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Hardy-Weinberg equilibrium

• Sexual reproduction, diploid genome
• Notation: A, a variant alleles at one locus (ultimately, DNA

subsequences)
• Genotypes: AA & aa homozygotes, Aa heterozygote

(same as aA)
• Population of size N, with genotype frequency vector

(xAA, xAa, xaa)

• Then p = 2xAA + xAa is the frequency of the A allele, and
q = 2xaa + xAa that of the a allele
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Hardy-Weinberg equilibrium

• Hardy-Weinberg theorem: Assume
• Large population (fluctuations are neglected)
• Neutral genotypes (fitness equal for everybody)
• Mating is random (panmictic population)

• Then, at the next generation:

xAA = p2 xAa = 2pq xaa = q2

• Allele frequencies determine the genotype frequencies!



Mutations Mutations and selection Drift

Hardy-Weinberg equilibrium

De Finetti diagram:
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Nature of mutations
• Sequence mutations are changes in the offspring DNA wrt

that of its parent(s)
• According to their nature, small (point) mutations are:

Transitions: A� G or C� T
Transversions: A� C,T or G� C,T

Indels: Insertion or deletion of a short nucleotide
sequence
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Mutations in coding sequences

• In coding sequences each nucleotide triplet codes for a
codon

• According to their effects mutations are:
Synonymous or silent: The mutated codon corresponds to

the same amino acid (weakest effect)
Non-synonymous or missense: The mutated codon

corresponds to a different amino acid
(stronger effect)

Nonsense: The replacement changes the codon into one
of the stop ones (much stronger effect)

• Indels with a length which is not a multiple of 3 produce
reading frame shifts: all codons after the indel are
affected (strongest effect)
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Mutation rates

• Mutations are a stochastic process, due both to the effect
of the environment and of the organism’s internal workings

• Mutation rates can be estimated by comparing orthologous
sequences in two related life forms and counting changes

• One assumes a simple mutation model and estimates its
parameters by making the comparison
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Mutation rates

t

ACCGAGTCCTA ACCGACTCCTG

     *    *     *    *

ACCGA?TCCT?

Jukes’ rule: the time separation between the two sequence is 2t
Assumes that backward evolution is the same as forward
evolution (reversibility )
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Mutation rates

• The comparison evaluates substitution rates, rather than
mutation rates

• However, for neutral mutations the rates are equal (see
later) (Kimura)

• The estimate is based on four general assumptions (all of
them false!):

1. The rates are uniform (do not depend on the position in the
genome)

2. They are constant in time
3. They are the same for the two branches
4. The equilibrium frequencies of the nucleotides are the same

for the ancestral sequence and for the two “evolved” ones
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Model for nucleotide substitution
• Substitution matrix W = (µji): rate of substitution j ←− i ,

i , j ∈ {A,G,C,T}
• Frequency of base i : fi(t)
• Evolution equation for fi :

dfi
dt

=
∑
j (6=i)

′ [
µij fj − µji fi

]
• Equilibrium frequencies: f eq

i :
∑

j ( 6=i)

[
µij f

eq
j − µji f

eq
i

]
= 0

• Evolution matrix P(t) = (pji(t)): conditional probability to
find nucleotide j at time t , given that nucleotide i was in
that position at t = 0

• Observed data: Divergence matrix X(t) = (xji(t)): joint
pdf to find nucleotide j in the first sequence and nucleotide
i at the same position in the second sequence
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Model for nucleotide substitution

• Equation for P(t):

dpij

dt
=
∑

k ( 6=i)

′ [
µikpkj − µkipkj

]
pij(0) = δij

• Divergence matrix:

X(t) = P(t)X(0)PT(t) xij(0) = f eq
i δij

• Symmetry: XT = X, i.e., xji(t) = xij(t) (not exactly satisfied
due to sampling errors)

• Normalization constraint on the diagonal elements:
2xii = 2fi −

∑
i (6=j)

′xij −
∑

j (6=i)
′xji

• Thus W (16 entries) has only 6 independent parameters
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Model for nucleotide substitution

Jukes-Cantor model

All substitutions are equally proba-
ble: µij = α, ∀(i 6= j)

• f eq
i = 1

4 , ∀i ; pij(t) =
1
4

(
1− e−4αt + 4δije−4αt)

• Probability of observing the
same nucleotide in the two
sequences:

