{\theta+j} \\
{\left[\Delta k^{2}(n+1)\right]_{\mathrm{av}} } & =\left[k^{2}(n)\right]_{\mathrm{av}}-[k(n)]_{\mathrm{av}}^{2}=\left[\Delta k^{2}(n)\right]_{\mathrm{av}}+\frac{n \theta}{(\theta+n)^{2}}
\end{aligned}
$$

- Distribution of the number ν of singletons:

$$
\begin{aligned}
p_{\nu}(n+1) & =\frac{\theta}{\theta+n} p_{\nu-1}(n)+\frac{\nu}{\theta+n} p_{\nu+1}(n)+\frac{n-\nu}{\theta+n} p_{\nu}(n) \\
{[\nu(n)]_{\mathrm{av}} } & =\frac{n \theta}{\theta+n-1}
\end{aligned}
$$

Observables

Average $[k]_{\mathrm{av}}$, variance $\left[\Delta k^{2}\right]_{\mathrm{av}}$ of segregating alleles and average $[\nu]_{\text {av }}$ of singletons vs. n for $\theta=3.1$

Observables

Distribution p_{ν} of the number of singletons for $n=200$ and $\theta=12.6$, together with the asymptotic distribution for $n \rightarrow \infty$ and simulation data over 1000 samples

Observables

Distribution p_{k} of the number of segregating alleles for $n=300$ and $\theta=3.1$, together with simulation data averaged over 1000 samples

Frequency spectrum

Average number $\left[b_{k}\right]_{\mathrm{av}}$ of groups of size k with $n=1000$ and $\theta=3.5$. The average is taken over 3000 realizations of the process.
The line corresponds to $\left[b_{k}\right]_{\mathrm{av}}=\left[b_{1}\right]_{\mathrm{av}} \mathrm{e}^{-\theta k / n} / k$, with
$\left[b_{1}\right]_{\mathrm{av}}=n \theta /(\theta+n-1)$

Effective population size N_{e}

The effective population size N_{e} can be different from the census population N :

- In sexual populations, because only some males actually reproduce(leks)
- Generally due to fluctuating population size:

$$
\frac{1}{N_{\mathrm{e}}} \simeq\left[\frac{1}{N}\right]_{\mathrm{av}}>\frac{1}{[N]_{\mathrm{av}}}
$$

- If fitness is nonuniform N_{e} is reduced wrt N :

$$
N_{\mathrm{e}}=\frac{N}{1+\operatorname{var}(\# \text { offspring })}
$$

Effective population size N_{e}

In practice, N_{e} is chosen to fit the data:

- For several human genes, $T_{\text {MRCA }} \simeq 400000 \mathrm{yrs}$
- One generation $\simeq 20 \mathrm{yrs}$
- Assuming neutrality, $N_{\mathrm{e}} \simeq 10000$ (diploidy!)
- "Out-of-Africa" bottleneck?

The Coalescent with selection

The Coalescent in the presence of selection

> Brunet, Derrida et al., 2006-2012

Neutral genealogy: $N=100, T_{\text {MRCA }}=125$

The Coalescent in the presence of selection

Brunet, Derrida et al., 2006-2012

Genealogy with selection: $N=100, T_{\text {MRCA }}=10$

Coalescent times

A general coalescence model (Λ-coalescent):

- One starts with N points: in each interval of duration $\mathrm{d} t$ there is a probability $\pi_{k} \mathrm{~d} t$ for every subset of k points to coalesce into one
- Then for some measure \wedge one has

$$
\pi_{k}=\int_{0}^{1} x^{k} \Lambda(\mathrm{~d} x)
$$

- Rate $\lambda_{b, k}$ at which $k(2 \leq k \leq p)$ points out of p coalesce into one is given by

$$
\lambda_{p, k}=\int_{0}^{1} x^{k-2}(1-x)^{p-k} \lambda(\mathrm{~d} x)=\sum_{n=0}^{p-k} \frac{(p-k)!}{n!(p-k-n)!}(-1)^{n} \pi_{n+k}
$$

