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ABSTRACT

The pfoperties of systems with scalar order parameter
around the critical point are investigated by means of
renormalisation group techniqueé. A new renormalisation
procedure is introduced in which the model is characterised
by its behaviour at a normalisation temperature abové‘the
critical temperature defined in terms of a parameter M2.
The independehce of the thermodynamic behaviour of the model
with respect to changes in the normalisationutemperature is
expressed by.a renormalisation group equation of a particularly
simple form. The asymptotiC~solution of the renormaiisatiou
group equation satisfiea by the geﬁerating funcﬁional for the
vertex functions leads to z simpie and unified treatment of
variouS'aSPects of cfitical phenomena. Possible extensions of
this treatment to other models as well as its relations to

other approaches to critical phenomena (namely.Wilson's

- renormalisation group and Migdal and Polyakov's bootstrap)

are discussed.
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0. INTRODUCTION:

0.0 The problem of critical phenomena

The difficulties encountered in the investigation of the
properties of matter in the prokimity of a critical point are
essentially due to a long range effective interaction among
fluctuations. It is a consequence of this feature that the'
effective coupling stréngth among fluctuations becomes éo
large that any simple minded perturbation theory is bound to
break down. The critical properties show, however, a simple,
though anomalous, structure: e.g. the equation of state of a
ferromagnet around its Curie temperature has a homogeneous
form; <The singular part of its free energy is a homogeneous
function of both the distance in temperature from the Curie
temperature and the ﬁagnetic field. The degree of homogeneity
is different from what one would have expected either from |
dimensional analysis or from perturbation theory. Another quite.
striking property is that the form of this homogeneoué behaviour,
and in particular the degrees of homogeneity do not depend on
the minor details of the system, but only on certain "gross
features” (like the dimensionality, and the symmetry of the order
parameter), and therefore wide classes of systems behave in
essentially the same way near the critical point. This wés-_
assumed as a principle (the "universality principle™) to obtain
a phenomenological theory of cfitical.phenomena, by'Kadanoff
(1966). Until quite recently it was not possible to find a
reasonable explanation of this fact. It was also not possible
to find a way of calculating the degrees of homogeneity in the

temperature shift from the critical -point and in the magnetic




field (the so-called "critical indices"), although the
phenomenological theory predicted that the degree of
homogeneity of all other quantities of interest could be
calculated, once two critical indices had been determined.
At the beginning of the seventies K.G. Wilson was able
to find the key to the investigation of critical phenomena
by the introduction of a set of transformations called the

"renormalisation group".

0.1 A short history of the renormalisation group

The expression "renormalisation group" had been used that
tiil:then in quantum field theory to denote a set of rather
obstruse transformations under which renormalised quantum field
theory is invariant. This invérianée is related to the fact that
the same model can be described in terms of different properties
\of its correlation functions: it is therefore possible to
change the parametérs which identify the lagrangian of the
model without actually changing the model. This invariance
had been first noticed by Stﬂbkelberg and Petermann (1951), and
had been used by Gell-Mann and Low (1954) for the investigation
of the behaviour of quantum electrodynamics at very high energy.
In the following years it_had essentially beén used as a
method to improve perturbation fheory, since it'gave a
constraint which ought to be satisfied by the exact solution
of the equations of motion. In this way it was introduced for
the first time into statistical mechanics (c¢f. Bonch~Bruevich
and Tyablikov (1962)). This set of transformations now bears

the name of Gell-Mann and Low.




Due to the breakdown.of direct attacks based on
perturbation theory around the critical point, it was
quite natural to look for exact properties of the true
thermodynamic behaviour in order to obtain some information.
The Gell-Mann and Low renormalisation grbup'provided one of
These exact proPerties. Therefofe, Di Castro and Jona-Lasinio
(1969) applied it to %pe investigétion of critical phenomena,

. obtaihing an explanation -of the homogeneous behaviour of some
Quantities, but it was ﬁot-possiblefor'them to obtain a full
explanation of universality, nor a way of calculating the
critical indices. ‘ . |

The transformations introduced by Wilson (1971a)(1971b)
were at first sight of a completely different kind: a set
of hamiltonians was found which had essentially the same
thermodynamic behaviour. The transformation carried from one
to another hamiltoniaﬁ in this set, and acted therefore on the
hamiltonian itself, not on the parameters which identify it.

By use of this set of transformations Wilson was able to give
the first reasonable estimations of the critical indices

(Wilson (2971b)), and was then able to find cases in which

the critical indices could be exactly calculated (Wilson (1972a),
Wilson and Fisher (1971)).

Meanwhile a completely different approach had been
developed in USSR: it was essentially based on the derivation
of some integral equations connecting correlation functions,
in which the interaction parameters of the hamiltonian had been
made to disappear(Migdal (1969) . . Polyakbv (1969)(1970) ).
In 1971 Migdal, and independently G. Parisi and the author,
found a way of scolving these equétions and estimating the critical

indices.




After the results of Wilson's investigations became .
known, the "old" approaches like the Gell-Mann and Low
renormalisation group were reconsidered, and it was found
that they yielded the same results obtained from Wilsorn's
approach in the cases in which it had given exact results.
(Di Castro (1972) Brezin, Le Guillon,,Zinﬁ—Justin (1973a)
and others). It was then desirable to establish a connection
between the two approaches, and between the two and the

"bootstrap" approach of Migdal and Polyakov.

. 0.2 The objective of this work

This work originated as an attempt to give a connection
between the two different points of view. ‘We establish here
a physical picture of the meaning of the Gell-Mann and Low
renormalisation group which is quite close in spirit to the
Wilson transformation. Since the main difficulties in
treating the critical phenomena arise from the diverging
coherence length, we can try to attack the problem stepﬁise:
we first characterise the model by its behaviour of some
temperature not too near the critical point, where the
coherence length is finite; we then try to gain from it some
information sbout the behaviour at a temperature slightly
nearer to the critical éoint, hoping that this can be obtained -
without encountering singularities. In this way we have
obtained a transformation which allows us to reach the
critical point asymptotically; we find that the singularities
are recovered in the asymptotic behaviour of a great number of

iterations of the transformation, exactly as in Wilson's work.




Our transformation has the advantage over the ordinary
Gell-Mann and Low transformatlon/;ﬁat it does not depend
explicitly on the temperature. -It shares this feature with the
other formulation of Gell-Mann and Low renormalisation group
used in quantum field theory, namely the Callan-Symanzik
(Callan (1970), Symanzik (1970))eQuation but has the advantage
of being homogeneoue. Therefore one is able to distinguish wifh
respect to the'approachee based on the Callan-Symautik equations.
j-namely the one by Brezin, Le Guillou, Zinn-Justin (1975&)

(19?3b)), which hypotheses are due to the particular form of
those equations and which are related to more profound problems.

We found it convenient to treat.the.renormalisation group
transformations directly on the generating functional for the
vertex functions, which is the generalieation of ordinary Gibbs'
free energy. This has the advantage of allowing for a compact
treatment of all interesting quantities which describe the
thermodynamic behaviour by means of e single equation. The
‘properties of all interesting quantities may then be obtained
- by simple dlfferentlatlon of this single equatlon.

In this way we have been able to obtain not only a very
simple Jjustification of'universality and a method of
calculating the critical indices in the eame cases in which
other methods give exact results; we have obtained a way of'
calculating the critical equation of state which is rathef
Smeler than the others (Brézin, Le Gulllou Zinn-Justin (1973b),
Br921n, Wallace, Wilson (19723))




0.3 Plan of the thesis

This work has been partially performgd in colilaboration
with Dr. C. Di Castrd, (University of Rome) and Professor
G. Jona-Lasinio (University of Padua). It is difficult for
me to distinguish the different contributions. ‘The new
normalisation procedure was however introduced by myself, so
that I thought it ponvenient to discuss it in great detail.
The subsequent treatment of the renormalisation group egquation
was the work of both Dr. C.:Di'Castro and myself. The use of
the renormalisation group equations for the generating
functional was suggested to us by a work of Coleman and
Weinberg (1973) and was formalised by Professor G. Jona-Lasinio
in our context. I am deeply indebted %o him also for the
discussion of the links between the renormalisation group
and the bootstrap approaches (section 5.5 ).

When the bulk of this work was completed, we became aware
of a similar work having been performed independently and at
the same time by Brézin, Le Guillon, Zinn-Justin (1973b) within ’
the context of the Callan-Symanzik equation.. I believe'that our
formalism has some advantages with respect to the Callan-
Symanzik equation, so that it is not useless to expound it in
.detail. I am however, indebted to them for clafifying for me
the problems connected with the crossing bf the~critical
isotherm (section 4.5 ). |

The plan of the thesis ig as folldws. In Chapter 1 the
phenomenology of critical points is reviewed, and the
universality principle is studied. In Ghapter 2 the Feynman
graph perturbation theofy éipansion for the geﬁerating functional
is introduced. Iﬁ Chapter 3'we‘show how it is possiblé to

characterise the generating functional.in terms of its properties



at a certain temperature (the "normalisation temperature™)
identified by a parameter M2 . The arbitrariness of this
parameter is then exploited in Chapter 4 for the investigation
of critical phenomena. The invariance of the thermodynanic -
behaviour model with respect to a change in M is expressed
by an egquation for the generating functional which ié solved
for femperatures near the critical 6ne. In this chapter we
also discuss some possible appligations of the formalism:

to different problems. In Chapfer 5 we establish the
connections between the approach used in' this work and the

" Wilson approach on the one hand aﬁd the "bootstrap" approach
on the other. Some technical problems are dealt wifh in‘

appendicés.




1. PHENOMENOLOGY OF CRITICATL POINTS

1.0 Critical points. Symmetry breaking. Order parameter.

If a ferromagnet is heated, through a temperature range
which includes the Curie temperature, its spontaneous
magnetisation vanishes continuously. No "jump" is observed
in its value as a function of temperature during the heating
process. Similarly, if liquid helium is cooled, at a certain
temperature (the A temperature) it will start showing
superfluid pfoperties: this can be interpreted as the effect
of having a finite fraction of helium particles condensed in
the loﬁest quantum state. This fraction is also a continuous
function of the temperature, which vanishes at the A
temperature. In‘both cases, and in many others.in physics,
at low temperatures the system shows a certain amount of
order - the spins of the individual magnets which we imagine
to form the ferromagnet point_on the average in the_same
direction; a large numbér of particles of liquid helium
may be considered to Be in the same quantum state - which then
disappears continuously as the system is heated. We call this
sort of phenomena "critical phenomeﬁa" and the thermodynamic
state in which-orderiﬁg disappears the "critical point". The
temperature at which a critical point may be realised for a
given system will be called the "critical temperature".

Critical points show a set of striking.features, who se
investigation has puzzled theoreticians and experimentalists
for a number of years; and still does. A first advance in
- their understanding came with'the introduction of the concept

of the "order parameter" (Landau (1937)). Consider a system

(e



whose hamiltonian is symmetric with respect to a certéin
group of transformations. To be definite, we can imagine
a model of a ferrbmagnet formed'by a lattice of individual
magnets, whose spin can point in any direction; so that
it may be represented by a classicalvector of unit leﬁgth
whose free endpoint may lie énywhere on the surface of a-
sphere. The spins are coupled in such a way that the energ&
is lowést when any two neighbouring spins point in the same
direction. This may be obtained if the hamilfonian is chosen
of the followiné form: let x be any point of the 1aﬁtice,
and ¢, its corresponding spin Vector. If we specify the
value of d; for each X we speCLfy what we call a
conflguratlon" s . of the system. To each conflguration.an'

energy is_associated, which is a functional of all O . We

choose this energy to be given by the following formula:

4 ,
HEGl = ~= 2 J 0 -G
2 (xx'> *ox (4-4)

H (o] is the energy associated with configuration G , J>o©
is the exchange integral which couples the magnets on the
latticé, and the angular brackets indicate that the sum .
runs over only nearest neighbour pairs of x's belonging to the
lattice. The functional H will be called the hamiltonian.
The energy assoclated with & is the same as that
associated with &' where G’/ is obtained from § by'rotating
all Gy 4in the same way. In fact!%iv]only depends on dot
products ofcn‘ . wthh are not changed by rotations. In

spin
this case we say that H possesses/rotatlon symmetry.




If the temperature is high enough, the entropy gain in letting
the spin variables point in disordered directions will win over
the energy gain from alignment of the spins. On the other hand,
if the temperature is near zero, the system would just not have
enough energy available in some cases to letvthe spin point in
- directions too far apart. In this second case we expect that

all over the lattice the spins point roughly in the same
direction, so that the system shows a nonzero spontaneous
magnetisation.' This does not necessarily happen‘ it is well
.known that it does not happen in general for one dimensional
systems, and for w1de classes of two dimensional systems. DBut
if it happens, although we see the hamlltonlan still possesses
' spin rotation symmetry, the thermodyﬁamic state doesn't: in
fact if we rotate all spins in the same way, we obtain a state
in which the averaée magnetisation yoints in a di;ferent
direction.

We can theréfore understand the critical point as a point

in which spontaneous symmetry breaking appears: a symmetry which

is present in the hamiltonian is not shown by the thermodynamic
state. We can characterise this property quantitatively by
introducing a thermodynamic function which measures the "amount
of symmetry breaking": a quantity which vanishes whenever the
thq?modynamical state has the same gsymmetry as the hamiltonian,
and which is nonzero when it doesn't; moreover, it is convenient
that it also determines which is the "direction" of the symmetry
breaking, so that it is different for two different thermo-
dynamical states, even if the "amount" of symmetry breékiﬁg is
the same. From these two requirements we see that a good

candidate for this quantity would be the average over the

10



thermodynamic state of a function of the coﬁfiguration o which
is changed in a nontrivial way whenever spin rotation is
applied to ¢ . We can choose for example the spontaneous

magnetisation itself, i.e. the average of

ME6d = % Z o, ‘ € 4.2)

where N is the number of points in the lattice.

We see that if 5":{0‘,’} is obtained from ¢ = {6‘,‘34
by rotating all ¢,'s in the same way, MLS'l is obtained by
rotating MIO] in the same way. (The factor 4/N  is .
introduced for convenience, as one has to take the thermodynamic
limit before a nonzero value of the average of'H appears). .

At this poinf it is not ob\'rious‘ how one is able to obtain
a nonzero value for the average.of'H[ when the probability Wwhen
distribution for g (we set the Boltzmann constant, kg R

equal to 1) bl61 , defined by

pL&Y - g--gj/’z;[yfl | (43
where T is the absolute _.temperature, and 'Z[;] is the
partition i‘unction given by _ ‘- MLod

2[2] - 2— € 7 Gy

0ee :.pui-fgurw.'qa; _

$o? . :
is symmetric with respect to spin rotations. In fact, one
would nbt be able to choose any prefefential direction along.which
the_ average of M could point. We can resolve this proble;m by
infroducing a term in the hamiltonian which breaks the/,\srpoltrgtion
'symmetry - and therefore chooses a preferred direction - and
which is set to zero after the average is taken. We. choose
therefore a three dimensional vector h,which may be interpreted

as an external magnetic fiéld) and define a new hamiltonian

HLO, %3 by

11




HIG, Q1= HLO1 - 4« NHLTT .(4.5)

where WIO1 is defined in (1.1) and MLSY in (1.2). In

this way we can calculate the magnefisation as a function

of h:
_nLo, %1 AN
#Meayz X MISle 7 /3 o7 ¥ C4. 0
axd ‘Lan{—ism‘o.h onl aeR cmpiguva\-‘\ou 5
163 £ 63

or more briefly, introducing the notation
~HES WY L HES W]

= 2__0tsl ¢ T A}
<o>% e wnk-iaum}‘\om Z ¢ .
q 6"3 oLR maaw«hon s
£}y

(4.%)
where O is any functional of g,

Mk = (H)a\

The "amount of_symmetrj_breaking".is now obtained by letting
L0 along some direction: we see from (1.5) that M(R)
will point_along the same direction, sgince the configurations -
for which MIS1 is aligned along h have lower energy, and
therefore higher probability. If, in the limit $h -0, M(R)
tends to a nonzero valuet;; (which will depend on the direction
bf h and T) we are below the critical poinf. (Actually to
obtain a nonzero value ofug-one must first téke the infinite
volume limit with h+# o, and then let h — o). fhe noﬁzero
value A is the spontaneous magnetisation. We can therefore
choose Y1 to represent the amount of spontaneous symmetry
breaking.

| A quantity like H=<{(M> which represents the amount of
symmetry breaking is éalled the "order parameter". Its most
important properties are: (i) it is nonzero wherever symmebtry
“breaking ocqurs;f (ii) it is not invariant under transformations
belonging to the symmetry group which is broken. It is a

consequence of these properties that below the critical point

12




the order parameter has a "free choice" i.e. to one and the

same temperature there may correspond different thermodynamic.
states with different values of the order parameter. _In this
way the symmetry of the hamiltonian manifests itself even.when_

spontaneous symmetry breaking occurs.

1.1 Landau Theory of Critical Points

When we approach the critical temperature from beiow, the
order parameter vanishes contiﬁuously. Thereforé around the
critical temperature we are interested in very small values of
the order parameter. The theory due to Landau (1937) starts
from theasgumption that even around the critical point, the.
free energy F(HM) as a function of the value of the prder

parameter and of the temperature is analytic: i.e.

ELH)_FCO) | 4 vy (o) + 2 T (MeiH) wees C4.9
T T 2 7L

In the expansion (1.9) ro(v) and 35}3 are analytic functions of
the temperature, around the critical temperature. In (1.9)
only dot products of M with itself appear, because F(M) should
be invariant under symmetry group transformations. We shall
consider Fin (1.9) as the free energy of a restricted ensemble
in which {#>=w , wnd in which all other degrees of freedom

are averaged out. Algebraically

. _ H{&)
S FEWD 4 2. e T |
T - N Saum\l-{gurahbns (4‘40)

for MEST=M]

where N is the number of points in the lattice.
The most probable value for WM will be the one which
minimizes (1.9). If we take the derivative of (1.9) with

respect to JH we get

13




AFMY/T)

W = R (T)A +3i: GolT) (M M) M+ .. C 4. 44)

The most probable value HMe of W will be such that
SCF(HMY/T)/ OV vanishes at M= - From (1.11l) we see-
~that in principle two different conditions can be sufricient
for this to happen: either . |

Me =0 : . C 4. 42)

or (if we consider sufficiently low.valﬁes of Mo to be able
to stop at the second term)

rsor) ' gt 300')cwo. HMo) =0 C4,43)

Far above the critical temperature only the first solution

is allowed. We see therefore from (1.13) that for T
sufficiently 1argé o and 9o muast be of the same sign. On
the other hand, far below the critical tempéfature the most
probable value WM¢ should be nonzero. Therefore (1.13) should
have a real solution, i.e; Yo ‘gnd'g° should be of opposite
sign. But F/T must have a minimum for M=wiec : therefore
both above and below the critical temperature gotr) should

be pbsitive. It follows that o (T) vanishes for some
temperature ‘o of the order of the critical temperature:

Yo (T)= @ (T-Ta )+ - é%;Au)'
where a' 1s a positive coefficient. On the other hand.

30(1‘) = go(‘f’o) Yoo 4. 45)
whe:e_gofnd is positive. Instead of 80CﬁJ we shall simply
write go . Let us introduce a term in the hamiltonian which
bresks the symmetry by means of a magnetic field h coupled to
M . One sees immediately that F(M,&)/T defined by

14




_ _ RG]
y 2 e T

_FGMB) 4
. —— = {-\}- g oLe Lo guraitouns ( 4. 4(;)
l 16 Motz M}

where wWIL& &1 “is given by (1;5), is given by

F(W;el) - F(e) + :‘. o (T (M,JA);,:.:.‘g(T) (t}'('t}"_) - Rt)«h- o (4, 4?’)
T T 2 "o
with the same cdefficients TbCT>,8OCT) as in- (1.9).
The equation for the most probable value Mo (which will now depend

on h) takes the form

'9) 2 e (T)He 4 :E;' 30(1') (l}lo'tﬂo)d‘o*;“ CA. AR)

» -

If we approximate YBCTLSOCT) by the expressions (1.1l4) (1.15)
" and introduce the notation .=z oY, we may rewrite (1.18) as

follows:

b = Mo [ to + :g.} 8° (lﬂo'd&o)] . (A4, 4“1).

with the understanding that one must take that solution of
(1.19) which actually minimises F(M,J!T : by continuity
and for h small, this solution will be around Me=0 if
T>Tos , whereas it is around the solution of (1.13) if

T< 7o - In this way we have obtained an equation for the

most_probable value of M as a function of the external field

h. This equation has a lot of properties in common with the
equation obeyed by the average value. We would be tempted to
substitute the average value Y4 of M into (1.19) and thus
obtain the true equation of state. Normally, one expects that,‘
in the infinite volume 1imit,.the probability distribution

for M is so sharp that average and most probable values coincide

from any point of?view..

15




If this were permiséible, we would be able to calculate

the thermodynamical behaviour of the system by using (1.19)
.as 1if it were the true equétion of state. In particular
one could calculate the zero field susceptibility by taking
the inverse of the derivative of h with respect to Mo , at
fiz0 ; the result for the susceptibility x, would be

x“: ol to (te>0) (4. 43a)

x = 20 | tol (to <o) (4.49DB)

We see that as té approaches zero the inverse susceptibility
vanishes proportionally to To» This is one of the strikipg

facts associated with the critical behaviour - the suscéptibility
‘diverges like some power of |T-Tef .