I(t) =
1
4

(
1 + 3e−8αt

)
• Thus αt = −1

8 ln
(4I−1

3

)
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Model for nucleotide substitution
General 6-parameter model

• A substitution A←− C implies the corresponding
substitution T←− G in the opposite strand

• Thus wAC = wTG, ecc.
• Thus we have only 6 independent rates from stable

sequences:
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Reversibility vs. detailed balance

O. ZAGORDI AND J.-L. LOBRY, 2005

• Detailed balance: µij f ex
j = µji f ex

i , ∀i 6= j
• Reversibility: P(−t) = P(t) (needed by Jukes’ rule)
• Theorem: Reversibility⇔ Detailed balance
• Problem: A model which fits the data is reversible?
• Answer: Chargaff rule: fA = fT, fG = fC (no strand bias)
• There are only five independent observable quantities in X!
• One can impose an additional constraint on the model,

e.g., µ1µ6 = µ2µ4 (reversibility)
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Infinite allele and infinite site model

• We often want to model mutations starting from a given
wild type

• Infinite allele model: Each mutation produces a wholly
new genotype

• No structure in the mutants: all mutants are as different
from the wild type as from each other

• Infinite site model: Each mutation hits a different site
• Mutants can be binned in k -classes: Classes with k

mutations wrt wild type
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Mutations and selection
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A simple model

• Population with two types: A and B
• Selection coefficient s = fA − fB
• Mutation: A

µ
� B

Evolution equation:

dx
dt

= sx(1− x) + µ(1− x)− µx = sx(1− x) + µ(1− 2x)
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A simple model
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A simple model
Fixed point x∗:

x∗ =
s − 2µ+

√
s2 + 4µ2

2s

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5

x
∗

s

µ = 0.1
µ = 0.2



Mutations Mutations and selection Drift

Optimization?

• 〈f 〉x = fAx + fB(1− x) is not maximal at x∗

• But define

Φ(x) = 〈f 〉x︸︷︷︸
−“energy”

+µ log [x(1− x)]︸ ︷︷ ︸
“entropy”

• Then

dΦ

dt
= s

dx
dt

+ µ
1− 2x

x(1− x)

dx
dt

= x(1− x)

[
s + µ

1− 2x
x(1− x)

]2

≥ 0

• Φ increases and reaches its maximum at the fixed point



Mutations Mutations and selection Drift

Multiple alleles

• r alleles: α
µ
� β α, β = 1, . . . , r µ(α −→ β) = µβ

• Set xr = 1−∑r−1
j=1 xj

• Define:

sj = fj − fr =
∂ 〈f 〉x
∂xj

, j = 1, . . . , r − 1

Γjk (x) =

{
−xjxk , if j 6= k
xj(1− xj), if j = k

Γ positive definite

• Evolution equation for x = (x1, . . . , xr−1):

dxj

dt
=

r−1∑
k=1

Γjk (x)sk + µj(1− xj)− xj
∑
α(6=j)

′
µk
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Optimization II
• Define

M(x) =
∑
α

µα log xα

• Then∑
k

Γjk (x)
∂M
∂xk

= µj(1− xj)− xj
∑
α(6=j)

′
µα = µj − xj

∑
α

µα

and

dxj

dt
=

∑
k

Γjk (x)
∂

∂xk
[〈f 〉x + M(x)] =

∑
k

Γjk (x)
∂Φ

∂xk

Φ(x) = 〈f 〉x + M(x)

• Thus
dΦ

dt
=
∑
j,k

∂Φ

∂xj
Γjk (x)

∂Φ

∂xk
≥ 0
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The quasispecies (QS) model

M. EIGEN, 1971

• Nonoverlapping generations; large number of alleles

• Mutation rate k
Qk`
� ` depending on “distance” of alleles

• Evolution equation for x = (x1, . . . , xr ):

xj(t + 1) =
1
〈W 〉x

r∑
k=1

QjkWkxk (t)

where 〈W 〉x =
∑

j Wjxj
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Asymptotic behavior of the QS model
• Define the unnormalized population vector y(t):

y(0) = x(0)

yj(t + 1) =
r∑

k=1

QjkWkyk (t) =
r∑

k=1

Tjkyk (t)

• Decompose y according to the right eigenvectors of
T = (QjkWk ):

y =
∑
κ

cκξ(κ)

T · ξ(κ) = λ(κ)ξ(κ)

