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Genealogies

• How far in the past must we go to reach the last common
ancestor of n individuals? of the whole population?

• How many different genotypes can we expect to find by
sampling n individuals?

• How do the times to the last common ancestor depend on
the particular chosen sample? on the population size?

• How do they fluctuate as the population evolves in time?
• How are they affected by selection?

These questions can be addressed by using the concept of the
Coalescent
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JFC Kingman
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The Wright-Fisher model

Two ways of looking at the Wright-Fisher model:

t+1

t
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Iterating the process
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Iterating the process

Neutral Wright-Fisher process:
• Set t = 0 for the present, and count generations backward

from the present
• Individual labels: {1, . . . ,N}
• At each generation, define the application p : i 7→ pt (i)

from i to its parent
• pt (i) is extracted at random, independently for each i and

each t
• Ancestor: at (i) = pt (pt−1(· · · p2(p1︸ ︷︷ ︸

t times

(i))))

• Lineage: L(i) = (a0(i) = i ,a1(i),a2(i), . . .)
• Lineage coalescence: at (i) = at (j), i 6= j
• Coalescence time: τ(i , j): aτ (i) = aτ (j), aτ−1(i) 6= aτ−1(j)
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Iterating the process

Disclaimer:
In this [lecture] gene genealogies will sometimes

be referred to simply as genealogies. It should be
understood that this refers to the genetic ancestry of a
sample at some locus in the genome and not to the
usual definition of a genealogy, being the family
relationship of a set of individuals.

J. WAKELEY, 2009
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Iterating the process

Questions:
• How many generations to the MRCA?
• What is the distribution of τ(i , j)?
• What are the consequences for quantities we can

measure?
N.B.: When treating diploids, set N = 2 · population size
Discussion of the effective population size: later!
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Coalescent statistics

Hypotheses:
1. Equal fitness for all types (neutral process)
2. No subdivisions in the population (geographical or

otherwise)
3. Constant population size

Assumptions 1. and 2. lead to exchangeability : the number of
offspring of any individual is statistically the same random
variable as for any other individual
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Coalescent statistics

• Probability that n individuals have all different parents:

wn =

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− n − 1
N

)
' 1− n(n − 1)

2N
n� N

• Πn(t): probability of n independent lineages at time t

Πn(t + 1) = wnΠn(t) '
(

1− n(n − 1)

2N

)
Πn(t)

• Πn(t) =
(

1− n(n−1)
2N

)t
' e−n(n−1)t/(2N)

• In particular Π2(t) ' e−t/N
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Coalescent statistics

• Averages over the process are expressed by
[
. . .
]

av
• Averages over the population are expressed by 〈. . .〉
• Thus [τ(i , j)]av = N
• Mutation rate u per genome and generation, infinite site

model
• Expected # of mutations wrt the common ancestor: Nu
• Expected # of mutations between i and j : 2Nu = θ
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Distribution of coalescent times
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Distribution of coalescent times
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Distribution of coalescent times
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Distribution of coalescent times
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Universality of the coalescent
• Reproduction model: Distribution of offspring size m: πm

WF model: πm = e−1/m! (Poisson)

Moran model: π0 = π2 =
1
N

(
1− 1

N

)
, π1 = 1− 2

N

(
1− 1

N

)
• [m]av =

∑
m m πm = 1

• Probability of coalescence for n lineages:

1−wn =

(
n
2

)
1
N

∑
m

m(m− 1)πm =
n(n − 1)

2N

([
m2
]

av
− 1
)

• Define [m(m − 1)]av =
[
m2]

av − 1 = κ

• Thus wn = 1− n(n−1)
2

κ
N

• If
[
m2]

av <∞, all results hold, up to a time rescaling

• Choose time units so that wn = 1− n(n−1)
2
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Probability of a genealogy

τ4

τ2

τ3

τ7
τ6
τ5

P(τ2, . . . , τ7) = exp
{
−1

2
[7 · 6 · τ7 + 6 · 5 · τ6 + · · ·+ 2 · 1 · τ2]

}
Each τk is independent, with distribution Pk (τ) =

(k
2

)
e−(k

2)τ
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Distribution of the total length