Unfortunately, this is not so. The probability
distribution for M is broad around the critical point, and at
the critical point it becomes so broad that its width, far from
being negligible, is very large. The reason is that the systenm
requires a vanishing amount of free energy to acquire a small |
but nevertheless nonzero vélue of M-M¢ , This_ean be seen
directly from (1.9). If T=Ts, vanishes, and therefore

| PG EEEE' = (OCME) EEE  (4.20)

T T :
It is well known that the probability of a fluctuation. is

calculable in terms of the free energy as follows:
-F/T - .
P = Gowsts & CA.24)

16



~where p is the probability of the fluctuation, and ¥ is the
relative free energy. We see from (1.20), (1.21) that up to
fbﬁrth order in M all values of M have the same value of F -
therefore one has to expect very large fluctuations to happen.
As a consequence we cannot coﬁsider Mo to be practically
equal to the average M , and (1.19).to bte of the form of the
| true equation of state. This also implies that we cannot
‘expect To to be the true critical temperature Tc . All
predictions based on the equations for the most probable

value break down where the fluctuations become too large.

'1,2 Non-uniform magnetisation. Coherence length. Limitations

. of Landau Theory.

When are fluctuations to be considered too large? This
gquestion has been answered By Ginsburg (1960). ‘in’order to
discuss it we muét generalise the Landau theory to take_into
account the case when the order parameter is allowed to Qary-
in space. (Ornstein and Zernické (aiw) ). |

ILet us imagine that the volume occupied by our'ferromagnet'-
is divided into a great number of boxes, each of which is Lrgé
enough for the free energy as a function of M to have its
infinite volume value, eq. (1.9). For each of these boxes
allow M to have a value, say H(x) where X labels the boxes.
Allow H(X)to vary very slowly when X runs along the boxes.
Now consider all configurations ¢ of the largé ferromagnét
such that M, calculated in box X has the value M(X) «

If we sum Q'H%g? over all such configurations, we get a sord
of partition function for an ensemble in which the order
parameter is'allowed to vary‘in space: 1its logarithm will Dbe

of the type

\
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- 2,
- . n - (MR /T ) (M) - ') 23
GFMl/T=h ;_(F(&H(x))’“r')%-;‘%‘é% )/ X)) (4.22)

where v is the number of lattice points in a box, ¥ is given
as a function of v by (1.9), the angular brackets indicate
that the sum acts only on neighbouring boxes and & is a
positive function of J{ and T . The first term is just the
sum of the free enmergies of all boxes by themselves; the
- gsecond term is a contribution due to the coupling of the boxes
with one another. As the interaction is only betweén nearest
neighbour spins, only nearest nelghbour boxes are to be con-
sidered in (1.22). Moreover ;& is positive and the square of
the differencé in 07 appears in (1.222 as the most probable
casé, all the rest being constant,l£> the one in which M does
not vafy from box to box. B

If we now consider only cases in which M(X)varies so
slowly that it can be approximated by a very smooth continuous
function of a continuous variabie 2, which runs over the
d-dimensional volume ‘f. bccupied.by our ferromagnet,’we may

write, instead of (1.22),

carm . (9= [FCU‘WX))*ﬂ %C_NF‘Z?_) (T () PH(R)) +1 (23)

X

in which we have'neglected higher powers of V4 , and the
integral runs over all the d-dimensional volume V .

The dimensionality d can oﬁly take the valuevd = 3, 2, 1 in.the ,
physical world, depending on the system one considers, It

tﬁrns out that it is a great theoretical advantage to consider
it free to vary not only an integer valués larger'than 3, but

also all along the positive semi-axis. Theories at non-integer



d will be defined later on; we shall see alreadj at the end
of this chapter a case in which the concept of a varying 4
becomes useful. If we use the approximations (1.14), (1.15)
in the power series expansion (1.9) of F/v and approximate
) by its value at HM=0,7T=7To - which is a positive number

2o: %oty We 86t the following approximation for F

~ - 2
A SFcod §ax lj{w (T-To) (M (XY e J4Cx)) 4 2’: g, {000y HOIY
T T . .-
. %zo CPMEx) e TM D) C4.2u)

Expression (1.24) is the generalisation of expansion .(1.9).

We shall call itthe'free energy functiogal" or the'Landau
functional. If we now introduce a very slowly varying magnetié"'
field [ (¢«x) the analogous to expression (1.17) is |

: 2
?Eﬁ"e‘j. - G&OJ_ - de t}loi('r-ro) (M) = M) 4 ‘i“_ 3,(&(1)-04(1)) .
+ % 2o (VMO VM) ~ £ (XD M) C4.26)

This allows us to _discusLs the‘ problem of the most probable
value of ‘H(i) wheﬁ Q(z) is not constant in »sﬁace. This
value Mo(x) will have to minimise the functional FM eI/ T
therefore the functional derivative §F[uL&]/8M(x) will

have to vanish.

| 5(35%6.1/‘:‘)‘_&, Lr_ro)-%w,*%‘%o (Mo (XD s Mox)) Molx)

Sdlcxl) g - : ; ' : :

2o Yot = R0 =0 (4.26)
The minus sign in front of Zo in eq. (1.26) is due to .

- the fact that we have integrated the (V‘H)a term by parts,
under the assumption that H(x) is constant outside a very large
box, so that surface terms can be neglected. The term takes

then the form - 2, utfx)( Vf){(at.)) whose derivative gives
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the term written in (1.26). If we are above Te and we
consider only terms of first order in h, the equation

simplifies to:
o (T-To )Mo (1) < 2o ViMo(2) = fcx)d (4-23)

which can be solved by Fourier transformation. Indicating
the Fourier tramnsforms of wo, § .by the same letters we

have

O (T-To) Molk) +.Bo k2 Mo k) = & (k) €4.29)
Therefore

WMo (k) = (W (T-To )t Zok?) 4 tk)

(4.29)
O WMo (k= Golk) ftk) where G, (k) is given by
Go (k) = (! (T-To)+ Zo k2 )™ C4.36)

and plays the role of a k-dependent susceptibility. Below
To the calculation proceeds in a similar way, but one has
- to consider first order corrections in h around the solution

v

of eq. (1.13). The equation corresponding to (1.22) is
(}‘{o.(k):(,?,a_flT-Tpi<}zokz)-“ k) C4.34)

We are still in Fourier space. To 'get the behaviour in
ordinary space we must transform back eguations (1.29), (1.31).
' We recallthat we are only interested in the case in which h

is very weak and very slowly varjing. The result is

Mo (x) = Sdx! Gotax. ) By o C4.32)



where Geo(x, %) "has the following behaviour for very large x:

-t |-t
6‘&: (%, %) A~ 2, 4 .
1% - | N2 C4-33)

(apart from factors of order 1)

where m 1is givéh by

. ol ((T-Te) - -
mﬁ - ‘-_‘—ZTQ (T> TO) C4. 3&) .
m2a A2 1T-Tel (pep ) . €4.35)
20 ' © .

We see from (1.33) that the effect of a field applied at a
point xf is felt up to disfances of.order m~%+. On the other
hénd we can consider m-% also as the average,range of
fluctuations in the order parameter. One may convince oneself
of this fact byreflecting that a fluctuation in the' order
parameter can be thought as having been obtained by applying
an infinitely weak and very sharply Iocaiised magne%ic field
at é point x' of our system; then Go{(*¥,%x') gives us the
value of the x-dependent order parameter for a fluctuation
centered around x. Therefore we may consider its range as
being of order m*. But then this rangé diverges as T
approaches To . -

| If we are below the critical point, the fluctuations will
appear as "blobs" of different magﬁetisation within a sea of
mégnetisation (;5 . If,in thése blobs, the magnetisation
differs from W of order i itself, it is clear that the
theory which neglecfs all fluctuations (i.e. in which average .:
and most probable value of M are taken to be equalj will not |

tell us whether there is a spoﬁtaneous magnetisation or not.
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We must estimate the size of the fluctuation, i.e. the
average value of (M- M) within a blob, and compare it with
512 - A way of getting this value is to assune that, for a
blob, M4 is practically constant up to distances of order

-

and then vanishes. Then the average is of the order
of the value of Gu(x,x') where % and =/ are a"distance of
order m ! apart:

G tx,n') ~ e mG 3 ' hLi3ed

Ikt mnt

where m is given by (1.35). On the other hand M* is given
by (1.13)
Hiz o 1T-Tel a3 m?

. %e 30

' The two quantities are comparable when (we disregard the

Ci.33%)

factor 3)

go ~ M | | cL3gd
where ¢ 1is defined by

€=U ~-a | ' _ ' r+.39)

For q, much smaller than m® the corrections due to taking .
into account the fluctuations will be negligible. We see.
from (1.38) that this is the case if ¢<o , i.e. if d is larger
than 4 . But when ¢>o(d<u) no matter how small g, is,-
for a certain value of the temberature wmE  will be larger than:
go 8nd the fluctuations will dominate. It all happens aé'if
eo/me were the effective strength of the coupling among
fluctuations. When this coupling is small, we can neglect
fluctuation effects; but when it diverges, not only does it
wreck the Landau theory, but it also makes any perturbation
expansion hopeless. We shall see how this problem is solved

by the renormalisation group theory.

*
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1.3 Kadanoff's Universality Hypothesis

So far the discussion has been purely theoretical, and
has led to a dead end. A hint for further progress can be
obtained from results of experimental study. The Landau
theory would have given us, if we had neglected the
fluctuations, an expression for the eguation of state of

the form

f= Ml 2 (& 7R ' ¢i.u0)

where, apart from uninteresting factors, §, was of the

form

572 Av Q.«.:)
(We have redefined 4 and ¢+ by a suitable proportionality
constant insfead of Mo and ke SO thaf (1.40) (1.41) hold).
In a whole region around the critical point we need not
consider higher powers in x than the one.we have written -
(i.e. asllong as M mnay be kept sufficiently small so that
(l.9)_is a good approximation) it is interesting that the form
of eq. (1.40) does not depend on the system we are considering,
ﬁp.to the order we have.written as all system dependent
.factors, such as a', g etc. can be eliminated by a suitable
redefinition of ¢ andJ% - Mdreovef, we see that the r.h.s.
of the eqpatiqn of state is a homogeneous function ofiwmi*
and t, of degree 3/2. If one now compares (1.40) with
 experimental results in three diwensions, one obtains very
similar answers. In fact,'the equation of state becomes,
with an appropriate definition of M and t%

A= M Loty 8-t 4 Ce /v Me) cru)




l.e. it is a homogenequs form in t and VM1*™ of degree

p% , where @ and & are some numbers, ususally called
"eritical indices" or critical exponents, and f is a functidn
of its aigument X, regular around x=0. JIn general B | and

& will differ from the values obtained in the Landau theory
I'(namely B =1/2, & =3) and the form of the function f will
be also different from 4, . For the model we are considering,
in three dimensions &% 5, (¢ 1/3. What is striking is
that very different systems obey the same equation of stéte
around the critical point, with the same critical indices

0 by and with the same function f, provided they have the
same'dimensionality d and the same broken symmetry (i.e. in
which the spontaneous}y broken symmetry is given by the same
abstract group). (There are some exceptions, mainly in some
exactly solvable models: Dut these may also be handled with
some modifications.) These observations led a number of workers;
notably Widom (1965) and Kadanoff (1966) (see Kadanoff et al.
(1967)) to formulate independently a genéral principle which
should be valid for all critical phenomena: the "universality
principle”. We shall follow Kadanoff's (1972)(1973) formulation
of this principle. To discuss this principle we shall need
some added terminology. Variables like the temperature and

" the magnetic field, which change the thermodynamic state of the
system will be called in general "fields". Within cerfain limits,
the fields are allowed to vary continuously around the critical

point. We may also consider fields A which change the model under



study, e.g. those which correspond to the addition of a new
term to the hamiltonian, of the type AOLEl yhere © is a
functional of the donfiguration.V'. We shall call all
functionals of the configurations, "operators" and their
averages, "densities”. For instance V\ is an operator,

and M is a density. For certain values of the fields
more than one valhe of certain demnsities is possible: among
these densities there is the order parameter. We shall éall
the surface in field space for which this happens the
"coexistenoe sﬁrface". We shall choose a field (typically
the magnetic field, & ) to carry us across the coexistence
surface; we define it in such a way that it vanishes on the
- surface. The coexistence surface ends on a line: the Jump
of the densities across the surface vanishes as we approach
~this line. We choose a field (typically the temperature
difference t=T-T. where T¢ is the critical temperature). to

carry us towards or away from this line - the critical line;

we define it in such a way that it vanishes on that line.
We shall consider the case in which another field is present,
A, which carries us along the critical line. _

In 1.2 we considered, instead of the original lattice,
a lattice of boxes of a certain size: we saw that they
were interacting via a nearest neighbour exchange, in much
. the same way.as the original "magnets" on the lattice ﬁere
interacting. The size of the bozes was not'specified:i call
it £ . Then to one and the same model we can associate a
whole set of models which differ by_the‘size of the boxes -
and we recall that within a box M is taken to be a constant.

Now if T is very near Te spin variables over distant lattice

25



points are correlated, in the sense that they would feel a
magnetic field (however weak) on one point up to distances
of order m™' (in general m will not be given by either
egns. (1.34) or (1.35)1 If we now consider the lattice of
boxes, and we choose ¢ as our unit of length, we see that
boxes up to a distance Wme) ™ are correlated. And if m is
very small, 4 can bé chosen to be very large, still keeping
Une)d'very large.

The universality hypothesis states that for similar

models the quéntity which essentially determines the

behaviour around the critical point is the coherence distance
w" . In this case two models afe.considered similar if they
have the same dimensionality and the same broken symmetry.
As the lattice model and the corresponding box lattice are
similar in the above éense, a number of interesting consequeﬁces
follow.

If m is very small, h and ¥ must be very small for a’
given model. For the corresponding box_model, with { as
tﬁe size of the box, &, and te nust be very small, too
(provided.% is not too large). Hence they will be
proportional to h and t respectively. We may consider the
box model of size § as a new lattice model and therefore
- form a new box model from it of size fa . 1f we now apply
the hypothesis that only the coherence disténce matters, we

obtain from

&ezzce,(e)&z ; t’ez=CeC‘? te Ca. 43D

" where ce and ¢y are defined by

he=Cated & 5 EerldE ' Cltilad
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that, apart from constant factors,

Ay X
Caeed= ¢ Ceter= Cl.u8)

where %o and x, are some exponents, which we shall call
the "anomalous dimensions"” of h and t respectively. If
we consider that in going to the size-f box model the
coherence distance cilanges from m=' to (me)™ we obbain the

functional equation

e-v‘nm (.Q”’& . AR PSS
valid provided { is not too large, and h and t are
sufficiently small. On the other hand the free energy is
not changed when we go from our original quel to the boxes:
but as we have chosen a different unit of iength, { tines
longer, its density will be €°L times larger, where d is the

dimensionality of the system. We obtain

TR, ey s FlaEY | Ce.u)

where F is the free energy. If we take the derivative of
¥ with respect to h we obtain the magnetization M |, which

therefore obeys the equation

~dexg x X :
‘t M (L ‘4\,2/&&)= Mi&h, D CA.4Z)
We can define xyz d- X as a new ci‘itical exponent.
If we compare {(l.48) with the phenomenological equation (1.42)
we obtain a relation between xy and the phenomenological

indices, p, 3

. .
:8 :' 9- - - - xM .

{ T c SO = o (4.49).
S .
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So far we havé not considered the field A explicitly.
The universality hypothesis says that where we go .to The
box model, the corresponding A may be chosen such that it
is. also rescaled by a factor ¢, @) provided it is |
sufficiently small in both the original lattice model and

in the box model; as above

x o
cacter= £ A C1.50)

Therefore

U F (R, 0, A ) s FeaL b Ca.s4) L

But now an interesting fact emerges: if we choose the
model whose critical behaviour we wish to study, A has a
fixed value, say A, . Now let us approaéh the critical

point along a line in (t,&) space for which

t"h , .
F? = cons V. (4.52)

For example we may choose t{(Td = to 'ka, Qetral,T whe, 4o
and %, are constants and x 1is a running variable which tends

to zero. If we choose 4=t ' we get from (1.51)

XN

Flaced, tcey, Aed =T° F (fhe,¥o, T  Ae)d €4.53)

It follows that when =®x>o ,no matter how small Ao 1is

there will be a point in which < Ao becomes large and
eq. (1.51) does not apply anymore. On the contrary, if X.<o
if dyeis small TN A.  will become smaller and smaller and

from a certain point on may be considered equal to zero.
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- In this case the whole effect of the nonzero value of
Ao ig in narrowing the region in which (1.47) strictly
holds, as that will be valid only for T ™ Re<<4
limitation which does not occur when A.=o . Moreover,‘if
we compare the Moo case with the Ae=p case we lget

from
: - %

F(&otx&,botx‘; )0,) '-"tdp(‘e“’,&ott');\-o\) C4£.56)
if we choose T(t,Ac) such that T ce.a0)<E where & is a
sufficiently small number for F on the r.h.s 1o be
practically equal to F calculated at A=o we obtain

ox i x ’ ) -
Flho T ke, 0, Yo TCE,003, 00 % T%e20) Fllio,to,0)  CL4.55)

i.e. for general h, ©

Y . 3 N - X ‘.
FlR,E,20) T T e, 20) T & -T(e,20), E e, 20),0) (4.56)

We can see therefore that if the index X, of a field A is

negative, it may be put equal to zero by a suitable rescaling

of h, t. UFields for which this happens are called irrelevant.
One sees from differentiation of (1.51) with respect to A that
the corresponding density has an index, say Xp s related to -

A by
Xp-r)(} =2 A : (4.63)

(this relation_betweén the indices of fields and® their
corresponding densities is general). As v, , is by
hypothesis, negative, x, will be larger than 4. Demsities

for which this happens are also called irrelevant.
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If x is positive, when we approach the critical poiﬁt
the effect of Ao not being zero becomes larger and larger,
.till formula (1.51) breaks down. In this case we say that
A is a relevant field. In this case the asympftotic
behaviour when we approach'the critical point hés nothing
to do with the Aezo case, although it may show some
similarities near, but not too near, the critical pointu4
(i.e. when eq. (1.51) does apply). From (1.53%) we see

that this will happen for

Xe/
ADS E v Ap P (.58

On the other hand it may well be the case that we can.
shift the definition of A by defining, with a suitable-A*,

Az A-AT . o C4-sa)

in such a way that if A, t and h is sufficiéntly small,
for different indices e , '_it , %% one has an equation

similar to (1.51):

g e, U, AT Fea, 5, X0 (1.60

and that in this case %a<o . Then A is irrelevant (in the
above sense) for the new critical behaviour and may be put

equal to zero for, say,

€« R%c’zh | o 4. 61)

If we consider the case A~ o we see that we can

distinguish three regions:
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: Xes
(a) the region 4> ¢ > X hiiae s the

2

behaviour is similar to the A=o0 case;

Re/a

(b) the region A

A Xe/sx
sy & »ONHTE ™ no homogeneous

formula applieg;

(c) the region (AY¥™** » ¢ ; the homogeneous

equation for the A = A* case applies.

If A is any field for which xa<o - we see that xy
determines the range in which corrections to the A = o
behaviour are to be considered: in this case we say that

Xx 1s a subcritical index. If %a>o we see that it

determines the point at which the behaviour is not anymore
determined by the A = o case; in this case we say that

is a cross-over index.

We shall see how some predictions of the universality
hypothesis can be derived in a unified way within our
- renormalisation group formalism, which will also allow us
to set up a procedure to calculate the indices X» 1n some

CasSeES.

l.4 Nonuniform case. Scaling laws.

The universality hypothesis does not imply consequences
for thermodynamics only. A way to generalise it to obtain
predictions for mi.c_r'os.copical,behaviour, starts from the
consideration of fhe behaviour of the susceptibility y A
If we take the derivative of eq. (1.48) with respect to h

on both sides we obtain the following equation for %

{_dnm %(Qm‘e“‘ex"t) = x (6, &) | (4.62)

which implies for the zero-field suscepfibility x(&“’t)
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'x'(&=0;€) = consh, . t'y

¢1.63)
where Y is a new critical index, related to XM, Xe by
X=' oh-2%n

We see by comparison with (1. 13a) (1. 49b) that for the

Landau theory p=4 . In these dimensions Y is typically of

order 4/3 . .
In the Landau theory we were also able to generalise

the concept of sysceptibility to include the casé of non-'

uniform magnetic field h, i.e. a field which is not constant

over the whole sample. If h was very weak, the magnetisation

J1 at point x was given by eq. €4.32):
0;1(«.): de..' Gex,n') bhex'y
where in the ILandau theory the Fourier transform of G with

~respect to x is of the form (apart from uninteresting

constant factor)

Gew) a kg, (m/ikid €4.65)

- Where 8°cx) is given by

- A
= CA® XD
SDQX) CAr (4‘6)

and m is given by egs. (1.34)(1.35). If one defines a
phenomenological quantity G by eq.'(l.52) one may ask what‘
is the form of G obtained experimentally. The answer is
very similar to'(i.65): i.e. apart from constant factors,

we have
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-2+r1

Gz k g Cm /et . C4.6%)

where m is a new critical index and g is in general different .
from q, . ' On the other hand we see from (1.46) that at .
h = o, and apart from constant factors,.

M Chzo, ) = e e (4.68)
as opposed to mL t*2 for the Landau theory. This éllows ‘
us to relate M and Xxwm, by imposing the condition that
Gk=e) | yhich is equal to the ordinary susceptibility
(as one may see by letting 4exd = consf in (1.%2)) must be
finite for t#o , and proportional to =¥ (eqe (1.63)).

The result is

2-m 2 &~ 2xn (4.68)

We see that the critical behaviour is characterised
by singularities in quite different kinds of quantities.
These singularities ére characterised by critical indices,
which turn out, in the universality hypothesis, to be
expressed in terms of Jjust two of them, xw and X+ -
Therefore a relation must exist among any three critical
indices (or more). These relations are known under
the name of "scaling laws".  An example is the following.
If we indicate the experimentally measured exponent for

the divergence of the coherence length nt by v:
m ¢ t¥ : (A.30)

we see from (1.68)(1.64) that the following relation holds

among y, %, N if the universality hypothesis is valid:
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In Table 1 we summarize the definitions of thé
critical indices usually encountered in the'literature,
together with their expressions in terms of xm, x¢ if
the universality hypothesis is valid. It will be then

easy to work out relations among the indices.