• Perron-Frobenius theorem: the largest eigenvalue λ(0) is
positive and has a unique right eigenvector ξ(0), ξ(0)

i > 0, ∀i
• Thus, for n� 1

Tn · y =
∑
κ

(
λ(κ)

)n
cκξ(κ) '

(
λ(0)

)n
c0ξ

(0)
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The composition vector x

Since
x(t) =

y(t)∑
j yj(t)

we have
lim

t→∞
x(t) = ξ(0)

independently of the initial condition
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The error threshold

• One optimal genotype 0: W0 > Wk = W , ∀k 6= 0, r � 1
• Mutation probability k −→ 0: u/r ' 0
• Define W/W0 = 1− s
• Then

x0(t + 1) =
W0(1− u)x0

W0x + W (1− x0)
=

(1− u)x0

1− s + sx0
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The error threshold
Fixed point:

x∗0 = 1− u
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

x
0

u

N = 50

N = 500

N = 5000

N = 50000

Selection factor s = 0.2



Mutations Mutations and selection Drift

Error classes

xk : fraction of individuals with k “errors” with respect to selected
type
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Error classes

xk : fraction of individuals with k “errors” with respect to selected
type
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Error threshold vs. extinction

J. BULL ET AL., 2005; C. O. WILKE, 2005

• Simple model with three genotype classes:
• Class 0: Fitness W0 > 1, mutation probability u0 to Class 1
• Class 1: Fitness W1 < W0, mutation probability u1 < u0 to

Class 2
• Class 2: Fitness W2 = 0 (does not reproduce)
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Error threshold vs. extinction
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Error threshold vs. extinction

Evolution equation for the population vector n = (n0,n1,n2):

n(t + 1) = Tn(t)

T =

(1− u0)W0 0 0
u0W0 (1− u1)W1 0

0 u1W1 0


The total population is given by N(t) =

∑
j nj
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Error threshold vs. extinction

Eigenvalues and eigenvectors:

λ(0) = W0(1− u0)

n(0) =

(
(1− u0)(W0(1− u0)−W1(1− u1))

W0u0u1
,

(1− u0)W0

W1u1
,1
)

λ(1) = W1(1− u1)

n(1) =

(
0,

1− u1

u1
,1
)

N(t) ∼ (λmax)t : extinction if λmax < 1
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Error threshold vs. extinction

Error threshold:

(1− u0)W0 = (1− u1)W1

Extinction threshold:

λmax(W0,W1,u0,u1) = 1
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The transitions
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The transitions
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The transitions
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The transitions
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Lethal mutagenesis in RNA viruses

• RNA viruses have large mutation rates (of the order of 1
mutation per genome per replication) in spite of their very
small genome length (a few 104 bases)

• It has been suggested that increasing the mutation rate
can push a viral population beyond the extinction threshold

• This technique has been named lethal mutagenesis
• Can it be effective?
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Lethal mutagenesis in RNA viruses

The idea:
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Error Catastrophe in an RNA virus?

S. CROTTY ET AL., PNAS 98, 6895 (2001)
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Error Catastrophe in an RNA virus?

Mutation frequency per base µ in a normal RNA virus
population (poliovirus in HeLa cells), expressed per 104 bases

µ

RT-PCR 0.21
Normal virus population 2.12
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Error Catastrophe in an RNA virus?

Mutation frequency per base µ in a ribavirin-treated RNA virus
population, expressed per 104 bases

Ribavirin conc. G→ A C→ T Total µ
0 0.5 1.2 2.1
100µM — 1.3 2.5
400µM 4.4 5.0 9.3
1000µM 6.8 12.0 20.8
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Error Catastrophe in an RNA virus?
Infectivity of ribavin-mutagenized poliovirus

PFU: plaque-forming units
�: untreated cells; •: 100µM; N: 400µM; �: 1000µM
Measure obtained by electroporating viral RNA into HeLa cells
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Error Catastrophe in an RNA virus?

Infectivity vs. # of mutations
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Error Catastrophe in an RNA virus?

The data presented here demonstrate that high
genetic variability, a biological property that is normally
a major advantage for an RNA virus, can be turned
into a weapon against the virus by increasing that
mutation rate beyond tolerable levels and causing a
genetic meltdown.