• Define Ttotal =
∑n

k=2 Tk , Tk = k · τk

• Then each Tk is an exponentially distributed random
variable, of average [Tk ]av = 2/(k − 1)
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Distribution of the total length

Ptotal(T ) = Prob(Ttotal = T ) =

∫ ∞
0

n∏
k=2

(
dTk

(k − 1) e−(k−1)Tk/2

2

)

× δ
(

N∑
k=2

Tk − T

)

=

∫ +i∞

−i∞

dλ
2πi

∫ ∞
0

n∏
k=2

(
dTk

k − 1
2

e−(k−1)Tk/2
)

× exp

[
−λ
(

N∑
k=2

Tk − T

)]

=

∫ +i∞

−i∞

dλ
2πi

eλT
n∏

k=2

(
k − 1

2λ+ (k − 1)

)
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Distribution of the total length

Summing over the residues

Ptotal(T ) =
n∑

k=2

k − 1
2

e−(k−1)T/2
∏

j (6=k)

j − 1
j − k

=
n∑

k=2

(−1)k
(

n − 1
k − 1

)
k − 1

2
e−(k−1)T/2

=
n − 1

2
e−T/2

(
1− e−T/2

)n−2

TAVARÉ, 1984; WIUF AND HEIN, 1999
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Distribution of the age of the MRCA

• Define TMRCA as the age of the MRCA of n samples
• Then TMRCA =

∑n
k=2 τk

• Each τk is exponentially distributed, with average

[τk ]av =
[(k

2

)]−1
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Distribution of the age of the MRCA

Using the same method one obtains

PMRCA(T ) = Prob(TMRCA = T )

=
n∑

k=2

(
k
2

)
e−(k

2)T
∏

j (6=k)

( j
2

)( j
2

)
−
(k

2

)
=

n∑
k=2

(
k
2

)
(−1)k (2k − 1)

n(n − 1) · · · (n − k + 1)

n(n + 1) · · · (n + k − 1)
e−(k

2)T

TAVARÉ, 1984; TAKAHATA AND NEI, 1985
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Coalescence and mutations

The probability of a mutation occurring is uniform per unit
length of the genealogy
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Coalescence and mutations
• Assume mutation rate u per genome and generation,

infinite allele model
• Two individuals carry the same allele if they encounter no

mutation before their last common ancestor
• The probability of not having a mutation in a generation in

a lineage is 1− u
• The probability that neither lineage exhibits a mutation is

(1− u)2τ(i,j) ' exp (−2uτ(i , j))

• Thus the probability that two individuals have the same
allele is

psame =
1
N

∫ ∞
0

dτ e−2uτ−τ/N

=
1

1 + 2uN
=

1
1 + θ
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Ewens’ sampling formula

• Infinite-allele model
• Take n samples from a large population with θ = 2Nu
• Samples belong to the same group if they exhibit the same

allele
• What is the probability that there are b1 groups with 1

element, b2 groups with 2 elements,. . . bk with k
elements,. . . ?
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Ewens’ sampling formula

n =
n∑

k=1

k bk # of samples

P(b1, . . . ,bn) =
n!

θ(θ + 1) · · · (θ + n − 1)

1
1b1 · 2b2 · · · nbn

θ
∑

k bk

b1!b2! · · · bn!
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The Chinese Restaurant Process
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The Chinese Restaurant Process

At each step, when there are n customers:
• The customer sits at a new empty table with probability
θ/(θ + n), or

• The customer picks up one of the customers at random
and sits at the same table
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The Chinese Restaurant Process
• At each step, we get a factor 1/(θ + n) (n = 0,1, . . .)
• Each new table gets a factor θ
• In going from k to k + 1, each table gets a factor k
• Thus the probability that the (labeled) customers sit at `

tables, i = 1, . . . , ` of size ki ,
∑`

i=1 ki = n is given by

P lab(k1, . . . , k`) =
θ`

θ(θ + 1) · · · (θ + n − 1)

∏̀
i=1

(ki − 1)!