1.5 Treatment of Fluctuations. Feynman Path Integral

We face the problems of going beyond the Landau theory
by taking into account the fluctuationé in order to account
for the universality hypothesis. This may be done if we
consider the Landau functional (1.24) in a different light.'
When we wrote (1.24) we were considering explicitly only
ﬁery weakly nonuniform Hc¢=2> i.e. the case in which w¢=x)>
varies very slowly in space; and we averaged out.all smaller
scale degrees of freedom. Then {(1.24) is the frée energy for:
an ensemble in which the large scale behaviour of ¥ is kept
fixed, and smaller scale fluctuations are averaged over.

The probability of a state in which the long scale behaviour
of M 1is given by M(x> is proportional to the exponéntial of

minus the Landau functional:
- FLH3- F Lo
Prul = & ¥ /& (4.22)

where & is the pProbability density of observing H(x) |
thought as a functional of M, and 2y 1s a normalisation
factor. In the presence of a nonuniform magnetic field h,

we have instead of (1.24), (1.25) the probability demsity:
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F{A,L - FLOI

@Pro, a3 = ¢ T /2, Zz18] (433D

where % (&3 is a new normalisation factor, which may be
called the "partition function” (and is acﬁually proportional
to the partition function as a function of h for uniform h).

Its expression is given by
G, 63 ~ Frol

ALY - ¢ N /24

uw-h%uvahou»

§H3

CLD)

as one readily sees by comparing (l 72) {(1.7%3). The sum
runs up all possible i‘unctlons wca) : so it 1is actually to
be understood as a functional integral over the allowed
Hexd's | Not all Mcx)s are allowed, as M(*) should not
vary significantly within a box of size { . A way of
imposing this condition is not to allow M) to have Fourier
components for too large a k. We shall only consider ¢4 (x)'s

whose Fourier transform at large k's behaves like

Mik) ~ € PO | o (1.36)

where A\ is some cut off wavenumber of order C-' and
pCk) is a regular function of k, which does not grow too
rapidly for k4w .

In this way we may rewrite 2’ tel as follows:

C FIG]- F [o]

where the square brackets around WM™ in_the differential
indicate that we are considering a functional integral, the
A index which affects the differential is a reminder of

the cut-off prescription (1.75) and the exponent is defined
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by eq. (1.25). People who are experts in quantum field

theory will recognise in eq. (1.76) an expression similar

to the Feynman path integral (Feynman (<49s8 ))

expression for the Schwinger generating functional

(Schwinger ( 4954 )). In fact formula (1.76) is the

link between critical phenomena and gquantum field theory.

To make this link clearer we introduce a change of notations:
we write ¢, instead of M - thus introducing the usual letter
for field variables, and we write ¥ instead of FIM,&1/T

We get instead of (1.76)

, -[uw.,,m-utoﬂ | [RTQ.e3-HEel)
2,087 = §datd.] ¢

/ S 2
CA-#3)

where

i 4
NEP, 0] =fax { iz, (vq%u))zq-gr,?:(#) *‘%30%@—) - A cg'a;'g (4.38)

We see that M may be considered the classical hamiltonian
of the field &, (actually it is a Lagrangisn with the sign
in front of the kinetic .terms changed. It is therefore
equal to the energy, expressed in terms of &,, v, s
the first term being the kinetic energy, the second and
the third the potential energy, and the last one being the
coupling energy with the external field h (¢f Bogolyubov
and Shirkov (1959) Chapter 1 ). For this reason we shall’
refer to the expression (1.78) for the Landau functional as
to "the hamiltonian”. The original hamiltonian of the
problem,H (eg. (1.1))will nowhere appear, so there is no

danger of confusion.



'We shall only consider cases in which @, is a
scalar -~ i.e. the broken gymmetry is the "up-down symmetry"”
¢, - P .. H is obviously invariant, at h = o, with
respect to this transformation. The case in which ¢, is a
n—-dimensional vector may be treated. along the same lines as
the éase we are t:eating; some 6omplications however appear
which make the formalism heavier and more obscure. I wish to
stress however,'%hat considering only scalar fields is by no

means an essential restriction.
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2. PETHEAL GRAZL BAPANSTON OF GuaslAYIHNG FunCiriOdALS

2.0 Introduction

The results of the preceding section shnow that the
Landau theory expounded in 1.1 and 1.5 may serve as a good
starting point for the investigafion of the critiéal,behaviouf.
of a wide class of systems, and indicate that one may use
the formalism of ordinary quantum field theory. We shall
consider the Landau functional (1.78) as a formal Lagrangian
for an ordinary guantum field theory of the g#ﬁ'type. The
main difference between this and that for usualtquantum-
field theory lies in the metric, which is Kuclidean
rather than Minkowskian, and this, in fact, simplifies
the treatment. Also we are interested in a zero-mass limit
with a fixed cut-off A , rather than in the usual infinite
k 1limit at fixed nonzero mass.

Phe need for a unified treatment of the whole thermo—i
dynamic behaviour around the critical point leads %o the
introduction of generating functionals as the basic objects
0of study. They are the generalization to the nonuniform
case of the Helmholtz and Gibbs free energy. In the
éame way as one can obtain the magnetization, susceptibilitj,
etc., by differentiation of the Helmnoltz free energy with
respect to the magnetic field, functional differentiation
of the corresponding functional with respect to the
nonuniform magnetic field yields the nonuniform magnetization,
the position-dependent susceptibility G(x,x')(cf. (1.32)),etc.
| In thermodynamics one obtains the Gibbs free energy

from the Helmholtz free energy by perrorming a Llegendre
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transformation, in wnich the magnetization takes the place
.0f 1he magnetic Tield as an independent variable. We shall
perform a funcitional Legendre transformation on the
functional corresponding to the lelmholtz free‘energy to
obtain a new functional in which the nonuniform magnetization
is the free variable. This new generating functional will
be of great importance for the following.

In this chapter we shall define the generating
vfunctionals and present their Feynman graph expansion.
The exposition follows standard lines (for a very clear
review, see Abewrs and Lee (197%)), but it is convenient

to present it here in some detail,

2.1 Generatineg functional for.the connected correlation

functions., feynman diacrams.

We consider the following expression:

©2,87 = {0,043 &~ T2 |
Z e] S_J—‘P I3 (2.1)

where

H_ fa, 63 {dx s%[’l’o (Vexd)'s Y,cP;.x)] A “.‘:304)21-»),-7 AT ck,(z)} (2.2)

and where we asswme that r, = ro(T) is an analytié function
of © around TC; This.expressipn-differs from B defined
in (1.77) by a factor, which ig readily'seen to be equal
to Z,i‘)-l,@s:"] ' _
CPrel s 2Tn,.ed/ 7ire] ' . - (2,.3)

This factor is not going to affect any of the averages of

we are going to calculate. A4ll relevant information about
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the behaviour of fluctuations is contained in zfialh; for
our purposes 4[¥,0] is just a normalization factor,
 We assume that(?o(x) represents averages of tae
magnetization over a large box, so that its Fourier
transform vanisnes exponentially for lkl> A , where A is
some cutoff wavenumbver,
If we take'functional derivatives of Z with respect

to h and we then divide by Z we obtain averages of products

of @, over the ensemble (1.73):

it Bt = = | -HEG, 8D
2:u ¢ sfam g T e z:n,m §BATER Gux) o Qulxn) &
(2.4)

2 CRUEAI. o x>
We shall call the avérages of products of df s its
'correlation functions'. The correlation function of n
fields depends also dﬁ the way m fields are corréléted, for
any . m less than or equal to n. It is convenient ito introduce
a guantity which takes into account only the correlation of
nlfields which cannot be reduced to a correlation of less
than n fields., This is obtéined by definiﬁg the 'cumulant',
The one~point cumulants are defined recursively as
follows. Given the correlation function of n fields,
q;o(xl) ces (bo(xn), consider as possible partitions, P,
‘of XyseeasXy into k sets, k = 1,.,..,0 , each set } dontainihg

k

m, elements, etc., with Z m. = n, without considering
':,al

the ordering. Let P; indicate the X corresponding to the
J=th place in the i-th set of partition P. Then the
cumulants are defined by

] 1 1S "
Chexe) ... (#o(.xlﬂ)) = {?23‘%(?')"‘9’('?%)2“. “Po(?‘ ) S ¢°(P"Rn)>'6
‘ (2.6)
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It ig poscinle to show that the n-point cumulant may be
obtained by talking the n—th functional derivative oi the

logarithm of 7, i.e.

(%umn.%amxci - E“)%zcmda

PRI S (2.7)

We shall introduce a.special notatioh for lgé4, to
remind us that, Jjust as %2 is a generalization of a partition
function, lg Z is a generalization of the iHelmholtz free
energy. We define thereiore ¥ by | .

FLad = @q z2tnel (2.8)
The functional derivatives of # with respect to h are the
cumulants. We shall also call the cumulants the 'connected
correlation functions! (the meaning of the word 'conneeted!

'in this context will be explained later), and we shall

indicate them by the letter G:

G iy omny Xuy LRTD -Sz(x.)”.Ge‘“") tald

(2.9)

Solving for the thermodynamic behaviour -of the System
means calculating i as a Iunctional of h, and as a function

of T,, at fixed 8yr Zye +his 1s in general not possible.

0
However, 1t is possible to obtain an expression for 2,

and therefore ior Iy as a power series in'gog'i.e., a
Feynman graph expansion, Here we shall showehow this
expression can be derived. We first consider the case

&, = 0 for a finite 1attice syetem. We'therefdre write
discrete indices, i, J, in plaee of the continuous variable x.
We obtain_the following expressien for 4 instead of (2;1):.
&.a.t.b., &7

ZLHo, &I = § 1T ORei)
te st (2.20)
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where £L is the set of lattice points and M, is defined by

Kolde,8T + 4 T Qi Wi Qut) = T he> 9ot
2 é
Wes | (2.11)
K(ij), waich is easily deducible from (2.2}, is a symmetric
matrix. vJefine ) .
s - el - iy Ay
Jeid =yt Eg_““” ) ) (2.12)
where K'l is the matrix inverse of K, By exploiting the
symmetry'of the X matriées, one readily obtains |

Mo =4 2 QuwtLjdwe -1 7 «&chk’it,‘y XD
2 Gjes2

2 ije5 .
We obtain therefore ‘ o
13 &y Kaplgy -4 ‘thhi)kti;)\l"))
° - Z yjen A s eth
Z5He, 83 = | | .S;m ¥
(2.14)

The integral in  is simply Z[He,0]. We can now consider
Zz'{n} instead of Z, and the integral involving ¢ disappears.
If we proceed to the infinite volume limit and we reintroduce

the continuous variable x we get
' 3dx dr! fexd Gotxx) &ux')
Ziel= €
(2.15)

where Go(xx') is the limiting form of K(ij). TFrom (2.2)

one. obtains

cak(x-x)
‘) e gk s S
6'0 (%) = S ('L'ﬂ-)dlz ‘-o‘_%okﬂ. (2-16)

where the integral is cutoff exponentially for Lk} DA .
The exponent d/2 indicates that we are in d-dimensions,
and all integrals over x and k are d-=fold integrals.

For the case g £ 0, we can write | -



~HoLlep,, &) ~ax -g{’ cbzm)
» Z[)‘{)&j = Sdhtcpoj_er e (2.17)

Y _ X

If we expand exp(=~ de 8e dL (x)) in powers of g,y the
al

gencral term in the expansion of %{¥,hl will look like:

4 - K&, 4)

2, (- %ﬁf')Wdei..-.deu 5 PR q>:cx.>... cb:um) e
. (2.18)
We find thereiore averages of products of b, with a
probability distribution proportional to exp-Holde, &1 .
We see from (2.4) that they are the functional derivatives

of %\ He,nT with respect to h; we thus get for (2.18)

4 ° e u 3 Sohxy d! i) g oxn’) Lent
e L %.)MSM‘... onw o ... 8 ezS "} Gptardfes)
(B (st (2.19)

Let us take the 2n-th derivative with respect to h of this
term in the expression for Z{M, h] and then let h- O.
We shall have | * |

4
' ;n"._ ¢ g? )m Sd_:...--- §dx

-y
(Bttxd)e (Bucxmd)t -

%—_Sdndx‘ é\u) Go LA %') AALx')

S ... 8

If we expand the exponential in (2.20)in powers of its
arguments, we see thét only the (2m+n)-th term will give
a contribution to (2.20). Lower order terms will vanish
because the derivatives annihilate them, whereas higher
order terms will give a cdntribution proportional to some
power oflh, which vanishes as h= 0, Expréséiqn (2.20) |

becomes thnerefore:

A4 i%0\M (g faxw O L84 8 L&

) 6‘.(‘2“0&-: }M“\) {(‘hoa) )

.‘
—— (2. 90 Q) el A)) - (402
z (2.21)

. PAL T2 PR
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The functional derivatives act on the h's and produce a set
of § =functions, which eliminate all z-integrations. All
contributions of order m in g, to the 2n-th functional

derivative of 4 , viz,

(3 $

—— et BEIMA L =gy i) s ALK .
LTACT B TXCTSS i bo.5 < (2.22)

are obtained from (2.21) by acting with the functional
derivatives on the z=integral in all possible ways. This
sel of contributions may be represented by Feynman diagrams
in the following way. First draw all possible diagrams
following these rules:
(1) draw 2m+n lines;
(ii) fix 2n endpoints of these lines and label them
YyreeeYop ('external endpoints');
(iii) connect the remaining 4m endpoints in m groups of 4
each and label them xl,...,xm.
The rules for evaluating the contribution from each
dlagram are the following:
(i) assign a factor (-gOJ to each group of four endpoints
('interaction vertex‘)s
(ii) assign a factor ¢ (%L%Q to each line with endpoints
21?22’ wnere z; lmay be X; 0T y;;
(iii) divide by a factor ! for each group of { lines
connecting the‘same pair of endpoints ({ may be 2,5,4);
(iv) divide by a factor 2 for each line whose two endpoints
coincide;

(v) integrate over all variables XyseeeX o



Only topologically distinct diagrams are to be considered.
Diagrams which differ only in the labelling of the internal
vertices X; are not considered distinct.' Diagrams wnich
differ in the labelling; of the external eﬁdpoints-yi arei
considered distinc{ngéﬁ there is a symmetry transformation
of the graph (like rotation, reflection, etc.) or of one
ofiiﬁs parts which has the sole effecet of restoring the
previous labelling.

AS one example, the following graphs for

(fig. 1)
Yy Yo " Ya Fig. 1
are not considered distinct, like the following two other pairs

(fig. 2) (fig. 3)

g 4 9 Bu _
Y Yy Y2 ¥y, :
gyl Ser—ys Fle. 27 Fig.3
Ya
: 4, % 43

In figs. 1 and 2 vreflection along a vertical line, in
fig.? ©rotation of the Part which ends on Y597y around
the vertex marked 1, change the first into the second diagram.

On the other hand the graphs in fig. 4,
\j||""'"'—"‘,7 5‘1 1‘52 Fig. 4
Yy — Y4, Y Yu |
are distinct, and so are the diagrams in fig. 5
) ¥ '
W 3 Vi
| | Fig. 5
52 Yu Y3 Yy
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"hese problems are discussed in a great many texts (Abrikosov,
Gor'kov, Dzyaloshinskii (1963), Mattuck(1967)).

If we keep n fixed, let m vary from zero to infinity,
and swn up all contributions following the above rules, |
we obtain an expression for F 2 T 1 /8600 - 84isn) caleulated
at h = 0, as a formal power series in Eoe If we divide |
by ZIH,0] we obtain the sum of the contributions of all
linked' diagrams, i.e..of all diagrams in which there are
no disconnected parts to which no external endpoints.are
attached. (This is why we removed %\H,0) from the outset.)
In this way we oblain the correlation functions. It nmay
be shown that the. n-point cuﬁulant is obtained as the sum _
of all 'connected' diagrams, i.e. linked diagrams such that
any two of its external end001nts Ty y are connected by
a set of lines §¢) i belonging to the ulagram, such that
v has a commonfendpoint with ek_l, whereas-yi is an endpoint
for Ql and Vi an-endpoint_for the last fx . ~This explains
why the cumulants are also called 'connected-correlation

functions'. To fix orne's ideas, consider the diagrams in
H

fig. 6 o
Y Y @
Rl ‘ .
Lo e ¥s '. . : rig. 6
. () ‘}/\'ﬁ
s

It is a contribution to 302 /8RL) - ... SGl4,) . It is not

linked because the part labelled (b) has no external end-point.



If we remove it, we obtain a diagram for (§yr.... .. Bydd .

But this diagram is not connected: parts marked (a) and (c)

have no lines between them, s0 that one cannot go from I

say, to Vg along the lines of the diagram. In fact the
contribution factorizes into two, one of which is a contribution
to G(4>(yl,y2,y3,y&, h=0), and is represented by part (a),.

and the other which contributes to G(2)(y5,y6 h=0 ) which

is represented by part (c).

The rules presented above give us a way of expanding the
connected correlation functions at h = 0, if we consider only
connected diagrams. They can also be considered as a set of
rules for the expansion of F&lif we make the following
observation. From eq. (2.9), if we let h = O, we obtain:

tn? .
G, v “'Le.ao]):..g_ -§_ FCed .

3 3 Sty S%tYan) \Q“" (2.23)
Eq. (2.2%) tells us that F has the following Volterraseries

expansion:

o amd
FLal=Frols T = §dg - diy, & Chnpund 800 - Alya)
n=i *

(2.24)
where we have introduced the notation cfz(q.,...(,u)a 6}?&:;'_.51;’[&19})
In (2.24) only even bowers of h appear, as the diagran
rules only make sense for even numberé of external endpoints.
This may also be seen bj-thg fact that thé éxpénential in
(2.20) is quadratic in h. |
We consider the‘expansi§n~(2.24) as a formal definition
of F for h # 0. The coefficients:in theVolterra series (2.24)
are obtained as a powef series in 8, following the diagrammatic
rules mentioned above. Moreover we definé F such as it vanishes
at h = O: .
FL0 =0 - - (2.25)
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This is equivalent to defining'it as 1lg Z'.

2.2 Generating functional for the vertex functions
Below T, one would expect that, as h» 0, <(&,> tendé'
to a non-zero iimit. But we see from (2.5) (2,9) that
(beod= Cexy = I Fred
' I ATS) : (2.26)
and, since only even powers of h appear in (2.24),there is no
way of obtaining a nonzero <§> out of it for h - 0. We
have to introduce a new quantity to solve this problem. This
is the functional generalization of the Gibbs free energy. We
may consider it as a 'dressed'’ form of the Landau functional,
which includes the effect of fluctuations. It may be
_obtained (Martin and De Dominicis (1964)) by
performing a functional Legendfe transformation on F. Define

-<Po by

)
)} = Yy = — FL&]
@) = L) D 5&

) (2.27)
Consider eq. (2.27) as an implicit eguation for h(x) at
given ¢ (x'). We can then define the functional
oLl 2 FLAT - fdx Qe @) | (2.28)
where h(x) is a functional of ¢, (x') satisfying (2.27).. If
we take the derivative of eq. (2.28) with respect to @, we

obtain;

i rg = - LD
XE S _ (2.29)

which is the conjugate equation to (2.27). The zero field
value Qi of {§,> is implicitly determined by the condition

5 (2.30)
8‘?0 :

- =0
\?Oz \eo
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We expect that eq. (2.30) has either one solution (T> T¢)

or tﬁo (or more) solutions (T < T¢). As H is even in ¢, , it
is eclear that for each solution ¥, of (2.30), -Ei must glso
be a solution. Therefore, if there is only one solution, it
must be zero; if there are more than one, the nonzerb_ones
must occur in pairs with values i;&%. . We must considér
whether the éystem actuaily takes up one of the states for
which Q% is nonzero: this can be done by discussing the
stability of the solutions of eg. (2.30).

We focus our attention on the case when the solution,

&8l

of eq. (2.3%0) is uniform, i.e., constant in space. (This
may well not be the case for specific problems, like anti-
ferromagnets or some ligquid crystal phases: in these cases
one may conveniently redefine @, .) If this is the case,
we can expand [eL@ed in power series of ( 9, ) (cf.

Coleman and Weinberg (1973) :

s
Tol@d = - {dx [V, (Qul®)) 4-% p RIS (Ve 4 .o (2.31)

where Y, , 3° are ordinary functions of their arguments.

Eq. (2.31) is very similar (apart from the minus sign) to

eq. (1.24) for the Landau functional. The difference

is that there we considered a microcanonical ensemble in
which ¢L was the actual value of the magnetization, whereas
we consider here a canonicsal ensemble in which & is the
average value of the mégnetization. If we introduce expansion
(2.31) for f7 into eq. (2.29) we obtain:

3% -
. Szf: = th ~ . (2.3%2)

where h is that uniform value of {1(x) for which eq. (2.29)




has the uniform solution ¢ tx>= ¢, . If we take the ~

derivative of eq. (2.32) with respect to ¢, we obtain:

> Ve - Aag
D@ @, (2.33)

We recognize the r.h.s. of (2.33) as the inverse of the unit
volume susceptillity. It is known from elementary thermo-
dynamics that a necessary condition for stability is that the
susceptibility be positive. Therefore only solutions of
(2.%0) which corresﬁond to a local minimum of d; will
represent thermodynamically stable states. As,ﬁg is even in ¢  ,
if 'QL is a stable solﬁtion of (2.3%), the sclution-ai will
also be stable. | | »

The considerations foliowing (2.31) and eq. (2.32) lead
to the identification Qf U; with the Gibbs free energy per
unit volume divided by the temperature, apart from one
additive ??mperature dependent constant. This éllows us to
consider 53 as a 'Gibbs free energy functional', the |
generalization of Gibbs free energy to the case of nonuniform.
.magnetization.