Unlike RNA viruses, DNA-based organisms
generally have much lower mutation frequencies and
do not exist near the error threshold. They appear to
be able to absorb 300- to 5,000-fold higher increases
in mutation frequencies before significant loss of
viability is seen, although DNA viruses may be an
exception.
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Error Catastrophe in an RNA virus?

Discussion:
• Rather than error threshold, the experiments shows that

RNA viruses can only sustain a limited amount of
mutations, because of the several constraints on their
genome (cf. E. Holmes, 2005)

• The reduction in infectivity seems more a path to extinction
than an error catastrophe

• Difficult to conclude if data on the frequency spectrum of
mutants are not available
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Drift
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The Population Genetics Trimurti

Sewall Wright Ronald A. Fisher Motoo Kimura
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Finite population
The Wright-Fisher model
• Population size N, number nk of individuals of type k ,

k = 1, . . . , r , with fitness wk

• Nonoverlapping generations
• Given the composition vector x = (xi), xi = ni/N, the

numbers n′k in the next generation are distributed
according to

Prob(n′1, . . . ,n
′
r ) =

N!

n′1! · · · n′r !
ξ

n′
1

1 · · · ξ
n′

r
r

where
ξk =

xkwk∑
j xjwj

• Thus n′k is approximately distributed as a Gaussian with
mean Nξk and variance Nξk (1− ξk )
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Finite population

The Wright-Fisher model
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Finite population

The Wright-Fisher model: one realization (neutral)
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Finite population

The Wright-Fisher model: several realizations (neutral)
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Finite population
The Wright-Fisher model: one realization (selective:
N = 10 000, wk ∈ [1.0,1.1], xk (0) = 0.1)
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Finite population
The Wright-Fisher model: several realizations (selective:
N = 500, s = 0.01, x(0) = 0.1)
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Drift

. . . it is often convenient to consider a natural
population not so much as an aggregate of living
individuals as an aggregate of gene ratios. Such a
change of viewpoint is similar to that familiar in the
theory of gases. . .

R. A. FISHER, 1953
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Drift

We will start our discussion from the simplest
situation where the gene frequency fluctuates from
generation to generation because of the random
sampling of gametes in a finite population. Since
Wright’s work, the term drift has become quite popular
among biologists. However, in the mathematical
theory of Brownian motion, the term drift originally
connotes directional movement of the particle;
therefore in our context the adjective random should
be attached to it.

M. KIMURA, 1964 (ABRIDGED)
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Drift

• Finite population implies different outcomes for different
experiments in the same conditions (lack of self-averaging)

• Necessity to describe an ensemble of populations
• Use of the theory of Markov processes
• Simplification by means of diffusion equations
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Random drift in the neutral case

• Population of N haploid individuals, 2 neutral alleles: A, a
• Frequency of the A allele: x = nA/N
• Wright-Fisher model: At each time step, each individual i

of the new generation picks up a parent at random and
copies it
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Random drift in the neutral case

The Wright-Fisher model

t+1

t
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Random drift in the neutral case

• Probability that nA(t + 1) = n, given nA(t) = Nx(t):

pn(t + 1) =

(
N
n

)
(x(t))n(1− x(t))N−n

• Assume N � 1, 1
N � x � 1− 1

N , then

Prob (x(t + 1)=x) ∝ exp
(
− (x − x(t))2

2Nx(t)(1− x(t))

)
• ∆x(t) = x(t + 1)− x(t):

〈∆x(t)〉 = 0
〈

(∆x(t))2
〉

=
x(t)(1− x(t))

N
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The diffusion equation

Fokker-Planck equation:

∂

∂t
p(x , t) = − ∂

∂x
(〈∆x〉x p(x , t)) +

1
2
∂2

∂x2

(〈
∆x2

〉
x

p(x , t)
)

In our case
∂p
∂t

=
1

2N
∂2

∂x2 (x(1− x) p(x , t))
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The solution in the neutral case

• Set p(x , t | x0,0) =
∑

n cn(x0)χn(x) e−λnt/(2N)

• Eigenvalue equation:

x(1− x)χ′′n(x) + (1− 2x)χ′n(x) + λnχn(x) = 0

• Boundary conditions: x = 0,1 are singular points; we
require χn(0,1) finite ∀n

• Initial condition:

p(x ,0 | x0,0) =
∑

n

cn(x0)χn(x) = δ(x − x0)

• Solution in terms of hypergeometric functions:

χn(x) = F (1− n,n + 2,2, x) λn = n(n + 1)
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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The solution in the neutral case
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Initial condition x(0) = 0.1
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Initial condition x(0) = 0.1
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Initial condition x(0) = 0.1
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Initial condition x(0) = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
x0

1

2

3

4

5

6

7

pHx,tL

t = 1.5N



Mutations Mutations and selection Drift

Results

• p(x , t) decays exponentially:
p(x , t) ' 6x(0)(1− x(0))e−t/N for t � N

• Probability that A and a coexist at generation t :
Ω(t) =

∫ 1
0 dx p(x , t) decays with the same rate (p(x , t) is

flat)
• However, p(x , t) becomes flat later when x(0) 6= 1

2
• What is the probability of fixation of allele A as a function of

x(0)?
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The backward equation

• p(x , t | x0, t0): Conditional probability that x(t) = x given
that x(t0) = x0

• Consider the effect of a single-generation sampling near t0:
x(t0) + 1 = x0 + ∆x0

• Equation for p(x , t | x0, t0):

− ∂p
∂t0

= 〈∆x0〉x0

∂p
∂x0

+
1
2

〈
∆x2

0

〉
x0

∂2p
∂x2

0

• In our case

− ∂p
∂t0

=
x0(1− x0)

2N
∂2p
∂x2

0

N.B. In the stationary case, p depends only on t − t0, thus
∂p/∂t0 = −∂p/∂t
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The fixation probability

• P(t , x0, t0) = p(1, t | x0, t0): probability of being fixed by
time t

• “Ultimate” fixation probability: pfix(x0) = limt→∞ P(t , x0, t0)

• From the backward equation we obtain

d2pfix

dx2
0

= 0 x ∈ [0,1]

• Boundary conditions: pfix(x0=0) = 0 and pfix(x0=1)

• Solution:
pfix(x0) = x0
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Wright-Fisher model with selection
• Population of N haploid individuals, two alleles A and a
• Fitnesses: wA, wa

• Probability that an individual with allele A is chosen as a
parent:

ξA =
nAwA∑N

j=1 wj
=

nAwA

nAwA + nawa
=

x wA

xwA + (1− x)wa

• Probability that nA(t + 1) = n:

pn(t + 1) =

(
N
n

)
ξn

A (1− ξA)N−n

• Average and variance:

〈xA(t + 1)〉 = ξA〈
(xA(t + 1)− 〈xA(t + 1)〉)2

〉
= ξA (1− ξA) /N
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Selection and drift

If the first human infant with a gene for levitation
were struck by lightning in its pram, this would not
prove the new genotype to have low fitness, but only
that the particular child was unlucky.

JOHN MAYNARD SMITH
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Selection and drift

• Set wA = 1 + s, wa = 1, s � 1
• Then ξA = xwA/(xwA + wa(1− x)) = (1 + s)x/(1 + sx)

• Then
〈∆x〉x = 〈x(t + 1)〉 − x = sx(1− x)/(1 + sx) ' sx(1− x)
and

〈
∆x2〉 ' (x(1− x)/N)

• Diffusion equation for p(x , t):

∂p
∂t

= −s
∂

∂x
(x(1− x)p) +

1
2N

∂2

∂x2 (x(1− x)p)

• Solution in terms of spheroidal functions. . .
• Asymptotically p(x , t) ∝ χ(x) e−λt/N
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Solution with selection

The long-living eigenfunction:
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The leading eigenfunction χ(x) for several values of s
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Solution with selection

The decay rate:

s
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λ

0

Leading eigenvalue λ as a function of Ns; decay rate: λ/N
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The fixation probability with selection

• The backward equation:

∂p
∂t0

= sx0(1− x0)
∂p
∂x0

+
x0(1− x0)

2N
∂2p
∂x2

0

• Stationary solution:

∂pfix

∂x0
= C1e−2Nsx0

pfix(x0) = C0 − C1e−2Nsx0

=
1− e−2Nsx0

1− e−2Ns

• In particular, for s → 0, pfix → x0
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The fixation probability with selection
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Fixation probability of a single mutant

• For a single mutant x0 = 1
N

• Thus

pfix =
1− e−2s

1− e−2Ns

• Limits:
• s > 0, Ns � 1: pfix ' 1− e−2s (for s � 1, pfix ' 2s)
• s < 0, |Ns| � 1, pfix ' 0
• |Ns| . 1, pfix ' 1

N
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Fixation probability of a single mutant
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Frequency needed to obtain fixation

• How large must be x to be “almost sure” that a beneficial
mutant fixes?