- $r_{p}(\ell) \mathrm{d} t$: probability of having ℓ lineages at time $t+\mathrm{d} t$ if there are p lineages at time t :

$$
r_{p}(\ell)=\frac{p!}{(\ell-1)!(p-\ell+1)!} \lambda_{p, p-\ell+1}
$$

Coalescent times

- T_{p} : coalescence time for p lineages
- Assume steady state:

$$
\left[T_{p}\right]_{\mathrm{av}}=\mathrm{d} t+\left[T_{p}\right]_{\mathrm{av}}\left(1-\mathrm{d} t \sum_{k<p} r_{p}(k)\right)+\mathrm{d} t \sum_{k<p} r_{p}(k)\left[T_{k}\right]_{\mathrm{av}}
$$

Thus

$$
\begin{aligned}
{\left[T_{2}\right]_{\mathrm{av}} } & =\frac{1}{\pi_{2}} \\
\frac{\left[T_{3}\right]_{\mathrm{av}}}{\left[T_{2}\right]_{\mathrm{av}}} & =\frac{4 \pi_{2}-3 \pi_{3}}{3 \pi_{2}-2 \pi_{3}} \\
\frac{\left[T_{4}\right]_{\mathrm{av}}}{\left[T_{2}\right]_{\mathrm{av}}} & =\frac{27 \pi_{2}^{2}-56 \pi_{2} \pi_{3}+28 \pi_{3}^{2}+12 \pi_{2} \pi_{4}+10 \pi_{3} \pi_{4}}{\left(3 \pi_{2}-2 \pi_{3}\right)\left(6 \pi_{2}-8 \pi_{3}+3 \pi_{4}\right)} \\
& \vdots
\end{aligned}
$$

Coalescent times

In particular:

- The Kingman coalescent:

$$
\pi_{2} \neq 0 \quad \pi_{k}=0, \quad \forall k>2
$$

yields

$$
\left[T_{2}\right]_{\mathrm{av}}=\frac{1}{\pi_{2}}, \quad \frac{\left[T_{3}\right]_{\mathrm{av}}}{\left[T_{2}\right]_{\mathrm{av}}}=\frac{4}{3}, \quad \frac{\left[T_{4}\right]_{\mathrm{av}}}{\left[T_{2}\right]_{\mathrm{av}}}=\frac{3}{2} \quad \cdots
$$

- The Bolthausen-Sznitman coalescent:

$$
\pi_{k}=\frac{\pi_{2}}{k-1}
$$

yields

$$
\left[T_{2}\right]_{\mathrm{av}}=\frac{1}{\pi_{2}}, \quad \frac{\left[T_{3}\right]_{\mathrm{av}}}{\left[T_{2}\right]_{\mathrm{av}}}=\frac{5}{4}, \quad \frac{\left[T_{4}\right]_{\mathrm{av}}}{\left[T_{2}\right]_{\mathrm{av}}}=\frac{25}{18} \quad \cdots
$$

A solvable model

Brunet, Derrida et Al., 2006-2012

- N individuals, discrete generations
- Individual i at generation t has "fitness" $x_{i}(t)$
- Reproduction: Probability that one offspring of individual i has "fitness" between x and $x+\mathrm{d} x$:

$$
P(x) \mathrm{d} x=\mathrm{e}^{-\left(x-x_{i}(t)\right)} \mathrm{d} x
$$

Infinite \# of offspring: but only finite \# on the right of any given point

- Selection: At generation $t+1$ one keeps only the N rightmost individuals

A solvable model

Brunet, Derrida et Al., 2006-2012

- Now

$$
\sum_{i=1}^{N} \mathrm{e}^{-\left(x-x_{i}(t)\right)}=\mathrm{e}^{-\left(x_{i}-X_{t}\right)} \quad \text { with } \quad \mathrm{e}^{X_{t}}=\sum_{i=1}^{N} \mathrm{e}^{x_{i}(t)}
$$