We shall now give a diagrammatic expansion for.TB. . To
obtain it wé need some new concepts. Consider any diagram

for any G, say G(lo), e.g., the one in fig. ¥ ,

Fig. 7

QA s
An 'articulation line' is defined as any line such that, if

cut, the remaining diagram is disconnected. As an example,

the lines 1, 2 in fig. # are articulation lines. (A1l external
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legs, like ¢, are articulation lines.) 4 'subdiagraﬁ' of a
diagram is a set of vertices and of all lines which in the
diagram join them with one another. In fig. 7 the set of
vertices and lines contained in the dashed box labelled a,b is
a subdiagram of the whole diagram invfig. 7. A subdiagram
can be trivial (with no lines) like the vertex labelled ¢ in
fig. 7. Given a diagram S and a set of its subdiagrams;
in,..,Yng, the reduced diagram, indicated by g /{Yl""’Ynﬁ is
defined as the diagram obtained from § 7b& shrinking all
sub-diagrams§Y1,...,Ynito a point. As an example, we show
in fig. 8 the reduced diagram obtained from the one in

fig.'7 by shrinking the subdiagrams a, b to a poiht

%——%—% | Fig. 8.

It should be clear that in a reduced diagram not
‘necessarily four.lines_join_at each vertex.

A '"tree' is defiged-as a diagrém in which all lines
are articulation lines. -

A 'one partlcle 1rreduclb1e‘ dlagram is a diagram with
no artlculatlon lines. By convention, all legs which start
off external endpoints y; are removed. In fig. 9 we show a -

- one particle irreducible diagram with four external 'stumps'.

;)<Q’ Fig. 9
. ,

The short 'stumps' (amputated legs) in fig. 9 act only as a
reminder and do not carry any contribution.
Given any diagram g for (1) we consider the smallest

family of one particle irreducible subdiagrauns ?1 - ?t such
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that the reduced diagram 8’/3d3""3e is é'tree. We call
g/gl,...',gg the 'tree structure’ ,ofg . Fig. 8 shows the
tree structure of the disgram in fig. /.

If n> 2, we define the 'n-point one-particle irreducible
vertex part' (or simply 'n-point vertex‘fu;he sum of all
one-particle irreducible diagrams with n- external stumps.

Fig. 9 represents a contribution to the four-point vertex.

The n-point vertex will be indicated by'r‘(n)(xl,...,xn).

Some of the first few diagrams for T-..(q')'()":l,.‘..}cq_)
are shown in fig. 10

cud

' ' " u
{
PC&\;---:1Q)=5+2*‘ XX *Q N
3 2 3 2 3

Fig. 10

The sum of all two-point one parﬁicle irreducible
disgrams will be called the_'sélf—energy' and will be
indicated by 2 . Tt is related to the two-point connecfed
correlation function G(2) by a Dyson equatioh, which 1is
obtained as follows. The tree structure of any diagfam for

G(a) has the form shown in fig. 11.

Xy BB — .. - . O K Fig. 11

Of course we must also consider the triviél diagram formed

by a single line Joining Xy to X5. We can focus our att?ntion
on the first line in all diagrams represented in fig. 11 and
in ' - blobs attached to it; summing up all contributions
from all other lines and blobs reproduces G(a). We have then
the equation (fig. 12).

Fi - 1
T Py g —ix, D o & 2

5% .



In fig. 12 the dark line represents G(g). Algebraically
. ) ¢!
Gt %2) = Gotr x2) ¢ (dY,dy, 6,0x4) ZCYY;) 6Ly Ra) (2.34)

We define the two-point vertex r:(2) as minus the
matrix inverse of the two-point comnnected correlation function.

"Eq. (2.34) implies the relation:

(-c:l’ %2 )= - c;ic:n.z-n ¥ & ri%e) ' (2.35)

We now discuss the case h ¥ 0. We see from (2.24)

and from the definition of G(n) (eq. (2.9)) that

w ol A (newn)
Gxyae-. *n03) = z o 563.---63.‘ G Xy yer ki Yy Ym) ALY ALY )
meo™ o (2-36)

(n)

where m is such that n + m is even. Any diaéram for G
at h # 0 can therefore be obtained from a diagram for G(n+m)
(m» 0) at h = 0, if we multiply by suitable h factors and
integrate over the corresponding variables. >We shall indicate
this diagrammatically by putting a cross on each of the
external endpoints of the diagram for G(n+m) (corresponding

to the y. variables in (2.3%6)) which are multiplied by

h factors. In fig. 1k we present a typical diagram for -

) 2t m 4ol

Fig. 1lu

We define the 'external endpoints' of a diagram for
G<n) at h # 0 the endpoints of the corresponding diagram for
G(n+m)_at h = O which are ggﬁ multiplied by a factor of h.
The external endpoints of the‘diagram in fig.'l4 are labelled
by 1,2,3,4. ’

Si.



We define a 'nontrivial articulatidn iine!' of a diagram
ror ¢{") ot 4 # 0 as an articulation line of the oorresponding '
diagram for G(n+m) at h = 0 wnich,when cut, the two dis-
connected parts of the remaining diagram have each some of
the external endpoints of the diagram for G(n). In
fig. 14 the line labelled a 1is a non-trivial articulation
line, whereas the line labelled b is not.

We define 'nontrivially one-particle irreducible
diagrams' all diagrams with no nontrivial articulation
lines. An exanmple of a nontrivially one particle irreducible
diagram with four external endpoints is shown in fig. 15.

The short stumps do not carry any contributions.

+ 3

- Fig. 15

We define the 'n~point one particle irreducible
vertex parts'! at h # O as the sum of all nontrivially
one particle irreducible diagrams with n external endpoints.,
They will also be called the 'n-point vertices'.

Note that any diagram for the n-point vertex at
h # 0 can be obtained from a suitable diagram for a
(o + n)-point vertex at h = O by adding some sets of lines
and vertices to m of its external endpoints. This'leads us
to the following definition:

A 'trivial branch' is a connected diagram with only one

external endpoiht.

- A trivial branch is shown in fig. 16

rPig, 16



Any diagram ror the n-point vertex at h # U may be
obtained from a diagram for the m+n-point vertex at h = O
by replacing m stumps each with a suitable trivial branch.

Note what the sum of all trivial branches is simply
G(l), i.e, Pocxd.

Therefore,if we sum up all contributions of the
trivial branches to a diagram for the n-point vertex,
we obtain some power of ¢ . Ve shall indicate each
factor of (, by a wiggly line. The sum of\ali contributions
of trivial branches changes the diagram in fig. 15 to the

diagram in fig. 17.

L.

7
4 3

Fig. 17

We conclude that the n-point vertices are naturally
thought of as functions of %Y . We shall therefore
indicate them by r'(n)(xl e xn,tq,]) where Xpyeee Xp.
are thelr external variables. The result we have obtained

reads: _
T . ®. A a twem? ' -
r C*.,-_-.,Xh}t‘{’,j) = E:o ﬁ‘.j.'j""dl" T U’")‘")"“‘v"}\"'3““)‘{ou’l)“"&(b"‘)

(2.37)
where m is such that n + m 1is even.
| In the case n = 2, we call'the sun of all nontrivially
one-particle irreducible diagrams’ﬁith 2 external stumps
the 'self-energy' at nonzero Y, » and we indicate it by 2 .
The proof of the Jyson equation at nonzero R proceeds

in a way similar to the case of zero magnetic field: one



must, however, consider only nontrivial articulation lines.

We obtain the relation

¢ (0 -
O (%, 43,087 2 Golrixa)d » Ay dlys Belriyy) TygaT03) &Ly M =D (2.38)

where @, is such that (2.29) is satisfied with the given h.
: . > o i
The two-point vertex T is then defined as minus the

matrix inverse of G(z)(xl ,th)). Therefore -
bJ -
(ks T@d) = ~ Go (xixad ¢ Z 00X 003D (2.39)

where, as above:

tiyael)

il Sdcs,. a'!zm (X% Yoo YBam? q LY

Zm

qc("‘l“‘)

’ -]
ZC*J!,CQ?J) : -ECK.)(@)-?_’E (2 40)

We can now prove that the n-th derivative of To with
respect to % is equal to the n-point Vertexi— (n). 1f
we take the derivative oi eq. (2.29) with respect tb'qg

we obtain:

8 S, ToLig,] = - 53\(:_3‘) = ‘1’1()‘57\1 &3)
SQLRD) Ty @t %s) 8 ©olxi) _

(2.41)

(217 s
where h is given by (2.29) itself. But -E} 17 is just the
definition of T %), inerefore

S )

- L Y -i
X AS N SECx;) Tol@,) = r(a'-..x1 T3 = - GolmiXa Y+ T Lk %, C Qo) Py

(2.42)
From (2.40) this becomes

5 S \‘oum e = (o G %2 ) +T A2 *
(.x.) 8&? o)
cime )

* u-2: 2m! Sd%' ’ d“w" T (."x""i‘“ ‘i*“)"?o“ﬁ "’POLL’NM) (2--43)
If we take the (n-2}th derivative of (2.43) wita
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respect to ¥, we obtain:

S g hay 4 tMem) . :
= e 2 Blel s T2, fduyy... dyu \'u.,...u«..q.---sgm)qow.)--- {l4wmd (2.44)
3@olx)  Fptxad ™mze

T X, SQ3D

The n-point vertices, calculated at 9, = U, coincide with
those calculated with the old definitions., If we calculate
(2.44) at ¢, = O we obtain:

3
. 8 row.:)\?:o T

& Rocks) Eqolxnd - (2.45)

which yields the following formalVolterra expansion of e

. ha iwd .
To 00,71 =2 Tolo] + 2 L, Gx( ... higm ¥ R %0 ) @ 0,7 .. @olXan )

° L4 nzy oM g ) (P° QolX2 . (2.46)
Bq. (2.44) calculated at @o=p, Yyields the following

formalVolterra expansion of T, around @, :

07

o0
fol@d s oL@ ] + T o Jabc.dun r‘“&,...,%)-

- | (2.47)
e 0@, () = Qo (KD ) e L) = Polrn))

Kote that in (2.47) odd orders in ¢~ S, also appear.

2.5 Loop exvansion

It is useful to calculate the Feynman diagrams in
wavenunmber space, as the expression of their contributions
simplify considerably. Let us consider explicitly the
Giagrams which contribute to the vertex function I (%)
at nonzerol . Any of these diagrams is a diagram ror
a vertex function T (n+m) at zero q% s in which however m

stuwps have been replaced by wiggly lines (cf. fig. 17).



I shall spell out the rules for computing the contribution of
any diagram of this kind_in'wavenumber space.,
(1) Assign a wavenumber q; to each of the n stumps
(we shall call them 'external wavenumbers');
(ii) Assign a wavenunber D, to each of the wiggly lines;
(iii) Assign a direction to each internal line, and a
wave-number kC;
(iv) To each line of wavenumber k% corresponds a factor
(Bkprn) T |
(v) To each vertex corresponds a factor'-%°8L§assj)_ where
the sum runs over all lines which radiate from it, Sj is
the wavenumber assigned to the j-th line, and Gj = +1 if
the line runs into the vertex, Gj = =1 if it points away
from it, All p's and q's are‘thought»of as running into
the diagram.
(vi) To each wiggly line of wavenumber ¥ corresponds
a factor QL(pj) wnere @, (p) is the rourier transform of Q
(vii) Multiply by the same overall symmetry factor as
for the diagram for r'<n+m)-in the x~dependent case;

(viii) Integrate over all wavenumbers k{, D

*d
Remember that for large k each line is exponentially
- - WA
cutoff by a factor proportional to € e

Let us first consider thé case in wnich P, .is uniform;
Then we can integrate off v + m wavenumbers, where v is _
the'numbér of Qertices and m is the number of wizgly lines,
by taking into account the §-functions. We nave an overall
3(§q:) factor, which expresses the overall conservation of

wavenunbers,ana we are left with % integrations over the k's ,
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where f is the number of independenf 'loops' oI the
“diagram (cf, Abrikosov, Gor'kov, Dzyaloshinskii (1463)).
The k 's are chosen in such a way that wavenumber is
conserved at each vertex. Note that the above implies that
for each one-particle irreducible diagram

L=v+0 -1 ~ (2.48)
where L is the number of lines, v the number of vertices
and -C is the number of loops.

In the nonuniform case, only the §-functions relative
to the vertices remain, and are trivially integrated duf.
Overall conservation of wavenumber does not hold. |

- In the uniform case we define the rFourier transforms
of the vertex functions without the overall § factor:
: | -, (Qu%st e $GuER)
@s-os gu) 8Eq +en +gud3 fdxndxn @ R
. (2.49)

Let us now consider the expansion (2.46) in the

I_un)

uniform case, P,¢a)=¢, . One obtains:

vo 42w
. 4 N 2n
RE‘{’.Z—T‘oCO?\__.-‘-;i:‘ Zn de (k;‘-O,--n‘zv"f’)‘-?o" (2.50)
Comparison with (2.31) yields
. ® 4 ram 2w
Uol@) = = oI AV - Z g ' (kao, oy Wgu20d B
= - (2.51)

where V is the volume occupied by the systen.
Let us consider the case in wiaich ¢, is very weakly
nonuniform. Choose a ¢, of the type

Polz) = o, + & Cos k% o - (2.52)

where & 1s a very small quantity in comparison witn L, and
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k is much smaller than A . We obtain from (2.46) to second

order_in _
- AYa tind
ro 193 - fo Lo 1" E‘R: r(’-n“’;""“:u‘o)‘?:“ B
__'\L u.mn . (2.5j)
* 2:: nt T (“ L “3’-"» “tn"")'ez"?:“
The third term on the r.h.s. may also be written
to flrbt order in &2
2 v gzh‘l). 2
e-ké,‘a—;\! 3K‘r (k)% , kyeo R FURNY' D) l“, ) CPG," ‘
. (2.54)

Comparison witn (2.31) yields

©w
n

%ocw.,": ? —%\- iz"“&ffu,u,go, .-.?k:no1‘°)‘k\.?. (2.55)
Similar results are obtained for higher order terms
in (2,31).
We shall now present a way of calculating 'U; and 3,0-'
(and similar quantities) as extrapolations of the formal
expansions (2.51) (2.55} to the case where ®, 1is uniform
and quite large. The method anpears as an expanSLOn in
the number oi loops of the diagram, instead of the number
of vertices. A formal way of obtaining this expansion is

by defining a new hamiltonian ' in placé of K, by setting
I ~} N . ‘
HEgl= & HLH] (2.56)

where a is a fictitious parameter whichn will be put equal

61



to one for the actual calculation. (Yhis parameter is not
at all fictitious if A is the real hamiltonian of the
system: in this case it is equal to kBT, where kJj is
Boltzmann's constant. Then the loop expansion is sinply
a low temperature expansion.) We see that with this new
hamiltonian the free propagator Ge and therefore each
line carries a factor a whereas the intéraction, and
therefore each vertex;carries a factor a t. If we recall
S eq. (2.48} we see that the céntribution of a diagram with
¢ loops is proportional to ae—l. This was first noted
by Rambu (1966). The loop expansion in the form we are
using may be traced back to a paper by Lee (1969). Cf. also
Coleman and Weinberg (1973), Lee and Zinn-dustin (1972).
Let us consider a {-loop diagram for‘ﬁé( Qo ), where
{> 1 (the caée.€==1.will be discussed later). To each
vertex in the diagram are joined either two} Or one, Or no
wiggly lines. A vertex to winich P wiggly lines are joined
is called a "p~type' vertex. A diagram with no 2-type
vertices is called a 'fundamental diagram'. Let us focus
our attention on a line in a fundamental diagram, and let
.k be its relative wavenumber. A new diagram may be obtained
by breaxing this line and introducing a 2-ty§e'vertex. fhe
contribution of the line was (z k° + r_)7l. With the
insertion of the 2-type vertex we have two new factors:
a factor -g0(€§/2 due to the vertex and the two wigély
lines (the factor 1/2 is due to the symmetry with respect

to the interchange oI the two ¢, factors with each other);

a factor (z052.+ ro) due to the breaking of the line.
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If we sum all contributions obtained in this way we

~have that the total contribution of the line is expressed by:

f 9'_’_ (902 i
2

(%o k? f‘\’e)“ zZ L-

n -n
) CRokPevel) {Rok? $r;, + 39‘?: D)
nso 2

(2.57)

Therefore one can perform the loop expansion (for 4> 1)

by considering only the fundamental diagrams, and by

-4
associating with each line a contribution C%ok’+fo+%°Q3)

All other rules for the calculation of diagrams for ﬂg(q%)
remain unchanged.
We now consider the case 4= 1. All one~loop diagrams

for1{(€&) are of the type shown in fig, 18
Fig. 18

All vertices in it are Z2-type vertices. Note that
we can intercnange the vertices in éyclic order leaving the
‘diagram unchanged. Therefore-we must divide the contribution
of the diagram by a factor 1/n, n being the number of
vertices {(cf. the rule on distinct diagrams mentioned in
2.1) as there are n ways of relabelling the vertices by
keeping their cyclic order. The sum of all such contributions

is:

S 4 4 -%"zn ?
bae & 5 ( ) -k g 4y B )

Bkl ro 2 Cools 1o (2.58)
Therefore the one loop contribution to'us is
; .
5dk 'Qﬁ (Ao _8_"..(.?-"—
2¢20 K%Y0) ' (2.59)



If we are calculating diagrams for vertex functions at
nonzero uniform ¢p, also vertices with stumps will appear.
The stumps may carry some (external) wavenﬁmber q; - “ne
above mentioned rules apply in this case, too. Let us
consider the calculation of 36. We obtain from (2.55) that
the diagrams for %, are diagrams for r2) 44 @, # 0 and at

nonzero k. One of these diagrams is shown in fig. 19

}0{‘ Fig. 19

The two vertices are both d-type vertices. A wave=-
number k runs into the diagram througn the stump marked 1
and a wavenumber -k through the one marked 2. The lines
are associated with a factor (Bok +vre +8o®i/z )Y | 1he
wiggly lines are associated with a factor @, eacnh. Only
fundamental diagrams have %o be-considered.

It is easy to show that the loop expansion is equivalent
%o an ordinary expansion in powers ol 8o if one considers
go‘ggfz of order 1. In fact, if we consider any fundamental
diagram for [ (n)’ at @ # 0 (and we consider n = O if
~the diagram is for’ozj it is-easy to show that the following
relation holds:

| 24-2=2v  +v, ~n | (2.60)

where § is the number of loops,~v0 is tne number of O-type
vertices, \a is the«number of  1-type vertices, and n is the
number of external si%;géﬁ%—legs e for'U; ). The factor
- associated with[eaéh O~type vertex is —§gs whereas tne factor

‘associated witn each l-type vertex is —gotfo. The latter is

o4



by hypothesis of order gi/z. Une obtains thereiore

from (2.60) that the contribuiion of the {-loop diagranms:

. -1+7
1s always of order gg 1T A -

2.4 Feynman graphs in nonintegral dimensions

We shall also define Eeynmah.diagrams Tor nonintegral
dimension d.; This is only a calculational device: we
shall not define the hamiltonian X or the iield variable
g for nonintegral & . The 'd-dimensional d:f model!
will be thought of as the set of all correlation (or vertex)
functions obtained by summing all relative Feynman diagrams
for nonintegral 4,

The Feynman diagrams at nonintegral 4 will be defined
as follows (cf. Wiléon {1972 ) (1973a), t'Hooft and Veltman
(1972)). ‘he contribution of any diagram in the integral
over the loop wavenumbers k% of a function of all kQ'S
and of the external wavenumbers q;. We shall define the
d-dimensional integral of any function f of the wavenumber
k in such a way as to satisfy the following requirements:

(1) linearity; for any two functions f(k), g(k) and two
nwnbers a, b, the integral iust satisfy
dek af(k) + bg(k) = a dekf(k) + Db jdakg(k); (2.61)
(ii) invariance with respect to translations of the dumny
variable k:
jddk £(k+p) = dekf(k) | (2.62)
where p is any fixed wavenumber.
(iii) Por any positive constant ¢, the integral must
satisfy
jddk f(cx) = c“‘djddkf(k) (2.6%)
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One can easily see that these requiremehts determine
the integral of any function.of k up to a factor. This
factor can be specified by assignihg an arbvitrary value to -
a particular integral. We choose it in sucH a way that
the following condition is satisfied:

(0% ™ = wr | (2.64)

In this waj'we have defined all d dimehsional
‘integrals one encbuﬁteré in the reynman graph expansion,
The arbitrariness in the.normélization (which has 5een
removed by condition (2.64)) does.not influenoé our results
about the critical behaviour since it can always be’
reabsorbed by a rescaling of suitable variables. The
critical indices and the asymptoticAform of the equation of
sfate are not affected.

Phe d-fold integral of a function defined above, if
it is finite for integer d = n, d = n+l 1s an analytic
function of d for n £ 4 ¢ n+l. Ve shall exploit this fact

to obtain power series expansions in &= 4 - d.
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3 PIXED MASS RUNOKMALIZATION O “is GBRERAVIEG PUNCLTONHAL.

3.0 [ntroducetion

If we use perturbation theory as defined in the

preceding chapter to investigate the behaviour around To’ i.e.,

around the point in which ¥, vanishés, we find that the
contributions of higher and higher order diagrams become
~larger and larger for any ‘dimension less than 4.
Let us consider the first nontrivial diagram for V%
at @ = 0 and at zero external wavenumber, It is shown in
fig. 20

! 3

2>(:h<u

FPig, 20

Its contribution is given by eq. (3.1)

e A
- %o L4k 2 vo\~€/2
2 ) (&oktffo)z -~ ot % ( 'l) (5.1)
where & 1is defined by
&= bL- a (502)

When ? is very near © , and &> 0, the contribution
of the diagram in fig, 20 is very large. At higher orders
in perturbation theory the contribution is. still larger.
Dimensional analysis justifies this fact by telling us that
the actual expansion_parameter of perturbation series is not

go but :
- 4+ &/2

\ko - 39. Y'o ) (503)

One should compare this result with the considerations

of section 1.2. Therefore we cannot trust our perturbation
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theory for ro<21\ , which is exactly the region we are
interested inl!