• Solve
pfix(x∗) = 1− γ

• For Ns � 1 we have pfix(x) ' 1− e−2Nsx , thus

x∗ = − log γ
2Ns

or n∗ = − log γ
2s

• The fate of the mutant is determined in its initial phase,
where it undergoes a branching process—the size of N is
irrelevant!
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Substitution rate

• For a new mutant, x0 = 1
N

• For a neutral mutant, s = 0, thus pfix = x0 = 1
N

• If u is the mutation probability per genome and generation,
the expected number of mutants per generations is uN

• Of these, only a fraction 1
N reaches fixation, i.e., produces

a substitution
• Therefore the rate ν of neutral substitutions in a population

with mutation rate u is equal to u:

substitution rate = mutation rate

independently of the population size N
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The Moran model
Overlapping generations individual-based model:

Select for death

Initial population Select for reproduction

Replace
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The Moran model

• Selection: pkill(A) = 1− s, pkill(a) = 1
• ∆t = 1

N ; ∆nA ∈ {−1,0,+1}
• Probabilities:

P−1 =
na

N︸︷︷︸
Probrepr(a)

(1− s)
nA

N︸ ︷︷ ︸
Probkill (A)

= (1− s)x(1− x)

P+1 =
nA

N
na

N
= x(1− x)

P0 = 1− (P+1 + P−1)
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The Moran model

• Thus, for ∆t = 1
N , s � 1:

〈∆nA〉 = P+1 − P−1 = sx(1− x)〈
(∆nA)2

〉
= P+1 + P−1 = (2− s)x(1− x) ' 2 x(1− x)

• The diffusion equation for the Moran model:

∂p
∂t

= − ∂

∂x
(sx(1− x)p) +

1
N︸︷︷︸

= 1/2N for WF

∂2

∂x2 (x(1− x)p)

• The devil (or God?) is in the details. . .
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Adaptation and drift
MUSTONEN AND LÄSSIG, 2005–2010

Finite population of size N, r alleles, Moran model. Effects of
mutation and selection:

dxj

dt
=
∑

k

Γjk
∂Φ

∂xk
; Φ = 〈f 〉x +

∑
α

µα log xα

• Random drift: x −→ x + ξ〈
ξj
〉

x
= 0;

〈
ξjξk

〉
= 2

Γjk (x)

N
• Fokker-Planck equation for the pdf P(x):

∂P
∂t

=
∑

jk

∂

∂xj

[
− ∂Φ

∂xk

(
ΓjkP

)
+

1
N

∂

∂xk

(
ΓjkP

)]

=
∑

jk

∂

∂xj
Γjk

(
− ∂Φ̃

∂xk
P +

1
N
∂P
∂xk

)
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Adaptation and drift

MUSTONEN AND LÄSSIG, 2005–2010

• Φ̃ = Φ− 1
N log det Γ; det Γ =

∏
α xα

• Stationary solution:

Peq(x) ∝ eNΦ̃ = (det Γ)−1 eNΦ = P0 eN〈f 〉x

P0(x) ∝
∏
α

x−1+Nµα

• Thus, for a static fitness function f ,

[N 〈f 〉x ]eq
av =

∫
dx Peq(x) log

Peq(x)

P0(x)
= DKL (Peq‖ P0)
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cAMP-response protein binding loci in E. Coli

MUSTONEN AND LÄSSIG, 2005

• Factor binding sites are short DNA sequences which bind
activating factors

• Small mutation rates: µN � 1⇒ Population becomes
monomorphic (x = (xα)→ δαβ)

pβ = Prob
(
x = δαβ

)
∝ eNfβ

• It is reasonable to assume that their fitness depends on
their binding energy E

• One can expect a linear model for E(σ), σ = (σ1, . . . , σ`),
σi ∈ {A,T,G,C}

E(σ) =
∑̀
i=1

εi(σi) with εi(σ) = ε0 log
qi(σ)

p0(σ)
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cAMP-response protein binding loci in E. Coli

MUSTONEN AND LÄSSIG, 2005

Log histogram P(E) of binding energy E for 520 729
CRP-binding loci in E. Coli. Compared with
P(E) = (1− λ)P0(E) + λP0(E)e2NF (E). The inferred form of
2NF (E) is also plotted. (W-F model)
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