• There are n!/(k1! · · · k`!) distributions of the customers
compatible with (k1, . . . , k`), thus

P(k1, . . . , k`) =
n!

k1! · · · k`!
θ`

θ(θ + 1) · · · (θ + n − 1)

∏̀
i=1

(ki − 1)!

=
n! θ`

θ(θ + 1) · · · (θ + n − 1)

∏̀
i=1

1
ki
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The Chinese Restaurant Process

• Labelling the tables has introduced an overcounting: only
the sizes of the tables matter! Thus defining

bj =
∑̀
i=1

δki ,j

we obtain

P(b1, . . . ,bn) =
n! θ`

θ(θ + 1) · · · (θ + n − 1)

1
1b1 · · · nbn

1
b1! · · · bn!︸ ︷︷ ︸

Table permutations
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Observables

• Distribution of the number k of segregating alleles:

pk (n + 1) =
n

θ + n
pk (n) +

θ

θ + n
pk−1(n)

[k(n + 1)]av = [k(n)]av +
θ

θ + n
= θ

n−1∑
j=1

1
θ + j[

∆k2(n + 1)
]

av
=

[
k2(n)

]
av
− [k(n)]2av =

[
∆k2(n)

]
av

+
nθ

(θ + n)2

• Distribution of the number ν of singletons:

pν(n + 1) =
θ

θ + n
pν−1(n) +

ν

θ + n
pν+1(n) +

n − ν
θ + n

pν(n)

[ν(n)]av =
nθ

θ + n − 1
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Observables
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av of segregating alleles and
average [ν]av of singletons vs. n for θ = 3.1
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Observables
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Distribution pν of the number of singletons for n = 200 and
θ = 12.6, together with the asymptotic distribution for n→∞
and simulation data over 1000 samples
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Observables

k
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Distribution pk of the number of segregating alleles for n = 300
and θ = 3.1, together with simulation data averaged over 1000
samples
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Frequency spectrum

k

0.001

0.01

0.1

1

10

1 10 100 1000

〈b
k
〉

0.0001

Average number [bk ]av of groups of size k with n = 1000 and
θ = 3.5. The average is taken over 3000 realizations of the
process.
The line corresponds to [bk ]av = [b1]av e−θk/n/k , with
[b1]av = nθ/(θ + n − 1)
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Effective population size Ne

The effective population size Ne can be different from the
census population N:
• In sexual populations, because only some males actually

reproduce(leks)
• Generally due to fluctuating population size:

1
Ne
'
[

1
N

]
av
>

1
[N]av

• If fitness is nonuniform Ne is reduced wrt N:

Ne =
N

1 + var(#offspring)



Introduction The Coalescent The Coalescent with selection

Effective population size Ne

In practice, Ne is chosen to fit the data:
• For several human genes, TMRCA ' 400 000 yrs
• One generation ' 20 yrs
• Assuming neutrality, Ne ' 10 000 (diploidy!)
• “Out-of-Africa” bottleneck?
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The Coalescent with selection
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The Coalescent in the presence of selection

BRUNET, DERRIDA et al., 2006–2012

Neutral genealogy: N = 100, TMRCA = 125
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The Coalescent in the presence of selection

BRUNET, DERRIDA et al., 2006–2012

Genealogy with selection: N = 100, TMRCA = 10
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Coalescent times
A general coalescence model (Λ-coalescent):
• One starts with N points: in each interval of duration dt

there is a probability πk dt for every subset of k points to
coalesce into one

• Then for some measure Λ one has

πk =

∫ 1

0
xk Λ(dx)

• Rate λb,k at which k (2 ≤ k ≤ p) points out of p coalesce
into one is given by

λp,k =

∫ 1

0
xk−2(1−x)p−kλ(dx) =

p−k∑
n=0

(p − k)!

n!(p − k − n)!
(−1)nπn+k

• rp(`) dt : probability of having ` lineages at time t + dt if
there are p lineages at time t :

rp(`) =
p!