If we know,nowever, the behaviour of our model for
a teuiperature for which r, = r§<sz » We would expect that
its behaviour in a temperature range for which T, is not
much different from rg would not be extremely difficult to
extrapolate. 1In particular, we would be able to calcdlate
- it in perturbation theory using the effective coupling
strength among fluctuations at that temperature, if fhis
coupling is not too large. We could then use the results
of this célculation as a new starting boint for the
calculation of the properties of the model a bit nearer
the critical point, and so on. The true critical behaviour
would be then obtained by repeating this process a large
number o¢f times,

Tnis is infessence what we shall do inithis and in the
next chapter. Namely we shall show in this’chapter how
one can charapterize a modgl like the one discussed so
far by its behaviour at a temperature defined by a parameter M,
and we shall show how to calcuiate its properties by means
of a power series expansion in the effective coupling'
strehgth among fluctuations at that temperature. In the
next chapter we shall.exploit the arbitrariness of the
temperature at which we have chosen to charaéterize %he.

behaviour of the model to investigate the critical behaviour,

3.1 Detinition ot the rewormoalized funcriownag,

Let us consider the low-k behaviour of f‘(2> at ¢ =0,

at some temperature avbove the ecritical point. If k is
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small enougii, we can write

(R A) "L'U -
U k,-k ) T (0,00 + k7. s%;‘&.—u? \eso (3.4)

If we now consider egs. (2.51), (2.55) at .<p°= 0 we obtain
from (3.4)

Tk, )= = ( '\S:?o).s k2 3,(0).)

| (3.5)
where1rén)( ¢, ) is defined by
w) )
(g, ) 2 ;’—nq)’,(%)
% (3.6)
On the other hand, if we define the Fourier transform
¢{*) (x,=x) by
'iklxl + ; kt‘..‘ )
¢k, %) B Geart) = Sdx,des = G (R, )
(3.7)

and we use the definition of Y'(2> as minus the inverse of

6$2) | we obtain from (3.5) the low k behaviour of G(2)°

1%} A
&t (3.8)
«7:"10) + ‘b,(o) k2
m = 2 2
The r.h.s. of eq. (3.8) has a pole at k¥ = -m“,
where m2 is defined by
)
m* 2 To cod /%(o)
14
(3.9)

If m2'is small enocugh (but not too small), we can extrapolate
(3.8) to all k and obtain G(Z)(k,-k) apart from minor
corrections, If we Fourier transform back eq. (3.8) we.

obtain for |x - x'} sufriciently large:

» -mix=xl\
(r“(,z,'&‘) As ¢ — . .
P (3.10)
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If we check eq. (3.10) against eq. (1.3%) we see that we can
identify m with the inverse of ‘the coherence distance,defined
as the average distance up tTo which the'effect of a very

weak magnetic field localized at the origin is felt. We.
shall also sometimes refer to The inverse coherence

distance m as to the 'mass'. This is by analogy with

quantum field theory, in which the mass is defined in terms
of the location of the pole in the two-~point propagator,
wahich is the analogue of G\27,

We know that the coherence distance m"'l

must become
infinite at the critical point (cf. Chapter 1. Therefore
m measures in some sense the distance from the critical
point. Consider the fTenperature in which m has some given
value, which we shall indicate by“; We are going to
characterize the model in terms‘of its benaviour at this
temperature, at ¢, = O.
We must first consider this rather trivial fact.

Given any positive number 3 ', define @ by

Q= 3-‘ Yo (3.11)
and V' by ' . |
el e T L3] (3.12)
If we expand Tl in powers of V¢ , along the lines

of eq. (2.31), we have:

T
Tltwl g_S oA Y.’G(&?(X)) E %'3(le)) LVQCZ)) 4"'1 (3.13)

where <, 3’are defined in a similar way as ﬁg, 36' It
‘we compare (%.1%) with (2.%1) we obtain the following

relations between'ﬂi g/and'vg and %6:
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AT(9) = Vo (3D

| gccp) = %o (5¢) §2

(3.14)
(3.15)

Analogous relations hold for higher orders in the expansion
(2.1%). ‘Consider now tne temperature for which m = M
(hereafter called the ‘normalization temperature!). Let

us choose g by imposing the condition
§2 F 0= 14 (5.16)

where 3/0 is calculated at the normalization temperature.
This gives 3 a particular value, wihich depends on 89

Z and M; but it does not depend on Ty since we had to

0’
specify the value of T, in order to be at the normalization

temperature.

We see from (5.16) and (3%.15) that with this choice

of3

3c0) =1 (3.17)
at the normalisation temperature. On the other hand the
- definition (5.9) of mz, applicd to'U’and 3, yields the
following condition for Y2’ |

W20y = w2 | (3.18)
valid at the normalization temperature, The functional T
defined by (3.12) with the present choice of 3 will have
a Volterra expansion similar to (2.46); we shall indicate
its coefficients by the same letier T (M) inich was used
for the coefficients of the Volterra expansionzofil .
This will not produce any confusion, as we shall not deal

with i} any more after the following considerations.\
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The loop expansion of " may be easily obtained from
that ofry, , by applying relation (3.12). The contribution
of the internal lines is (Rek+vo+ g, 3%¢) "1 ; the |
contribution oi the wiggly lines is 3¢ ., If we define
%, T, & by

€ z20§? (3.19)

P2 e
o3t (3.20)

305% (5.21)

L0
1]

we obtain that the contribution of each line is given by
~ ~ N‘ "1
3R (F w4 7 +g9H/2) (3.22)

and the contribution of each vertex by ‘

] (3.23)
If we consider relation (2.60) with n = 0 and relation
(2.48) we obiain the following relation among the number
- of internal lines L, the number of O~type vertices, A\
the number of l-type vertices, vi» Vvalid when the number
of.loops, { is greater than 1: |

2L -4 Te -3V =0 (3.24)
If we then note that the number of wiggly lines is egual
to the number of 1-type vertices, we obtain the following
reiation.which is valid for any fundamental graph contributing
to I | | .

zL~A(0b¥m)+nq°° (3.25)

where ng is the number of wiggly lines.Since each internal

. . . -4
“line carries a factor g* , each vertex a factor 3 , and
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each wiggly line a factor 3§ we see from eqg. (5.25) that

the diagram calculated with ¢, =3¢ , Tos8gr2,r 18 equal to
the same diagram, calculated following the same rules, but
with ¢ , T, €, % as defined by (5.19) (%.20) (5.21).
This is true no matter what 3 is; it is in particular
true with our choice of § .

A trivial reasoning proves the invariance of the
zero-loop contrivbution . The one-=loop contribution must
be considered explicitly. We see from eq. (2.58) that

if @, = 3«9 the one-loop contribution to V' reads:
go5° @ 32 )
Sdk tg (as S2amn) = - $0e G (‘ @'km") (5.26)

We have thus éompleted the proof that the Feynman graph
expansion of V' is completely analogous to the Feynman
graph expansion of Ve . |

We Shall consider the effective strength of the
coupling among fluctuations at the normalization temperature

to be given by
L

gz TV (5.27)
In fact, if we expand U in powers of Vep and of @ at
the normalization'témperature; eqs; (3.17) (3.18) (3.27)
imply tnat to lowest orders
ILe}-TToY = - fox [ mgten s gion + L(veun) ]

' | ) _ (3.28)

which is to be compared with (1.24). We see that g plays
the role of g , which used to measure the coupling strength

among fluctuations,
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In the next section we shall discuss how a series
éxpansion in powers of ¢ is obtained.

We can see from the analogue of (35.28) for the general
case of any temperature that r defined by

r= ¥ (2)(0) ~ ~ (5.29)
can play a role similar to the one of r  in the Landau’
tunctional., lioreover it is easy to see that r is proportional
10 the inverse of the unit volume susceptivility, therefore
it must vanish at the critical point, We shall use v
instead of r, as a variable to carry us towards or aw;y
from the transition,

If we were only interested in the correlations of © ,
these two gquantities (r,g) and the normalization condition |
(3.17) would be sufficient. But we are also interested in
{the behaviour of these correlations as a function of temperature.
We must therefore introduce a quantity which plays the role |
of the temperature, and which is defined by some condition
valid at the normalization temperature. We observe that,
in a range around 2., the r  is a linear function of the
temperature: o )

ro =0l (T-Ted> | | (3.30)
We shall define an-’effectivévtemperature' t, such that |
r defined by (3.20) is a lineér funbtion ot t:

I N | S (3.51)
In this way the 'effective temperature' % is a linear.
function of the true temperature, T. In eq. (5.31) g and
B :

b are some constants which will be specified shortly.

The first constant, a, is chosen in such a way that

7t




the derivative of r witn respect to t is equal to 1 at the
normalization temperature:
v - _
St lne. T (5.32)
where the suffix N.P, indicates that the quantity affected

by it must be calculated at the 'normalization point®

(r = Mz, P = 0). s#gs. (3.32) and (%.3%1) imply:
&7t e (5.33)

Let us consider the diagrammatic expansion of dr/d¥

To zeroth order in g, r'is equal to ;. Tnerefore to this
order

Tt o1 (3.34) -
We then consider all diagrams for r. From (%.29) (2.51)
we see that they are all diagraMS for f1(2), taken witin a
minus sign. Yo take_the derivative of a diagram witn
respect to T we note that the derivative of the contribution

of a line ﬁkz + 271 s

(3.35)

Therefore the derivative with respect to T of any diagram
may be obtained by ‘breaking all lines into two', one at
'a time, and multiplying by -l. We shall indicate the
operation of 'breaking a line' by a cross on that line,

cf, fig. 21
0

elaS S -5 Fig. 21

The 'cross' can be considered as a new vertex waich carries

75 .



a contribution equal to 1. It is easy'to see that,if it is
s0 considered, the symmetry factors matci. for instance,
in fig. 21 we had three lines witn the same pair of
endpoints oﬁ the l.h.s.; therefore a factor 1/3! Wwhen

we take the derivétive, we must breal each line in turn;

we get therefore 3 equal contributions. The factor 3
cancels a factor .1/3 and we are left with the correct
symrnetry factor fof the diagram on the r.h.s. We obtain
therefore a diagrammatic ekpansion for a"l.whose first

few terms are shown in fig, 22.

I .. o ‘ & Fn ) )
. R
“i_1. Q. U 8. . ﬁ-* Fig, 22

In fig. 22 all stumps carry no wavenumber and T is chosen
equal to a value T* such.that T = M2. We have indicated
it by a T* on the top of each diagram.

In the same way that a derivative with respect to ¥
can.be denoted by the introduction of a new vertex which
breaks all lines one at a time, the derivative with respect
to t can be denoted by a vertex which breaks all lines one
at a time, and which carries a contribution &. We shall
denote it by an 'empty circle'. We show in fig. 23 the

first few terms in tihe expansion of dr/dt, for any r.

_g—::&ab_Q &‘G-& 8»8*...
: Pig. 23.

The normalization condition (3.3%2) implies that the sum -of

all diagrams in fig. 2>, plus 3, is equal to 1 if calculated




at the normalization point. Un the other nhand 3 is given

by the series in fig. 22. If we substitute into the
expression in fig. 25, the perturbation expansion in fig., 22

to each order in perturbation'theory we obtain.'

_,A,QQQQE 88

1‘.
6 - é Fig. 24

On the other hand we must also develop the 2 iactors

1ndlcated by the empty circles. Yo see the effects of this

let us consider all terms up to second orderhg.We obtain

g{:*‘l* Q-érg"g_ "‘Q--& *‘Q'Q-b

8.8 .8 §

We see that,

Fig., 25
if we expand 3 in powers of g as we go along,
we obtain for each diagram its contribution and then a

certaln set of subiractions. 4This feature is general. All

normalization conditions (5.17) (35.27) (5.29) (3.32) can
be implemented by giving a different set of rules for
assoclating with each diagram its contribution, rules which

involve a suitable set of subtractions. In our case we

can symbolically assoclate with each diagram in fig., 25 its

.- . -

--,- ¥ *
contrlbutlon as follows: L1

ERYS é] (& -6 [?a 8 *;Lg

rig. 26

32
?

L T
-

- o=

| W
+

[ R
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If a whole diagram is not to bde evaluated atl the normalization
point, we indicate by a dasned box that part of the
dlagram whose contribution must be evaluated at the normali-
zation point (in fig. 26 some subtractions cancel with
each other; but this is an accidental fact).

It is clear from fig. 26 that in this way condition
(3.%2) may be satisfied order by order in F. T

We shall also consider cases in which the empty circles
carry some wavenumber which runs into the diagram; if we
impose the condition that wavenumber must be conserved also
at ‘emptyvcircles’ vertices, taking info account also any
external wavenumber they can carry, it is obvious how the
rules presented in section 2.3 will be modified., We can
give a phnysical interpretation of the cases in which
empty circles carry nonzero wavenumber by considering the
case in which thé temperature t oséillates, however rapidly,

but with vanishing amplitude.

3.2 Devivoriow ok vewormalised perturborion ¥heory,
The result of tne preceding section for the perturbation
calculation of a suggests that similar methods could be
. - . I Y .Y ~ ,
employed for a calculation of Z, T, & as a functiion of
r, g, h. 1t is indeed so. We shall consider the calculation
of ¥ in more detail, and we shall sketch the essentials of.
the reasoning Ifoir the others.
. . ~ . '
Jde shall assume that 2 may be obtained as a power X
. . ~ . . ~ .
series ian {f, which starts from z = 1 at. g = 0, as one can

easily convince oneself:
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2 1l + gz, + € + '
= K "
ke 3 Z2 LI

(9'36)x

“he normalization condition (».17) implies on the

other hand
- ~no~ -~
§0;%,5%,8) =
. ~o . R o 4
wnere r* is that value ot r for which r = n",
may be written dlarrammatlcaliy

L

e
.2 2o -2 8.
op* '9" op? o7 ¥

1; 

rig. 27
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The 0 under the diagram reminds us thatl the derivative
must be calculated at zero wavenumber.

Note that the propazators must also be calculated with Z.
But we shall consider all contributions of this factor up
to the order we are considering.

10 zeroth order Z = 1. To first order in g only the
first diagram contributes, with Z = 1, (‘The contribution
actually vanishes, but this is again accidental.; Let us

indicate by z, the Tirst contribution.

We have
~ ™
ja: 2.9 |
opt o fig., 28

To second order in E we have the two remaining
diagrams in fig. 27 plus the correction to the contribution
of the first diagram due to the fact that % differs from

1 by Ezl. Let us consider this correction>explicitly._ If

.~

z = 1 +'gz1, to first order

4 A §3‘\&1
e = e— - o
u#é%)k‘+F‘_ : Kter® (ke v ) (5.38)

which can be matched against the contribution of the last
diagram in fig. 27. One obtains in a completely similar

way as for the case of a:

o
o e
T neY
~ D 2 .8- ?_ .){8‘;
¢ 22" 3"1'6- ¥ op* ¥ a0 M Y

Fig. 29
when the dashed box indicates that the derivative witn

respect to p acts only on the subdiagram within the box,
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and that this subdlagram must be calculated at T = % , p = 0.

Let us consider all diagrams which contribute to U (2

4

to second order in g at @ = 0. They are shown in fig., >0u.
= ‘8_ ' FPig. 30

To their contributions (calculated with Z = 1) we must
add all contributions due to the corrections to. % of
second order in g. They are:

2 from the term -zk2 wnich contributes to F (2)

(1) -8z oK
(ii) the term proportional to gzl in the calculation of
the first-order diasram L2 for f‘(z).
As a result we obtain all second order (in Z)

contributions to U (2):

‘52

' 2 ~ k
< - -f,,:@“ _& kz;%'-& s eia,
Ve see from fig. 51 that more subtractions appear whenever
a diagram contains a subdiagram which, considered by itself,
is a diagram for r*(2}.

. We shall now consider ﬁow to implement Qondition
(5.29). We'must‘consider that it is to'hold; not only at
the normalization.poinfibut‘at any temperature, We can
write it in the following way. We must find the value of ;,

given r, g, and 2 (where z is obtalned with the procedure

we have Just presented) such that

P(Z)(U;r,g,z) =T | | (5.3
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‘he way we solve this equation is completely analogous

to the cases we have discussed above. %o zero order in &

o3

r =T (304‘0)
To first order in E,tf(z)(u) is given by the diagram in
Tig., %2,

- 9 Fig. 32

calculated at zero external wavenumber, ¢ 0, We can

associate with the line a contribution (k2 + r)“l t0 zero

. ~ , N . o o . -
order in g. We obtain therefore the first order contribution
~ Ly . ) ~
to r, which we indicate by BTy
. :
o . 43
gr) = 52 Fig. 33
o .
"o second order in.Z we must consider the two diagrams in

fig. 30, together with the corrections to the contribution

of the diagram in fig. 52 due to the first order correction
A s

' ~ . . . . ° e
la z and the first order correction jn r. We obtain all X

contributions to second order in- g., say, §2r2, which are

listed in fig, 34 A
7 a‘;’l
: &Yy
A ...
. rel 0y
~2 Y rd .
r, = * . ) R ¥ nh]
N -éo} ;3 ) _%_- Fig. 34
(The same reasoning applies also if r = Mz, i.e., if we are

at the normalization point. To zeroth order in g the lines
calculated at the normalization point carry a factor (k2+h2)—1.}
Note in fig. 34 that the third and fourth subtractions (in the
dashed-boxes)"are carried out at two different temperatﬁres:

the first one at the temperature we are consideriag, determined
by the condition P(Q)(o) = r; the second one at the normalisa-

tion point., How to generalize the reasoning to higher orders

in g is obvious. e list in fig. %% all second order
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contributions to T’(z)(k,-k) at the temperature for which

df(2)(0)-= .o

Most terms in iig:ééi actually vanish: in fact the only ones
which need to be considered are the first tnree, The other
ones either vanish or cancel with one another, The structure
of the subiraction procedure‘shouid however be kept in mind.
If there are daghed boxes within a larger dashed box, the
subtraction in the smaller dashed boxes is calculated at

'» = W% if it is due to corrections in either T% or Z; it is
calculated at r i% it refers to corrections in ¥, We
introduce some terminology which will help us to keep this

in mind.

A subdiagram with two stumps is called a *self-energy
insertion'. We see that fo each diagram with two stumps
correspond two subtractioné,plus all others due to its self-
energy insertions. The first subtracted term (see the éecond
term in fig. 25) is the value of the diagraﬁ at the same
as the diagram we are considering, and at zero external
wavenumbef. 'he second subtracted term (see the third
term in fig. 3%) is k2 times the derivative of the diagram

with respect to its external wavenumber, calculated at-zero



external wavenumber and at r = MZ. We call terms of tine
first kiod ‘'mass counterterms', terms of the second xind
'wavefunction counterterms' or 'z-counterterms’.
The way to determine g as a power series in g such.
that the condition
6(4)(0.35»5%.1§) = g (341)
is satisfied, should now bve quite obvicus. - To zerotn order

in g, & vanishes. To first order we set

g =g (5.42)
. w)
To second order the contribution to vt is given in fig.3é
"\t N .
- )E?( ' Fig.36

at whose vertices we can insert the first order estimation

of &, eq. {5.42). Ve obtain the second order contribution

&°2, as
2 ) - WL
g°by = Fig.37 (3.43)

The diagram in fig. 3% ‘must be evaluated with the zero-
. . ~ o . o . . -
order estimates of z,r¥, Yo third order in g we have
) :
three types of contributions:

(i) the third order diagrams )(ﬁ 2O :-8'4

(ii) the first order corrections in g to the diagram in
fig.B# , due to the contribution of gzgzj
(iii) the first order corrections in g to the samé didgram,
due to the contribution of gzl; gri.v

We list in fig.38 all third order contrivutions to g.
M2 M ":‘ 'l . '

28, = [ >§Q o U
= = + - I,
3 Ssnl h ° ! pA )E]qaf -"gfi?c -
’ ¢ o — L, -
Y &- M :Nt ] D n\i
- :Eg Vel it
° . ) —d
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It is obvious how this reflects itself in the calculation '

of the contribution of any diagram to, say, ?‘“)(kl,...,kn}u

3.5 The BPHZ subtradiow procedure *

We have thus been led to a set of rules for associating |
a contribution with each diagram, when one wishes to use g,r,M?

z as independent parameters. These rules

instead of 860 To» Zo

resemble closely the ones used for the renormalization of
ordinary quantum field theory. We shall therefore spell them
out in the language developed for quantum field theory. -In’
this section we summarise the BPHZ (Bogolyubov, Parasink, Hepp,
Zimmermann) renormalization theory as formulated by Zimmermann
(1970). We must emphasize that renormalization in our
framework is not directly connected with the removaliof'
_ultraviolet divergences (the theory has a cutoff on physical
grounds), but is connected with the use of properties of
correlation functions instead of parameters in the hamiltonisan
as independent variables. The fact that BPHZ regularization
allows us to define a divergence~free theory will become
very handy later on, but it is not to be considered at this
“stage. |
We shall emphasize the differences between our renormslization
scheme and BPHZ. For a more thorough discussion of BFHZ,
see e.g., Lowenstein (1972). We shall confine our discussion
to a hamiltonian cﬁ‘ the g;(j,)LL type.
. Let us consider any diagram D with n stump§ and p
I'e.mpty circles'. The contribution of diagram D is formally

proportional to an integral over wavenumber variables kl,.;,ke

a5



(up toilklaA ) of an integrand ID(pl""’pn;ql""’qp;kl""’kt)
which also depends on the n 'stuﬁp' wavenumbers P; ahd_on the )
p 'empty circle'’ wavenumbers'qj. BPHZ regularization

associates with the diagram a contribution which is obtained

aé the integral over kl"”’kL of a different iﬁtegrand

reg. ID(pl,...,pn;ql,...,qp;kl,...,kg) which differs from

ID

by some subtractions. In order to specify reg; ID one
needs some definitions.
We define the degree &(§) of a one-particle irreducible
graph 8 with n stumps and p empty circles by
6(§)=4-n-2p . (3.44)
Given a graph g we call a nonempty set_é' of lines and
vertices contained in.gr a 'subgraph' if, considered by itself;
it.is a one-particle irreducible graph. As a consequence,
a subgraph é‘ is built up from a set of lines and the
corresponding vertices to which they are joined, in such a
way as to form a one particle irredu¢ible graph. A4 subgraph
is not necessarily a subdiagram (i.e., a set of vertices and
all lines which Jjoin them with one another in the original -
graph) because it does not necessarily contain all lines

which join the vertices under consideration with each other.