- Thus generation $(t+1)$ is given by the N rightmost points of a Poisson process with density $\mathrm{e}^{-\left(x-X_{t}\right)}$
- Thus we have

$$
x_{i}(t+1)=X_{t}+Y_{t+1}+y_{i}(t+1)
$$

with

$$
\begin{aligned}
P(Y) \mathrm{d} Y & =\frac{1}{N!} \exp \left[-(N+1) Y-\mathrm{e}^{-Y}\right] \mathrm{d} Y \\
P(y) \mathrm{d} y & =\theta_{\mathrm{H}}(y) \mathrm{e}^{-y} \mathrm{~d} y
\end{aligned}
$$

A solvable model

Brunet, Derrida et Al., 2006-2012

Results:

- Probability that the parent of i has "fitness" x :

$$
p_{i}(x)=\frac{\mathrm{e}^{-\left(x-x_{i}(t)\right)}}{\sum_{j} \mathrm{e}^{-\left(x-x_{k}(t)\right)}}=\frac{\mathrm{e}^{y_{i}(t)}}{\sum_{j} \mathrm{e}^{y_{j}(t)}}
$$

- Rate of k-coalescences:

$$
\pi_{k}=\left[\sum_{i} p_{i}^{k}\right]_{\mathrm{av}} \simeq \frac{1}{(k-1) \log N} \quad \text { Bolthausen-Sznitman! }
$$

- Speed of adaptation:

$$
v=\left\langle X_{t}-X_{t-1}\right\rangle=\left\langle Y_{t}\right\rangle+\left\langle\log \sum_{i=1}^{N} \mathrm{e}^{y_{i}(t)}\right\rangle \sim \log \log N
$$

A solvable model

Brunet, Derrida et Al., 2006-2012

Conditioning on the speed:

- Introduce a weighting parameter β :

$$
\left[T_{k}\right]_{\beta}=\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{t^{\prime}=1}^{t} \frac{\left[\mathrm{e}^{-\beta X_{t}}\left\langle T_{k}\left(t^{\prime}\right)\right\rangle\right]_{\mathrm{av}}}{\left[\mathrm{e}^{-\beta X_{t}}\right]_{\mathrm{av}}}
$$

- Coalescence rates:

$$
\begin{aligned}
\pi_{k} & =\frac{\left[\sum_{i} \mathrm{e}^{k y_{i}(t)}\left(\sum_{j} \mathrm{e}^{y_{j}(t)}\right)^{-\beta-k}\right]_{\mathrm{av}}}{\left[\left(\sum_{j} \mathrm{e}^{y_{j}(t)}\right)^{-\beta}\right]_{\mathrm{av}}} \\
& \simeq \frac{1}{\log N} \frac{(k-2)!\Gamma(\beta+1)}{\Gamma(\beta+k)}
\end{aligned}
$$

Interpolates between Bolthausen-Sznitman $(\beta=0)$ and Kingman $(\beta \rightarrow \infty)$

More generic models

BRUNET ET AL., 2006-2012

- Each individual has two potential offspring
- The fitness of each offspring is shifted by z wrt to the parent's one, with pdf $\rho(z)$ (flat in the simulations)
- Selection modes:
- Perfect selection: The best N are retained
- Fuzzy selection: Random choice among the 3N/2 best
- Two-parent selection: Each individual chooses two parents, but only the better one is kept

More generic models

Brunet et Al., 2006-2012

More generic models

Brunet et Al., 2006-2012

More generic models

Brunet et al., 2006-2012

Coalescence time scale: $\left[T_{2}\right]_{\mathrm{av}} \sim \log ^{3} N$
Phenomenological theory

- The population looks like an advancing Kolmogorov-Fisher wave in "fitness" space
- Most of the time its motion is deterministic
- At intervals $\sim \log ^{3} N$ exceptionally "adapted" individuals arise
- These individual "sweep" a finite fraction of the population in a short time (multiple coalescence!)
- The distribution of the "sweep" sizes corresponds to the Bolthausen-Sznitman coalescent