(`− 1)!(p − `+ 1)!
λp,p−`+1
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Coalescent times
• Tp: coalescence time for p lineages
• Assume steady state:

[Tp]av = dt + [Tp]av

1− dt
∑
k<p

rp(k)

+ dt
∑
k<p

rp(k) [Tk ]av

Thus

[T2]av =
1
π2

[T3]av
[T2]av

=
4π2 − 3π3

3π2 − 2π3

[T4]av
[T2]av

=
27π2

2 − 56π2π3 + 28π2
3 + 12π2π4 + 10π3π4

(3π2 − 2π3)(6π2 − 8π3 + 3π4)

...
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Coalescent times
In particular:
• The Kingman coalescent:

π2 6= 0 πk = 0, ∀k > 2

yields

[T2]av =
1
π2
,

[T3]av
[T2]av

=
4
3
,

[T4]av
[T2]av

=
3
2
· · ·

• The Bolthausen-Sznitman coalescent :

πk =
π2

k − 1

yields

[T2]av =
1
π2
,

[T3]av
[T2]av

=
5
4
,

[T4]av
[T2]av

=
25
18

· · ·
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A solvable model

BRUNET, DERRIDA ET AL., 2006–2012

• N individuals, discrete generations
• Individual i at generation t has “fitness” xi(t)
• Reproduction: Probability that one offspring of individual i

has “fitness” between x and x + dx :

P(x) dx = e−(x−xi (t)) dx

Infinite # of offspring: but only finite # on the right of any
given point

• Selection: At generation t + 1 one keeps only the N
rightmost individuals
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A solvable model

BRUNET, DERRIDA ET AL., 2006–2012

• Now
N∑

i=1

e−(x−xi (t)) = e−(xi−Xt ) with eXt =
N∑

i=1

exi (t)

• Thus generation (t + 1) is given by the N rightmost points
of a Poisson process with density e−(x−Xt )

• Thus we have

xi(t + 1) = Xt + Yt+1 + yi(t + 1)

with

P(Y ) dY =
1

N!
exp

[
−(N + 1)Y − e−Y

]
dY

P(y) dy = θH(y) e−y dy
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A solvable model

BRUNET, DERRIDA ET AL., 2006–2012

Results:
• Probability that the parent of i has “fitness” x :

pi(x) =
e−(x−xi (t))∑
j e−(x−xk (t))

=
eyi (t)∑

j eyj(t)

• Rate of k -coalescences:

πk =

[∑
i

pk
i

]
av

' 1
(k − 1) log N

Bolthausen-Sznitman!

• Speed of adaptation:

v = 〈Xt − Xt−1〉 = 〈Yt〉+

〈
log

N∑
i=1

eyi (t)

〉
∼ log log N
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A solvable model
BRUNET, DERRIDA ET AL., 2006–2012

Conditioning on the speed:
• Introduce a weighting parameter β:

[Tk ]β = lim
t→∞

1
t

t∑
t ′=1

[
e−βXt 〈Tk (t ′)〉

]
av[

e−βXt
]

av

• Coalescence rates:

πk =

[∑
i ekyi (t)

(∑
j eyj (t)

)−β−k
]

av[(∑
j eyj (t)

)−β]
av

' 1
log N

(k − 2)!Γ(β + 1)

Γ(β + k)

Interpolates between Bolthausen-Sznitman (β = 0) and
Kingman (β →∞)
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More generic models

BRUNET ET AL., 2006–2012

• Each individual has two potential offspring
• The fitness of each offspring is shifted by z wrt to the

parent’s one, with pdf ρ(z) (flat in the simulations)
• Selection modes:

• Perfect selection: The best N are retained
• Fuzzy selection: Random choice among the 3N/2 best
• Two-parent selection: Each individual chooses two parents,

but only the better one is kept
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More generic models

BRUNET ET AL., 2006–2012
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More generic models

BRUNET ET AL., 2006–2012
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More generic models

BRUNET ET AL., 2006–2012

Coalescence time scale: [T2]av ∼ log3 N
Phenomenological theory
• The population looks like an advancing Kolmogorov-Fisher

wave in “fitness” space
• Most of the time its motion is deterministic
• At intervals ∼ log3 N exceptionally “adapted” individuals

arise
• These individual “sweep” a finite fraction of the population

in a short time (multiple coalescence!)
• The distribution of the “sweep” sizes corresponds to the

Bolthausen-Sznitman coalescent
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