A simple example is shown in fig. 39

A
o - Fig. 39.
In fig. 39 the only subdiagram is formed by the diagram
itself. But there are three nontrivial subgraphs (i.e.,
properly contained in the diagram), namely il,2§,§2,3},23,l§,

where the number labels the lines..
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A subgraph 3' ofg is called a 'renormalization part' if
5(§' Y2 © | (3.45)

Ir 8(§)> O, g is itself a renormalization part. Given two
subgraphs §,, §, Wwe say that §, contains §, if all lines
of §, are lines of §, . We indicate it by 51252 If
moreover 3, ¢<S?- , we s'ay that §. contains properlystcs‘;gz) .
Two subgraphs §,, 4., are said to be 'disgjoint' (gmslg B )
if they have no common lines or vertices. They are said to
‘overlap' (G, o 4z ) if none of the conditions §, 24, ,
G, €4 or §a§e = P is satisfied.

A 'forest' J of g is a set of nonoverlapping renormaliza-

tion parts of g . A 'maximal element' of a forest T is a
- . A >> '
renormalization part g nax € Y such that no §€Y properly
- contains Smax' A set formed by a maximal element g nax °F
J and all normalization parts g'e‘y which are contained
in g nax 1S called a 'tree' of the forest F . A 'branch' ®
of a forest D is any set {2'3 of renormalization parts
3'6(3 such that (i) there is a 'maximal element of the
= s N > ¢! .
branch', § _ e & , such that if §'e® then gmax" S
. W " u
(ii) mo g ¢F may be found such that 3 max < g ' § #(% .

The BPHZ regularized integrand is defined as follows:

regl(j: (e ZTCT,

T $e3

§¢gH 5§

") 1 (3.46)

where the sum runs over all nonempty forests of % and the

product is over all different renormalization parts g' belonging
. 8¢g)

to the given forest ’3 . 1:3' s is a Taylor operator of degree

6( g‘ ) acting on the external wavenumbers of subgraph §' . If



we define a 'reduced diagr@nﬁ'S/ig.,...,gP)as the diagram

one obtains from % by shrinking its subgraphs G,,..,Qp

§CSD

to a point, the Taylor operator TS 1s defined by:

PR ee
wet ...“q‘.

T T e
2o ey @)™ - @8I (3. 47)

o&nic

e gs L pei B0 g g 93% e
where 51,52,...,%q,—(ﬁ1+§2+ cee * ﬁq) are the external
wavenumbers entering subgraph 3‘ . The Taylor operators are
understood to operate in such an order that'ﬁgcgn operates
after ’Tg;:&s) if S.‘?Sj . If Gia 85=95 , the order does
not matter. Zimmermann (1969) and Hepp (1969) have proved
that no matter what the diagram & is, the integral of reg. I3
defined in this way has a finite limit, as the cutoff A
goes to infinity, provided that r4 O and the dimensionality, d,
of the system does not exceed four. (Note that the result of
the regularization depends on the way one chooses the
internal wavenumbers; we assume that a definite recipe is

‘given for this choice, so that reg. IS is uniquely defined.

In pradtice it is convenient to work with the so-called
'a-parametrization' (cf. Bergére and Zuber (1974)), once

" the cutoff A has been set to infinity).

7.4  Detiwitlon ok our rehorwolizoviow procedure .,

We shall discuss in this section the differences between
our renormalization procedure and that used in the ordinary
BPHZ regularization. We shall moreover show that our
renormalizlation procedure yields a finite limit when the cutoff
A goes to infinity whenever the corresponding BPHZ regularized

theory yields a finite limit.
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To see the source of the differences let us perform a
sample calculation. We consider the only second order graph
for 71(2) whose contribution does not vanish: it is shown in

fig. 40.

N Fig. 40
*‘l;;b .

The corresponding unregularized integrand is -

A 1
1 = A (3-48)

P2 P2 Pa?
(k\*‘ .‘.) » (kz’?a) -« r (kl"k.’.i) » ¥

The renormalization parts of the diagram are: il,2§32g3,{5g@,ﬁﬂ2,51.

The first three have degree zero, the last one has degree two.
We shall call a renormalization part with four stumps a ‘
'coupling constant renormalization subgraph', or more briefly
a 'g-subgraph'. The corresponding subtracted terms will be
called 'g-counterterms'. We have 7 forests: the four “
renormalization parts by themselves, plus three forests of

the kind {21,2&,;1,2,5@3. The BPHZ procedure then gives:

gl = T -~ L : A . 3 2 . A Ay
3 e L O L (e r(Fers
A 4

) 4 4 4
T P (e o .
kier DR R R 1Y 0‘,0;,‘,,. (h‘,;’)n*r (l&-'k*{)‘n )P"" ) +

4 A A
Py ——r——— & rt——— —————
K +r ke Ly #v . kifvr  lew kier N r';.}- kier Klrevw
(3.49)
We have introduced the notation k' =k, - ki to stress a

symmetry which would otherwise be obscured. We see clearly that
the three subtracted terms in the first line cancel off with

the ones of the third line, when the integration is performed.
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This is a general feature in BPHZ subtraction procedure: one

need not consider subtractions due to subgraphs which are

not also subdiagrams. This rather tricky feature will show
up also within our normalization procedure. |

In our procedure one also subtracts according to the
forest formula, but one has to keep in mind that the mass -
normalization is imposed at varying r, while all other
normalizations are imposed at r = M?. For instance, the first
line in eq. (3.49) refers to the g-subgraphs {l,af,{2,§;,{5,1§,
which must be evaluated at r = ﬂ?. Therefore the subtracted
parts should be evaluated at r = M?. One gets instead of the
first line of (3.49), apart from I, the féllowing,three

subtracted terms:
(a3 er kIemE aius T -

) 3
(ku."-:)iﬁ CokleMt 2, w2

4
(Wefser kivkd xrowa

(3.50)
As for the second line, the first term is a mass counterterm,
and must be evaluated at r, while the second is a z-counter-

term, and must be evaluated at r = Mg; we get therefore:

A A 4 3
- —— trp—— ——— - A .{

Qt.og_')g'_nt Q‘",,;o)t+“t (k\-ko?i'ltvﬂt >P"°
(3.51)

The third line is built up in this way. One first considers the
g-subgraphs and evaluates them at r = Mg; then one considers

the mass. counterterm on +the remaining line and evaluates them
at r.(The z-counterterms vanish.) One gets an overall plus

sign, as there are two subtractions. One gets therefore:
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T o, S
KA grewt Tt

— A 4 | \ ’
AT LT KEeRE Kfov bient i e (5.52) .

Of course, the three terms in (%.52) cancel witnh those in
(3.5U) when the integration is perrormed. Une can generalize
the procedure in this way for more complicated diagrams.

Given a diagram, consider one of its forests, say F .
Consider a tree T belonging to ¥ . lLet 3' be a
subgraph belonging to ‘{ . Then there will be a sequence {G;}
of renormalization parts belonging to ¢ . such that S;S'_ ,
S": S"‘“ where gmax is the maximal element of T , and that
if 1 jJ, g;;,sj . lMoreover we impose the condition that
if i = § + 1 there is no §"eq such that §;>¢"  and
S"DSS . We have therefore a nested sequence of subgraphs
which ends up on the maximal one, and a corresponding
sequence of degrees §§(§ig . If for all i = 0,.. n,
§C§;) = 2, then the mass counterterm relative to §; should
be evaluated at r and the others at r = M? If i' is such
that §(4.) zo , the subtractions of §;. must be carried
out at r = i~12. In other words, if for a g'ez ’ Scs').o .
for all subgraphs belonging to the branch whose maximal
element is %k y the counterterms must be evaluated at
I = Ez, even 1f they are self energy insertions., In all
cases the z-counterterm mﬁst be evaluated at r = iH°.

We shall now show that this regularization procedure
leadés to a finite result, We show that its finiteness is
a consequence of the finiteness of the BPHZ normalization

2

procedure. We first note that for r = K° the two procedures

. : m)
coincide. Ve then consider any vertex function r at
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some r, Jy Taylor expansion in r around r = k° we get

tw Cr=-ntP P 3
T ke yr) e Z 2 re

Pac P! ore F k.. dhesrd i e

(5.53)
We shall prove that »P/prf TV iyruz is finite in
perturbation theory. Consider any diagram for T . ‘the
derivative with respect to r breaks one line into two. If
the line is not contained in a renormalization part this
can only improve convergence, as it lowers the dégree of
the graph by 2; trouble arises only when r acts on a
renormalizationvpart. If the'renormalization part is of
degree zero, and the derivative does not act on a renormaliza—
tion part contained in it, the derivative eliminates the
subtracted part, and the renormalization part with one line
broken is convergent {or it is of degree -2). We are left
with’the case iﬁ'which the derivative acts_dn a rencrmalization
part of degree 2, i.e. on a self—énergy insertion. ‘he
only nonirivial case is when the renormalization ﬁart
belongs to no branch Qhose makimal element is'of degree
zero; otherwise the derivativé'anniﬂilates the whole
contributionQ We conSLder tnerefore the diagram, with the
derlvatlve acting on a line belonblnb to a renormalization
part, and the set of forests which satisfy this cond;tion.
We can neglect all other trees, as they are irrelevant to
one probleda,
Let us consider first the case in whicin the only such
tree is formed by the renormalization part q itself; toe

contrivution to the integrand is

92



reg IS . IS(r;ra - fI&CO;rNP’D%,IScp';u‘) Ipizo 3 (3.54)
where 3 is the renormalization part, p is the momentum
which flows through it, and we nave explicitly indicated
the mass dependence of the integrands.

If we take the derivative of (2.94) with respect to r,

we obtain

3
2 Pe.%l =;‘b-y~ 13(?"-) -

§
or 1

L1 S (3.55)
Graphically this can be represented by fig. 41 for the
~diagrams of fig. 40, The letter above indicates the mass,

the letter below the wavenumber. The cross indicates that

| r r r . | -.
X .
a%' ? 2 -@- . .EO'} _ Pig.4l

the lines are broken into two. We now set r =’M2. One

recognizes in expression (3.55) the renormalized integrand
fof the derivative of the renormalization parti with respect
to t, regularized in the sPHY4 procedure. The contribution
is therefore finite., Other derivatives with respect to r
can only improve convergencé.

Une can easily convince oneself that things do not
change if some self-energy insertions are nésted. The
derivative with respect to ¥ acts on.each insertion one
at a time, yielding'contributions equal to those of the
derivative of the diagram with respect to %, calculated at
the normalization point, and with the proper BrHZ regularization,

It is readily shown that, if one sums up loopwise the
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expansion (5.53) one recoveré tne original regularigzation.
In this case one would zet for each line a geometric series
of ?atio - (rmh)z/(k2+ﬁz) times a factor (k2+h2}_1, in
both I and its mass counterterms. The use of the subtractions
procedﬁre is therefore Justified. | |

An explicit example of the application of the foresf
formula will be given in the appendix dealing with the
one-loop calculation of the equation of state. ﬂ

The perturbation expansion is divergent at r = U for
finite cutoff A . e shall see that an additional hypothesis
will allow us to discuss the behaviour of tne model even
at r = 0; but to do that it will be necessary to introduce

the renormalization group transformations,

3.5 Renormalization in the t-dependent scheme

in section 3.1 we defineﬁ t implicitly by a relation
of the kind
= At + b | | (53.56)
We then defined Z as a suitable sum of graphs, but we did
not specify D. Of course, as long as one uses r as an
independent'variéble, and one is only intereéted in the
“derivatives, with'respebt“to t, of vertex functions
evaluated at some r, this is not needed., Sut it is
convenient sometimes to use’t‘as én independent variable, and
to be able to switch from r to t and vice versa.
we.need.therefore to specify o and snow that t can Dpe
used as an independent. variable in'place of r in perturbation
theory. ''his is wnat we shall do in the present section,.
Wwe fix b by imposing that when r vanishes, % also

. ) - P . \ .
vanishes: therefore il N 1s such that r 1is zero,

~

- (5.57)

¢
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This formula is to be interpreted at finite cutoffl\_.

Let us now consider a finite cutoff A and choose a
normalization value hz of r. This amounts to choosing a
normalization value t = T(H, A, gj of t. Let us now assume
we have already switched from & té g and we need only to
switch from ¥ to t. Do zeroth order in g

=t ° (3.58)
We canvtherefore set, to gero order in g, - n(2) = k2 + t,

To first order in g we have the diagram in fig. 42.

£2 | | | " Pig. 42

We have to satisfy two conditions: (a) -3T"/oe =1
at t =%, (b) = 0 for t = 0. Therefore we have to
subtiract the contribution of the diagram in fig. 42t.f“’twice:
once we subtract its value at t = O, the second time we
subtract_(t—%) tines its derivative with respect to t,

evaluated at t = 1. Algebraically, the contribution of this

diagram is proportional to the integral of

A { -2 A ) .

Moreover we have to subtract off the gz-counterterwms. (lhey
happen to vanish for this diagram.) dHowever, there is no
special difficulty with them in this subtraction procedure,

except of course. that they have to be evaluated at 1 T

instead of r = hz. As a consequence, the modification we

used to Zimmermann's Torest formula may bpe stated as follows:
5¢y)

for all self-energy insertions S. the -r' operator must be

3

understood.as follows:
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We emphasize that the forest formula runs, in this case, over

. 3 2 (X¢on 3 = w
(piedes I%0,tD +p’a.l;u1 Py ¥ lpg + (t-b?a—z.ls(o;t)l,"; (3_-60)

all subgraphs, as the contribution of the subtractions of
subgraphs:which are not subdiagrams does not vanish,f
The problem that arises is the finiteness of this

procedure. Let us first consider the t = T point. Then the
regularization procedure differs from the BPHZ one since the
first subtraction relative to self-energy insertions is
carried out at t = O instead of at t = €. If the cutoff A is
kept finite, the subtracted parts are nevertheless in general
divergent. It is however possible for each order:ﬂin perturbation
theory to find a positive €&, such that, for all diagrams
up to that order, the subtracted parts are finite if the

dimensionality d of the system is larger than q.-eg . Once
this is satisfied it is possible to argue that the contributions‘
of the diagrams for t = t up to that order are finite. This
can be obtained from power counting arguments. One first sees
that the first subtraction on self-energy insertions
cancels the most divergent part (i.e., the part which behaves
as the highest power of the cutoff /A ) of the contribution.
One is then left with ordinary BPHZ regularizations, and
therefore the result is finite. This is not a proof, of
course, but I do not believe a full proof would be worthwhile
pursuing since we shall consider the renormalized theory
defined as a function of r instead of t.

If a diagram gives a finite contribution at t = ¥, it

gives a finite contribution for any t. This is quite obvious

9%



T Footnote to page

In expressioﬁs like (3%3.60) T must be calcﬁlated.as a
power series in g, too. Wé can estimate T as a function of
M and g by calculating E(Me) - P(r = 0) using the concepts
developed in ﬁhis Qhapter; The zeroth and fipst order

contributions to T are:

Mz' TR
Eaf,e) = ¥+ Q.
. Q.

<]

If one introduces these corrections into the expansion of

any quantity as a function of t,.M2, g, one obtains a

formal expansion in which all subtractions are to be carried
out at t = M° (instead of at t = §). The 't' parameter in
this expansibn is not however proportional to T - Tc, so that
‘instead of being zero at r = 0, it is equal to ¥ - M. One |
must then shift back to the original t in the final formulae.
This looks guite awkward (and in fact is). For a calculation
in whiéh this is discussed in detail, see the appendix on

the one-~loop calculation of the equation of state.
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directly, and may be proved in a way similar to 3.4. Let )-2,%
be the contribution of gragh-g . We can expand K3  in

Taylor series around t = T:

Kﬁ(;) . Z Iﬁ)v‘

8
R Tl SO Veut

(3.61)

We have assumed that the theory of t = T is finite; therefore
the n-th derivative of ws at-t = T is finite,'and.from
(3.61) Kd (t) is finite. Let s consider the case that § is
a self-energy insertion, which contains no other self—enérgy.

insertions. Its contribution at t = T is the integral of

req I‘f(p,é'\:.IS (pot> - I.S(o,o)

(3.62)
‘apart from wave function renormalization subtractions and
degree zero subtractions. We did not indicate explicitly
the loop wavenumbers which will be integrated over.
- The first derivative of R? with réspect to t is
given by the integral of |
3_—_ reg .IS( P.e)lh: . :_c Ig(?ﬁ)‘t,; - iiz(o’t)lt‘;  (3.63)

All other derivatives annihilate the subtracted terms of

(3.63). If we now focus our attention on one line belongiﬁg.
to g we see that the effect of the Z (e-&" .b-a;:  operatéer
is simply to shift t from T to its actual value (& similar
thing happened in 3.4). But in this way oéne has lost trace
of the subtracted term in (3.63), which must be iﬁtroduced‘

by hand. As a consequence the expression for~)€3 we Tecover

is the integral of

- .6
reg I‘S(p.t’)z 13(9.;-) -(.13(,0,9)o(t--e)sa-cli(o,e){,.gj (3-64)



apart from z- and g- counterterms.
We already pointed out that,in the present case, subgraphs
which are not subdiagrams must be taken into account in the
forest formula. This may be easily seen if one examines the
first diagram for which there are subgraphs of this kind
(see fig.40). We claim that the same happeﬁs every time
when the mass counterterms are subtracted with a different r
from the one with which the diagram is evaluated. The reason
is that such a diagram can only be a g-graph contained in a
self—energy insertion. In fact it must still be & renormalization
part if we add juét the one 1iné which, in the original
diagram, joined two vertices of the graph together. Also
we cannot add more than one line, since otherwise the»
subgraph would not be a renormalization part. We call §o the
subgraph, 3,.the smallest subdiagram which contains So 3
%H can only be é'subdiagram - otherwise the diagram
we are considering is not connected. See fig. 43, {1,213 is
a subgraph, contained in §{1,2,%{ which is a subgraph of §1,2,3,4¢ .

la

@ . o Fig. 43

But the whole diagram has no external legs! Now consider. any
forest O which contains §¢ and &, . We associate with it
‘a forest ‘J' which contains Qo but not §. » and for the rest
is equal to § . The contributions of the forests cancel, if
the first subtraction relative to §, is cerred out with

the mass r used in the calculation of the full diagram. (We

do not consider the case in which the whole branch which contains




both 50 and §, 1s to be evaluated r = M?, for in that
case the problem reduces to BPHZ procedure.) In fact the

two contributions are:

for 3 d - A IS’ Co.Kt) (3'65)
(P&k, )‘ri‘ ’
A So 2

(the plus sign is due to the fact that there is one more
subtraction) where p is the wavenumber along the line we are
considering. When the cutoff goes to infinity, the two
contributions cancel. It is clear that this feature is general.
If we had subtracted off also masscounterterms st some fixed p

we would have had;

for J' 4 S (5.67)

(Prx, e Lo,mt)
A $o _ _
for 1° (o, M) ' .68
3 o, e (3.68)

which do not cuweg 1n the infinite cutoff limit.

5.6 Renormalizabion im +he Coop  expansion.

We shall discuss in this section, following Lee (1969),
Gervais and Lee (1969), Lee and Zinn-Justin (1972), the
'renormalizafion procedure in the loop expansion at nonzero < .

Let us consider the diagram § in fig. 44. The wavy
11nes indicate the explicit ¢p factors, the internal llnes

carry a contribution (k tT B /2)
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We write the contribution of the diagram in fig. 44 as
a Taylor series In ¢ around ¢ = 0: i.e., we define the

regularized integrand at ¢ # O by -

o :
w S "
reg ﬂli(gp) e 2 L é—- ngl ) \ :.o(gq"'l)z (3'69)

h=o n! 'Wt}“ q)
We must now define the derivatives of reg. Ig_(bp) with respect
togw? at ¢p = 0. These can be obtained by recalling the
% .

way we reached the loop expansion: from

e
- 3
UCLP ) : ) V\%o ;;\frc:;;"’to)"Pz“ (3'70)
we obtain that
.g_. veq 13 ¢ lq’ = 2. rcgigm o '
\ o
Do dan (3.71)

where Szn is any diagram with 2n stumps which can be obtained
from g by inserting interaction vertices (with two stumps
each) into its internal lines.- A few such diagrams are shown

in fig. 45

O O Dage s s

If the fundamentel diagram we are considering is such
that, when all its wiggly lines have been replaced by stumps,
the diagram 5 s0 obtained is not a renormalization part
and does not contain renormalization parts, reg Tt £op any
§:, 1s equal to I San , and there is no trouble. The
interesting case is when the diagram obtained as above is
indeed a renormalization part, as in the case we are
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considering. We assume for the time being that it contains
no other renormalization part.

Of all S“' s , only a finite number will be renormalizstion
parts: when a new vertex is added, the number of stumps increases
by two. Therefore only for some 3“"5 will reg. TStw contain
some subtractions, namely only for O & 2n s 5(¢'), in our

case, only Se and gz . We can therefore write:

' o 85,
o w ™ .
4 n ) % A 181 Sen 4 S
q. 2\ L req I%up 2 2 (8¢?) I, T 44 I
nze ! (;(P ) ( 3(3‘{")” cg )‘fto noo e * n'o“' 3"

(3.72)

where we have indicated by 3’.3‘“ the sum of counterterms
relative to Sm - The first term on the r.h.s. of eq.
(3.72) may be summed loopwisé and yields the unregularized
integrand at nonzero ¢ we had at the beginning; the second
term has the aspect of a Taylor operator of degree 6(5 )/zin (?ﬁkp")
_actirig on IS . (The degree of a diagram is always even.).

Therefore the rule for the regularization of integrands
in the unsymmetric case (@# 0) is similar to the one in the
symmetric case (¢ = 0); only (i) all subbractions must be
evéluated at @ = 0; (ii) there are additional subtractions
given by considering the first 8(g Jhterms in the Taylor
expansion of I around the symmetric case in powers of (%%?)
for any renormalization part g .

We have obtéined in this way also the proof of the
finiteness of this renormalization procedure.

Let us now consider the problem of the evaluation of

Clo] ot any temperature. The first few terms in its loop
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expansion are shown in fig. 46.  The lines carry a contribution
(k2+r)_l. _ R '

Moy GO + & +.. Fig. 46
These disgrams are divergent where fA tends to infinity. We
must regularize them in some way. The most comfortablé way -
for tﬁe subsequent calculations is to define ¢ in such a
way that they all vanish:

{0l =0 E - (3.73)

This has a nasty consequence. Because of eq. (3.73) also the

specific heat

C = ace

AT | - (3.74)
whose first few diagrams are shown in fig. 47 ‘

¢z P s O 4. Fig. 47 |
vanishes at any temperature. In order to calculate the
behaviour of the specific heat as t— O we shall use a trick.
We define a k-dependent specific heat by the diagrams in
fig. 47 calculated with an external wavenumber kX running
through the diagram. Condition (3.73) implies that all
such diagrams must be subtracted by a counterterm evaluated
at k = 0. We shall then discuss the properties of this
k-dependent specific heat for very low but nonzero k, and
extrapolate the result obtained in this way to k= 0. This
is probably not very convincing, and needs justifiéation.

We shall discuss this problem in on oppendi x .

3.7  Comclusions,

We have changed the description of a model which was
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dependent on z_, g,, T, and A into a description which

0
depends on g, T, M?, and A . We know that if [ -  the
correlation functions calculated by the diagrammatic expansion
tend to a finite limit. Therefore,if M° is much smaller
thanfd, we shall be very near this limit, and the dependence
of the correlation functions on 4 - can be neglected.
We can consider the theory from now on as an uncutoff one.

On the other hand, the I* we have chosen is arbitrary.
If we had chosen a different one, say M?i, we would have got
different values of g, r, t even for the Same model at the
same temperature. Therefore the theory must behave in such
a way that an arbitrary change in M can be reabsorbed in a
suitable-change of g, ry ¥ in such a way that the set of
correlation functions calouléted with the new value of M
and the new paramebters g, r, t is not essentially modified.
This invariance property leads to the definition of the
renormalization group. We shall define andexploitif in the

‘next chapter.
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4. RENORMALIZATION GROUP EQUATIONS FOR THE GENERATING FUNCTIONAL

4,0 -Introduction

We shall exploit in this chépter the properties of our

renormalization scheme which sfem ffom the arbitrariness of
the normalization point. The spirit of the approach has
been outlined at the beginning of chapter 3: we exploit the
knowledge of the behaviour of the model at some distance from
the critical point to gain information about its behaviour

at a temperature slightly nearer to Tc. We expect this to be
possible in perturbation theory. We then use the information
obtained in this way as a new starting point for the same
procedure. In this way we approach the critical point as

the procedure is iterated a great number of times. The
properties around the critical point will therefore be derived
from the properties of a great number of itefations of the
transformation, and will not depend essentially on the
properties of the model we started with. In this way one
expects universality behaviour to take place.

We shall derive here the renormalization group (r.g.)
equations from the arbitrarinesé of the normalizstion point
(N.P.) characterized by M2. These equatioﬁs essentially
describe the invariance of the generating functional ' with
respect to a change of the N.P., provided suitable changes in
the other parameters (g,r,; the scalé of(# ) are made. We
shall then solve these equations in various 1imits, in order
to see how they characterize the asymﬁtotic behaviour when

the critical point is approached along different directions.



Some more technical topics (the relation of these equations
to the Callan (1970) - Symanzik (1970) equation, the
behaviour of the specific heat, thé one-loop calculation of

the equation of state) are discussed in appendices.

4.1 Derivation of r.g. equations

‘We summarize here the results.of chapter 3. Given a
model characterized by a hamiltonian HLdl | which is a
function of the parameters 25 &g ro(T) and by a very large
cutoff A, we were able to define a new field variable ¢
proportional to ¢, 1in such a way that the corresp'onding
generating functional ©° defined in eq. (3.12) satisfies
certain properties. The properties of ' are the following:
consider the first two terxﬁs of the expansion (3.21) of ¥ as
a power series of Vg , where ¢p=¢ o> :

PLel= - (ax ['O'C@(n)«é 3 (pexd) (Ve )2 .o (1. 1)
Then at a certain temperature, which is characterized.by the
value M° of the inverse square coherence length n® (defined

in eq. (3.9)) we have:

wd 2
2%t lozo (4.2)
_%cm =4
| | (4.3)
The temperature at which m° = M will be called the 'normalization

temperature’'. It depends on the arbitrary parameter M2 The
thermodynamic state corresponding to the normalization

temperature and cp = 0 will be called the 'normalization point! (N.P;
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We shall occasionally emphasize its dependence on M?.
We also defined in (5731) a quantity t such that T, is
a linear function of t and such that at the normalization point
ce? -
AR 2 (44
(and we imposed the condition that t vanishes at the critical
temperature). We then expressed ©" as a function of ¢ , the
inverse susceptibility r, defined by _

rz 0?0 (4.5)
and an effective coupling constant g defined by -

q "5::’.(0) . (4.86)
where the suffix N.P. indicates that the quantity is to be
calculated at the normalization.point. The functional ™ will
also depend on the value of the paraumeter M? which identifies
the normalization point, but it turns out that it does not
depend on [ , if A\ is very large.

One may naturélly ask what functional would have been
obtained, had we made a different choice of the 'normalization
parameter' Me, e.g., a value M‘g, to represent the same
model. We answer this question in the following. We make the
following observation. Let 3” _be any positive number. Then
in terms of the generating functional I'f@) defined in (3.12)
we may define a new fuﬁcfional C'Lel Dby the equatioﬁ:

el TSl | (4.7)

If we expénd Mte¢] as a power series of Vep , we obtain:

)

r'eeds - $ox [ cqu) + 3 3ceo) (Tt ] Ce8)

where "0": %’ are related to QS,} by
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Teed= ©3ed - (4.9)

Fcers s | (4.10)
We can exploit the last relation to define the functional T ,

in such a way that the normalization conditions corresponding

to (4.3) and (4.4):

3o = 4 ' (4.11a) -
aig'(“g) = 4
ot {4.11b)
are satisfied at the temperature,for which the inverse
square coherence distance, m2, has the value m2 = M'2.

2

One can proceed as follows. Given M'T let us look for

that value T of r, for which k
V@0, £ s F/M2 - (4.12)
Then from the definition (3.9) of m2, (3.34), (3.15) and (3.29),
| one obtains that for r = £ ' |
m2(§) - e

Define the factor z(M,M',g) by

z(M,M',g) = 1/%(<P = 07?' ) (4.13)
Then if we choose the factor ¥' mentioned above such that
g‘& =2 (M,M',g) (4. 11_;_)

one sees from eq. (4.10) that at the temperature corresponding

to M
3/(0) = 1.
If we define the new inverse susceptibility r' by
ro= 07 (@(g) | ' (4.15)
we obtain from (4.3%) with the above choice of R |
r' = r z(M,M',g) (4.16)
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’ fal
Qf course, when ¥ = r

rto= 1

Let us now consider the quantity z,(M,M',g), defined by
?

Ze (ML) 2 2mn Mg glgc&,#,p (5.17)
wheré T is the solution of the implicit equation (4.12).
We can then define t' by
t'' = a't + b’
where t is defined in (3.31) and following. In this way, T
is a linear function of t, it is also a'linear function of t'.‘

We can now choose a' and b' in such a way that

(i) for r' = M'2, EP:*:; | (4.183)
kK4
(ii) for r'» 0, t'=> O. ’ ' (4.18b)

As a result, we obtain:

a' = 1/ 2,(1,M',g) (4.19)

b = 0 | (4.20)
Therefore

t' =t 2 (MM ,E) ' (#.21)

Finally we may define the quantity g' which will play the role
of the new effective coupling constant. 1In snalogy with

eq. (%3.27) we write

vo= ()

&' = Jig (4.22)
where Lﬂ‘“’is calculated at r' = M'2. If we define the
quantity 2¢(M,M',g) by

g' = 2,(,M,8)s (4.23)

we obtain

) > '
EYCM.H'%)=’L7CO;*':3)/(22CH'N'3>’Q> (&.24) .



(The r.h.s. of eq. (4.24) is not diﬁergent for g -» 0, since

it is readily seen thatq}'(4) is proportional to g for small g.)

IBecause of the above definitions I may be cohveniently

defined in terms of the variable | ,
@'z 7 (4.25)

and r', g' amd M', i.e. F'(Le'3,¥),g' )= T (¢®hrg)From the above

relations between the primed and unprimed variables we have
el .9 ") = T (Y.%-hz(93;z(,n,n“%)r, By MM >g, M) (4.26)

when we have indicated the explicit dependence of the
functionéls on their normalization parameters.
Eq. (4.26) expresses a very important invariance property
of ™ . It is fundamental in our study. |
All z factors are dimensionless; therefore they can
only depend on dimensionless combinations of their arguments.
We choose these combinations to be M'/M and a dimensionless
expression of the coupling constant:
g/l"{e | ' (4.27)

Let us first consider two different normalization points,

1

u

M and M'. The relations (4.16), (4.21), (4.23) may be thought
of as relations not only for the change in the normalization
parameter M- M', bﬁt also for the inverse one M'-— M. If we
denote by u' the effective dimensionless coupling constant

corresponding to the case with the N.P. at M' we have:

25, W - oalg o, w) = 1. (4.28)
On the other hand we obtain from (4.23) and (4,2?)

weae e W) uy o C (4.29)
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Therefore

By (8,2, (Bow) (BFu ) 2e (Sou)=a . o (4.30)
An analogous equation holds for z,. ' |

Let us now consider a third mddel, which is normalized
2. We can consider i1t as obtained from the model
2

at r = M"
normalized at M2 or M'®™ by performing the'transformations

(4.16), (#.21), (#4.23). The result must not change. Therefore

n M My E ' ' | |
2 (%)= 2 (oey (R (B)%u)z (Ba) | (4.31)
Analogous equations hold for the other z factors. We see that |

we have buillt up a one parameter group of transformations

labelled by a parameter T , which can be chosen to be

TR | . (4.32)
Iﬁ fact, let us consider the set of the three z factors as the
operator Eﬁt which, when applied to the set (t,g,M),
produce the set (t',g',M'). We have: -
-1 _
Z_. = Z, | (4.33)
(which is just a different way of writing egs. (4.28), (4.29)

and their snalogue). DMoreover

':Zur' = -Zz: Zt' . (4.34)
And of course
Zo = 4 (4.35)
The set of transformations related to the change in the
normalization point is therefore a group - isomorphic to the
abelian group of multiplications on the real positive semiaxis..
For this reason, these transformations are called 'renormalization

group transformations'.
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Given a continuous group, it is natural to look for its
generator. We can obtain it as follows. Consider M' slightly
larger than M, say, M(1+86) where & is a 'very small positive

number. We obtain the following set of z's:

M1add

Zed)2 2 ("l VYo A valw)« § .
=) (4.36)
MLtad) s
vzvls)é‘ Zv K.'T( ou): ArBlW)- & (4.%7)
2eerzz ("M 0) = gvam s (4.38)
where the quantities A, B, C are the derivatives of the z
factors with respect to t at T = Q, i.e.:
Atud = M' 2Ze
oM lH‘-M (4.39)
Beuy 2 M0 Ry : .
- 2= (4.81)
Clwr = r*"gﬁllﬂhzn

We may consider the set (4,B,C) as the generator of the
r.g. transformations: of course it depends on u, since the
transformation is nonlinear. |

Under this transformation, the functional I' is invariant.
If we write {(4.26) with M' = M(l+6),vwe obtain,from the

conditions that terms of first order in & must vanish:
u 2 2 (w2 4 i : o
Lﬁa"'ﬂ PG r 2 4By 3"’8 3 () fon cp;,x)‘wm] T(Te3;va,M) =0

(a.42)

We can derive an analogous equation expressing the covariance
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of t with respect to the same transfofmation, from eq. (4.21).

We have:

{H;‘lﬂ + Cou) r_é% + B 3%3 - Awmj té€rg,n)=0 | .(4.45)

Eqs. (#.42), (4.43) are the fundamental equations oE‘our
work. We shall see in the following that the'coefficients
A, B, C, can be calculated in perturbation theory, so that
it is reasonable to use eq. (4.42) for the investigation of
the behaviour of the model in the low t region, where a direct
attack would be useless. .

Note that egs. (4.42), (4.43) are homogeneous, whereas
the Callan-Symanzik equations (as derived,.e.g., by Brezin,
Le Guillou, Zinn-Justin (1973%b) in s context similar to ours)
are inhomogeneous. This is a special feature of our normalization
scheme, in which the z- and g-counterterms (as well as the
zt-counterterms) aré independent of r. The homdgeneity of
these equations gives some adv.antages-in the treatment of
the region ke« T, ¢ << rg“e{“ . In the regions k » r,
CP>>Y&'GM aroﬁnd the critical-temperature, a hierarchy of
inhomogeneous equafidns appear. It is possiblé to guess a
solution to this hierarchjﬂ“ However, this solution depends
~on an arbitrary function (for this problem, see the paper
by Brezin et al. mentioned abové)w To obtain information
about this arbitrary function one-should impose some bQundary
condition. - These topics will be discussed in detail later on.

We shall frequently use a different form of eq. (4.42).

We first note that eq. (4.43) makes sense in perturbation

theory even if it is not possible to calculafe t because of
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infrared divergences. We shall show in fact in the next
section that the coefficients in eq. (4.43) can be calculated
and are finite in perturbation theory. We can therefore define
t as that solution of eq. (#.43) which vanishes at the critical
point (i.e., for r = 0). It is therefore possible to use

t instead of r as an independent variable. Moreover, since

the coefficients of eq. (4.42) depend on u, we can write I as
a function of u instead of g. Therefore dimensional analysis

implies that

? £ 2 A~ 8/2) £ . =
\-\M{N*z o € 2 devcx)ﬁqu)-o\]{‘(.CQJ,t-,u,ﬂ) o

(4.44)
(Eq. (4.44) may be easily obtained by applying dimensional
analysis to expansion ‘(2.51).) Eq. (4.44), (4.83%) may be used
to eliminate the M,r derivatives in eq. (4.42), and to introduce
t in place of r. We obtain therefore the fundamental equation:

\ olu) b 2 peay D d ¥ . .o (4.
\' b= +p,u).au+15(u>j x P Sqmt;d fLed; tu, M)so (H-45)

where the coefficients o,B,Y are given by

KCw)d) = = 2+ Alw) (4.46)
.9,(_0.) = - eu f%c-\n-u . (4.47)
b’(u‘:: -4+€/2-§_cw.) . (4.48)

(The slight asymmetry in the definition of B is due to historical
reasons.) From eq. (4.45) it is easy to obtain by functional
derivation all equations satisfied by the various vertex
functions, or by other quantities of interest. We shall

refer to it as to the r.g. equation.

4.2 The-coefficients in the r.g. equation

Let us expend the functional " in eq. (4.45) in powers

of @, T » ab the normalization point. We obtain the
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following equation:

ot(u)t 2 2 2
& + o) su ryt e s-‘? +d) dei“UCo)‘«P () -»- U'(o)tp(x) + _a(o)(r/qg“nj:o

(4.49).
which implies
{p(tu.) t 2 e + f,(u)% + Bryiu) 3 'U'(:;)ao (4- 50)
- ?
Lxusd b = F’L“)a% rdru @l -o |
(4.51)
— D )
LA &5 vpey & 0 a2y 2y ] Z@)=0 (4.52)

At the normalization point, the normalization conditions

(4.11a), (#.11b), (4.22) must be satisfied. We therefore obtain:

—

Ktw) t ¢ (a4 YWY M=p . _ (4.53)
Kiv) © 3%3(0) +Ad-242%W) =0 (4-55)

Egs. (4.53) - (4.55) are a linear system in «,B,Y, once
£, 0% e, 23 /2t are given. The presence of T makes them
rather awkward for practical use. We shall therefore use

(4#.53) to eliminate T from the eduations. We have:

X E 2 - (de2ylw)) M2 (4.56)
We need now a new eguation for a. This may be obtained by |
taking the derivative of eq. (4.50) with respect to t and by

using the normalization condifion (4.11b). We have

L)
(d*'z-(f‘-""’) H?. a \’(o)

r O FYLW) HHL) = o

(4.57)
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The two equations obtained by eliminating T from eq. (4.5%) - (4.55)

are
)

Cdiycny) N2 ‘2—{_ g, * Bw YA (drbytas)untz O (o581 )
230>

(d »2ycar) M2 53.‘: {np *+ d-2e2)w) 20 (4.55")

All ceoefficients are now expressed in terms of derivatives of
vertex functions with respect to t, calculated at the normaliza-
tion point. We have developed a diagrammatic expansion for 4
this in chapter 3. Note that since we consider temperatures
infinitesimally different from the normalization one, we dé

not expect sinwgularities to appear in the calculation of

these derivatives, and therefore of «,B,Y.

Bquations (4.57), (4.54'), (4.55') can be easily solved,
but we shall not need their explicit solutions in this chapter.
We shall only note the following. From (4.46), (4.47), (#.48)
we see that at low u, «,B,Y are negative if 4 < 4. But,
whereas o and -Y are of order 1, B is only of ordere . If d& &4,
it may be possible to find a small u*, of order ¢ , such that
B(u) vanishes for u = u*; this would happen if the first
term in the expansion of B(u) is positive. This is.exactly
what happens. The fact that,for d¢ 4, B(u) has a zero for
u~¢& is the basis for the €& -expansion of critical exponents.
This was first noted by Wilson and Fisher (1971), Wilson (4972 ),
and in a context more similar to ours, by Di Castro (1972),
Brezin, LeGuillou and Zinn-Justin (i9‘75a).' (Note that the
expressions of our coefficients are exactly equal to those
.of the corresponding coefficients in the Callah-Symanzik equation.
In fact our equation is strictly related to the (allaw -Ssmmﬂ:ik

equation. cf. appendix I).
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4.% Solution of the r.g. equation

We shall now solve the r.g. equation (#4.45). We assume
that we know the coefficients «,B,yY for all u's. We can then
use the method of characteristic curves. Given (¢ ,t,u), we
define a set ( &KIJ, %Z‘t), 2 T)) depending on a running

variable T such that (&(0), T(0), W0)) = (¢,t,u) and

4

g—t“)._ & (GeTyy - F o)
(4.58)
>& ) ~
e = plucny)
= P (4.59)
2% ~ &~ '
3= = JLULD) . Pl (4.60)

We see that eq. (4.59) can be solved by itself. We shall
therefore discuss it in some detail.

For small u, B(u) is negative, if d«¢ #. If u increases,
there are three possibilities (at least if B is not an extremely
pathological function: but in this case we would not think of
calculating it in perturbation theory). They are:

(i) B(u) has no zero all along the positive semiaxis,
and it is finite for any finite wu;
o’
(iii) B(u) has a zero for some positive u = u*.

(ii) B(u) diverges for some positive u, say u

For the following arguments, consider fig. 48. Thegbscissa
and ordinate represent the values of u, and B respectively.
The continuous line 1s for case (iii); the dotted and broken

line for case (i) and (ii) respectively.

Fig. 48
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Assume that u is very small and positive. Then, if Tooe
%(t ) will decrease and will ultimately reach zero (the rgte
at which it does this will be discussed later). Lef us
consider instead Ta-o . In case (i) § will néver stop
increasing: therefore it will diverge together with the
absolute value of = . 1In case (ii) O will approach U,
extremely fast: we can expect that it will do that so fast
that © will not be allowed to trespass a certain value, T, ,‘
for as tT-= e , U~ u, and the equation is not defined for |
U= Uy We shall see later under what circumstances this can
happen. In the third case, u( T) will increase with the
modulus of +* and will asymptotically reach u*; and T can
assume all values. Aftef this qualitative'éiscuésiOn, we may =
solve The equation exactly.

If B(u) is finite and of constant sign in an open
interval (a,b) (where a,b can also be +00), and zero or

infinity at its endpoints, we can define an invertible function.

p by « \
dw ) "
feure piu) (4.61)
(The lower integration limit need not be specified: it lies
within (a,b)).

We see from eq. (4.59) that’

dt = dp (i) | (4.62)
Therefore |
& ety e"ct +plul) ‘(4.63)

(We have taken into account the boundary condition u{0) = u.)
We can now consider three cases:

(i) The function p has either (a) a finite or (b) an infinite
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limit for w 5 ¢ . In the case (a), consider the discussion
of case (ii) in the following; in the case (b), as To-om 4
U -0 . We shall interpret the physical meaning of this
later on.

(ii) The fuﬁction p has a finite limit for u - u . In this
case T must be less than p(uo) -p(u) = ¢, . Por T-te
u -» u,. Case (1)b can be understood here by setting
| u, =6 . Also this case will later be given a physicai
interpretation.

(iii) The function p diverges for u - u*. We assume that
it diverges like #g u-u* : this happens if B has a finite
derivative for u = u*. In this case, asymptotically for

very large and negative, we have

u = u* + const. eB‘(u*) (4.63)
The relevaﬁt case for critical phenomena is the third
one. We see that no matter what the initial value u is, the
function U( T ) asymptotically reaches u* (hereafter called
'the fixed point'). We shall see that it is this feature
which is responsible for universality. We shall now consider
only this third case.
Once eq. (4.59) has been solved, egs. (4.58), (4.60) can

be also solved, trivially. One obtains:

o~ N -~
PCTI=p- exp folv’ yeutr))
4

yu)t T ~
¢ e enp (dor [ytute)- yeur) ] - {4.64)
o

If Y(u) has a finite derivative at u = u*, we can write (4.64)

in a more convenient way. Define the factor 3 (u) by
a

Stw) = 2np de

u_’ . &(“ ) . (40 65)

R (C T {{TL D)
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Then b’hT- ~
Pevrz p e s

(4.66)

g L
where we have introduced the abbreviation
Y* = vy(u*) ~ ' (4.67)
An exactly analogous equation holds for t. If we define
a* = alu*) ) , (4.68)
and | |
A
3&'("‘) T oewp S du' XL - otcut ol ety (4.69)
wk &(“‘)
we obtain
u"t ~
g(() =t 2 Zecs) (4.70)
Jecw) |

All quantities like @ . qQ, t depend also on their starting
values @u,t . We have suppressed this dependence in order
not to make the notation too heavy.
If we define 5‘Ct)by
Tery 2 MIFm, Feo, &enym) (4.71)
we have from eq. (4.45), (4.58), (4.59) and (4.60)

d9¢
—E?U = ~9er)y. A (4.72)
Therefore
: -k
Tcrtr= e © Terzod (4.73).

o~

If we now consider the boundary conditions for 4:, t, u, we
obtain:
Lo 4 e ‘dt ’
L), cey, ey, MY=e mCel, &,u, ™) C(n.74)
If we introduce into (4.74) the solutions (4.65), (#.70) for

r~

T, EF we have:

) u{.t) M

F(E(p:{; t‘lu,,M)= Q«dtr' ([ 3(“(t”J te KI‘ ;C(U(U) ) (4.76)
) 3(\A.)
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We have seen that a(u) and v(u) are negative for small u.
We assume for the moment that-they"have no zero between
zero and u*, so that they are still negative at u*. The
functions % " on'fhe other hand, are smooth functions of order lT
if u is not tco small. Now consider in (&4.76) the case in
which ¢ and t in the 1l.h.s. are both very small: we are in a
neighbourhood of the critical point. Then we can choose a ¥
such that the I functional in the r.h.s. is calculated far
- from the critical temperature; or even at the normalization
temperature T defined in section 3.5. 1If t is very small,
this T is very large and negative. Therefore the difference
_G(I ) - u* is very small. This means that for ¢ , t very small,

we have (we neglect regular factors of order one ) asymptotically: .

| -3 ¥
F{Te3; buim) = (t:*s;.t*‘> o ([5‘2“’ (f“f%?:““) d.]'*zw)'m'n) (8.77)

where T(u*) is the normalization value of the temperatﬁre
for u = u*. The r.h.s. is calculated at the normalization
temperature, where perturbation theory can be trusted. But,
more importantly, it is calculated with u = u*, i.e., at the
fixed point. The dependence on the original value of u appears
in the r.h.s. only in some trivial factors which rescale ¢ ,
and t. |

We see That the behaviour of the model around the

criticel point can be understood in terms of the behaviour

. “t o .o
of the 'fixed point model', i.e., of a model in which 'Uﬁﬂ=u*Mf

T In this chapter we say that a quantity is 'of order one' if
it is not singular and may therefore be ignored for pbwer

couﬁting purposes.
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at the normalization point. We shall therefore study this
model in gome detail in the next section. |
We note that it is easily obtained from (4.76) that

the inverse coherence length m satisfies the following

‘equation:
< W 3l 2 : .78
m{t,u, M) = € “"(te _3':{;3’ M) (4.78)

The simplicity of eq. (4.78) makes it convenient to use:
sometimes m instead of t as an independent variable, and to
insert ¥ back in the final results. We shall do that

sometimes in the following.

4.4 The fixed point

If uw=u*, G(t) = u* for any © . We can therefore
~insert uw* on both sides of eq. (4.77), yielding
' . & 'g' LS t ‘B/;.
rleedse,w,mys (o) "M e (8) *] (4.79)
where we have introduced the notation
t* 2 T(u*) - (4.80)

and where T°* is defined by

FLer = m {Tel t",uh ) (4.81)
The normalization temperature t* in (4.79) is an inessential
factor of order 1 and can be dropped. We see that for u = u*
the generating functional is exactly homogeneous, i.e., it has
the form one would expect from universality. We shall now
derive from.(4.79) the equation of state, in order to give
expressions for the critical indices in terms of a*, v*.

If we apply expansion (2.31) to eq. (4.79) we obtain:

122




- ..9- » 8‘4 '
Tl e ut my= toa o (@1t '“) (4.82)
where 4y * 1s defined by |

T R §an [ 0700 ¢ 2 3 1q) (vexd's .. | (4.83)

If we take the derivative of (4.82) with respect to ¢ -we

obtain the equation of state:’

d«¥*

Sige,w, mys £ % &*(‘P(h"’m) | (4.84)

This is not quite in the form (1l.42) since the role of « and t
is interchanged. We can however start comparing the exponents.
If we take the derivative of eq. (4.84) with respect to <

and we set then Q= Q0 we obtain the zero-field inverse

susceptibility r: d+2v*
- Ta¥
r(t,u*,M) = const. © (4.85)
On the other hand we may obtain from (4.92 ) the behaviour
of % . We have AeDyF42
' T T o
?(O,t,u*,l"{) = const. t (4.86)
Therefore the inverse square coherence length, m2 = r/? , obeys
the equation 5
2 * Tt
m“(t,u*,M) = const. t (4.87)
Comparison with (1.68) yields: |
o* = --Xt (4.88)
Comparison of (4.85) with (1.73) yeilds the expression for
the exponent of the susceptibility, v (this is not to be
confused with Y(u) in the group egquation):
d+2-* :
Y = - —aTx“ ' ~ - (4.89)

Therefore from (4.88), (4.89), (1.64) we have:
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G- 22Xy = Sr2y* (4-90)
. which gives:
Kus ~y" (4.91)
Eqs (4.88), (4.91) are very interesting. They show that
the essential critical indices Xy Xio 8re simply the wvalues
of the coefficients in the group equation at the fixed point.
From the homogeneous form of the generating functional, eq.
(4.79), and from the expression of Xy» X, in terms of a*, y*
all relations among indices mentioned in chapter 1 follow
easily. In this way we have established an explicit link

between our theory and Kadanoff's universality hypothesis.

4.5 Behaviour around the critical isotherm

We have obtained an equation (4.84) which would be
an equation like the ones guessed in chapter 1, were it not
for the fact that the roles of ¢ and t are interchanged.
To get the correct expression, we.must see whether the function h*
in eq. (#.84) has the correct asymptotic behaviour for'large
values of its argument, so that it is regular around the
line t = O, ¢@¢o0 . TFor the understanding of this problem,
I am deeply indebted to the work of Brézin , Le Guillou,
Zinn-Justin (1973b).

From the definition of [P *, h* we have:

ez L, Y ur,H) (4.92)
On the other hand h must itself satisfy the r.g. equation

at t = t*. We have therefore:

: .
[ f-'b"c +5*‘P'3%>1 *d*J*‘J '&(Ce'.b. e H)=p

(4.93)
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We can rewrite eq. (#.93) for t = t* as follows:
» B . " - .
[X “?‘5{9' +a+ I* 1 #\(Q;f“‘,u‘,ﬂ): AQ(‘?"C"“‘, H) (&.9!_‘-)
where A h is defined by

N S “2_8.\
& St . - (5.95)

If we take derivatives of eq. (4.93) with respect to t, and

set t = t*, we obtain a hierarchy of equations of the kind:
Ly 2@ sd v geput TATR @ un M) AT ALY ES W, K) (4.96)

To solve this hiérarchy, assume first AP* n(e',t*,u*,M) = 0

for some p = p.. Then

0]
i Rl _0%, + O ¥¥ep u."_] AP&U{", c‘,ui,ﬂ) =0 (4.97)
has the solution
. _d._'_Eﬁ'*-L
AP R (@hht*,u*, K) = Co LYY ¥ » , (4.98)

where cp is an arbitrary oonstant.' If we use this solution

in the r.h.s. of the equation for Ap_l_ h we obtain

pet : -dstemu Rt & i ot
] Py - . ' » - - —p-—
A e\C'\p ] ) 1% ’ H): C'P“' ((?) ¥ - Cp cq‘) &. 5t (4.99)
LY
»
where Cpo is a new arbitrary constant. A{ the end we shall
obtain '
- ® , _x* .
t 4 2 3 .
Gl e®un, mys co) & G e ) (4.100)

where @% is an arbitrgry polynomial of degree, p, in its
variable. This suggests that the whole hierarchy (4.96)

has the solution 4

-2, 4 | x*,
Bep,emum ) o) E0 LT ) |
(4.101)

where £ is a C® function for its argument around zero. If
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we now set

o=@/ " (4.102)

we have o R
fee, b, um s @ o g (/9™ ) (4.102a)
where f is regular around t = 0. Eq. (#.102 ) is of the
form of eq. (1.42), and yields the following expressions for
the critical exponents &,B (B has nothing to do with our

function B(w)):

o)
6 = == ?* - l ) (40 103)
B = l_; | (%.104)

A word about the way we have discussed the problem of the
critical isotherm. If we had chosen to renormalize, instead

of at @ = 0O, m‘2 = M2, at 11_12 =0, @=& (like Coleman and
Weinberg (197%)),we would have got a homogeneous equation
'along the critical isotherm and in its neighbourhood, i.e., for
q;»ym*'az , but we would have had exactly the same troubles in
crossing the = 0 line at ¥ # Q!But one cannot do that in

any dimensioﬁ less.than 4., This allows one to understand how
the validity of thé adopted procedure is related to the
.validity of the e-expansion scheme.

If the function f is analytic around t = Q we can define

the equation of state below TC by analytic continuation.

The advantage of using t as an independent parameter is

related to the fact that in this case the analytic continuation

below TC appears naturally.
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4.5 Corrections to the asymptotic behaviour

If u # u*, the homogeneous behaviour we have just
discussed holds only for very small £t and @ . We ghall
calculate in this section the first corrections to the
asymptotic behaviour. '
Let us first consider eq. (4.78). If the inverse
coherence length in the r.h.s. is calculated at the ﬁormalization
temperature T(u), it is equal to M. Therefore the corresponding
value of is ,
To= fgm o (4.105)
Let us consider the case in which t is very small, and
P« tt "% . In this case,.if we choose <, accordmng to
(4.105),the first afgument on the r.h.s. of (4.76) is
still very small. On the other ﬁand ﬁ will be very néar u*,

and eq. (4.63) will hold. Therefore we have

. p‘(u‘)to @,‘gu*) .
Uw=u" & const . < = Wretoust .M . (#.106)

If we use m as a variable instead of u to simplify our
:equations, we have from (4.76) with T «zo:

T

A~ *
2 33Xy mY Tomes, Whconstan” ) 1)

(T m e 7 ([

(4.107)

If we assume that [" is regular for u around u* we can write

(4.107) as follows

r(L‘l’J}M-“r”)zmd{ (&P’J I, W M) ¢ cont ‘MB '31‘@‘?.];»1:' uk, H)}
(4. 108)
If we take the derivative of eq. (4.45) with respect to u and |

set u = u*,we obtain the following equation for (Qr/dWlusus

Lo e2 s P P 'ch)-*d] et = (e €2 Ly S )T 0,6 ]
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It is a consequence of this equation that the second term in
the r.h.é. of eq. (#.108) has the same homogeneity properties
that the first term has. Therefore the only correction to
the homogeneous asymptotic behaviour comes from the & ()

factors, which behave like

PR

3&?):4’-
plea®)

{a-u.") (4'109)

Eqgs. (4.106), (4.108), (4#.109) yield

ftu™)

\
r (C‘?J) m,u, M) congt . 'Md e ([3 C4vcontt. M ) . ‘MY’) ,mz«““"tﬁ> (4.110)

3w

A similar reasoning applied to eq. (4.78) yields:

_‘/ L ] - Frogte
mit,w, M)= ¢ T 4+ const. t prumias (4.111)
Therefore the final formula for the corrections is:
- ’ _Afx* f
C(CeY, m,u, M): consss b du_(a(» Const - l—‘P‘“‘)’“')
’ . afu
r’. [_ti ( 4+ Comst, {:w){‘.)
* 3(“) . t a"!&* 3
(4.112)
A different argument should be used for discussing the
S :
region ¢ » ¢ . In this case we have first a Q given

by eq. (4.106). We must then consider the inhomogeneous

equation analogous to (4.94)

- ] ~ 9 ~ S \ s

k-f w{'u»' Hl’u“zﬁ' rh/(u)de ?twsa,ﬂ*o\ KF([tpj,w.u, K)lm;; o (#.113%)

If we neglect the term proportional to 3/8m, as we @did
in the previous section, we obtain the following homogeneous
equation:

a ~ 3 5 ' | | .
{p,(m'a_a‘ bfew) Sd; cptxsé-&uq-o\] Tile'y,m,w,")=0 < (4.114)
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We can solve this along the lines of section 4.%, but this time
for large values of the argument: therefore, we can define

‘a running variable z’ and an 'effective coupling constant' U

such that
o =0=4 | (4.115)
dg(C') 5 ‘
= w(ch) 40 ]
Py hC ‘)) (4.116)

We obtain therefore that ?’Z is carried awsay from u*; but,
because U was very near u*, we can still apply the
asymptotic formula (4.6%). We obtain therefore (apart from

factors of order 1)

Taur s (ﬁ'—u*)(p

s) B'(u*)/Y* . (4.117)

The solution of eq. (#4.114) reads:

6: ‘d/{* Kt . .
r{ce'l,m, &,n) ( iz{ 3(5)) "'([% ]'H;u*,t“)_ (4.118)
Q P2 o

where @' is a dimensionless number of the order of ¢'. If

we choose (P' to be

= & 3y m’

= (4.119)
and we introduce the solution (4.118) into (4.76) with
we have:
U = u* + const. @'B'<u*)/\’*
and sasr drge
~ - *
F{led, t,u,n) = ((P(zto-tou%.@ ) .
P
: F([@J.ﬂ,u*,ﬂ)  1en

where @ is a dimensionless coﬁstant of the order of q) . Note

that in eq. (4.121) t can be as small as we like.
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We can now give an interpretation to the 'odd' cases
(i), (ii) discussed in section 4.3,

If 85 To-0e o, W(T ) w0 , we can interpret this
as being the case of no transition at finite (nonzero)
temperature. In fact we see from eq. (4.105) that © may
be considered as the logarithm of the invefse cocherence
length. If there is no transition, the only.way of obteining
an infinite coherence léngth is to go to T = 0. But then
" is simply the hamiltonisn (with sign chenged), since we
have only one possible state: the minimum of H. Therefore
g is finite, and u = g/m€ diverges (it does not necessarily

diverge like m €

, Since the T- 0 limit may be singular).
If the range .of allowed values of T is limited, the
transition is of first order. In fact in this case we can
only obtain cohérénce lengths up to a certain value, and then
something happens. . We cannot hope to obtain a discontinuous
solution from a differential equation. In this case it is
convenient to introduce a new suitable Legendre transform
which is continuous (e.g., "I@l is continuous whereas FL&1 ig not)..
This may be useful, e.g., for the study of’*Fﬁcritical phenomena
(see Griffiths (1970), Griffiths snd Wheeler (19%)). Similar

analyses can be done on the behaviour of the other coefficiénts,

(I., Y.

4.6 Behaviour of vertex functionsg: high energy physics

If we take the n-th derivative of eq. (4.42) with respect
togaty.,, we obtain the following equation for the vertex functions
r("‘) .

2 ? D _ W (W) '
| [H.oH*CL“)T'é—rtB(“)% -ag 2C((k\]r(xl...xm;r‘s’u):o (40122)
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We can take the Fourier transform of eq. (4.122) and use dimensional

analysis to obtain:

ol

L-_- m;—m + Hiw) 3%4 +d +n ycu) ] I"w)ck“_,_,[.,, Jwm,a, M )20 (1.123)

We have introduced m instead of r (or t) as a varisble in eq. (4.125)
to make the comparison easier with other forms of r.g. equations.

We see that the l.h.s. is equal to the l.h.s. of the Callan‘SymanZik'
equation, but the r.h.s. vanishes.

We can use eq. (#4.123) to discuss the behaviour bf the.
vertex functions resd for m ¢« M, since this would be no different
from the one we did before. I wish to stress that one must be
extremely careful in the treatment of the region M » {k;3>>m
{ef. Symanzik (1973)). ‘ N

I wish to outline instead a possible application of eq. (4.12%
to high energy physics. There, the limit ki'>> m is the natural
limit, and eq. (4.123) can be solved directly. We mst solve
eq. (4.12%) with.{kig instead of m as a running variable; we have
v

[~ ZH2 cpan2 cavnyen ] e (4.124)

. oy -ssknym,u, M) =0
(3~

The solution of eq. (4.124) may be obtained along the same lines
as in section 4.3, but with t=_23ﬂﬂw sy where X 1is of the
order of the ki's (it does not matter if some of the ki's are

zero). One cbtains:

Cnd ~dvle _cwy ke oL ke w*
r(k“...,ku)'m,u,ﬂ)‘:'(b‘) r ®w! ’K’m'“’ﬁ) (4.125)

where
and U* is a zero of the function B which is asymptotically

reached when T becomes large and positive.
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If d< 4 such a zero is u* = 0. In this case ~3%4- e/
As we go to d = 4, the situation changés. TFor small u, B(u)
is positive. Therefore we cannot find a2 zero in perturbation
theory. Actually there are arguments to suggest that such
a zero does not exist (c¢f. Brezin, Le Guillou, Zinn-Justin (1973a)).
Anyhow we see that the fact that oulr equation is homogeneous
simplifies the discussion remarkably.

An interesting application of the use of the high-
energy limit (ke ) is the determination of the renormalization
factors in the infinite cutoff limit. If the renormalization

temperature is such that 1‘12«- Az, where A 1is the cutoff,

we c¢an assume that -

£zt 2e (B)u) - (4.127)
=@ E " (fon)
(& (4.128)
gt;g 2y (%\u)
(4.129)

(which are the temperature, magnetization and couplirig constants
for the model renormaliz'e_d at M=A ) will be of 'the order of

the corresponding quantities in the hainiltonian, namely

Ty = Toas Doy Bge One may ask what is the value of these
quantities when Asp . One readily obtains from
egs. (4.39) - (4.41); (4.46) - (4.48)
ghm
Z. (%,u) a axp So\—;‘ (d(lr(('))-r:l)
° ' (4.130)
24/2 A \’.3“{-‘4 ~ "y,
(?u"‘) = exps dr! (x (UCT'y) +1-€/2)
A Aipg \ ' : (4-131)
AN (p.u)_upeqso‘ LMMU, (—]
]
(4.132)
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Since u{t ) = O for T=o , the limit is finite for any

u # u*. We can indicate the corresponding limits by

(w) = Raw a (£
< foon (Fos) (4.1%3)

ZWy = Lo ze(f )

t A s (4.134)
T A By (L |
L) A:O- ‘ (“m> (4.135)

But if u - u* the situation changes. - We can see from (4.130)
(4.131), (4.132) that the derivatives of the 7 factors are |

related to the coefficients «,B.Y by:

alo Zytw) KLu) 2
du N . - pew) (4.1%6)
\fy .
d ¢ L Ty _ Ylh) 4w &/2
da e | (4.137)
AR peares |
du pew) o (#.138)

Egs. (#.1%6)- (4.138) yield the result that all these
factors Zz,, 2,2y diverge for u u*. The powers of u by
which they diverge may be easily obtained from egs. (4.13%6) -

(4.138).

5.7 € —exp'ansion

We saw in 4.4  that to first order in u
Blu) = ~eu (4.139)
We may now evaluate the second order corrections. Because the

contribution of v in eq. (&4.54' ) for B is multiplied by a



factor u, we need only consider the first-order corrections to Y.
They happen to vanish. We obtain therefore the following

expression for B to second order in u:

e , 20 - (4.140)

‘Ltu'): -euw = N 5-{-_:\“.?-

(The factor 2 comes from(d + 2Y)to lowest order in u.) Ve
' 4

list in fig. 49 the diagrams which contribute to Udoy to
second order in g. The first order diagram does not depehd

on t and hence must be ignored.
by
. ‘ z >
<, o+ ﬁ "~ Fig. 49
2 3
The stumps in fig.&% carry zero wavenumber. The derivative

with respect to t is therefore given by three diagrams of

" the kind shown in fig. So : |

| 0 Fig. So

This diagram is readily calculated. Since it is a degree (-2)

diagram, it has no subtractions. The result is

dia  ge6
- ey W M T A+ ele)
Luf‘ ) =~ 3 (&.141)
where (g is Euler's 7'~ function. We obtain from (#1000 ), (4.461)
the first and second order contribution to B: '

2 L L-Ef2
Blu)s —eu + 3UX T e td+ér2) (4.142)

We see that if ¢ is very small, B(u) has a zero of order & .
To first order in t one has for the'ndntrivial zero u* of B:

& A
w s 2 € (4.143)

3
Therefore if 4@ £ 4 we can consider perturbation theory as an
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(:xpﬁrl:;iorl aoround a fixed point for which u* is of order e .
To n-lh order in ¢ onc need only consideI: terms up to n-th
order in perturbation theory, and one must calculate zll
corrections of order n-m in € to the m-th order contributiocns
in perturbation_ theory (m¢n). In this way we can obtain
\a systematic expansion of critical properties (indices,
equation of state, etc.) in powers of € . This observation
was first made (in a different context) by Wilson and Fisher
(1971), Wilson (49%2 ), and in & context similar to ours by
Di Castro (1972), Brézinm, Le Guillou,- Zinn-Justin (1973a) and
others.

We can calculate here from eq. ( 4.5% ) the first order

correction to «* using the value (4.143) for u*. We have

<)

2
-x* . 2 - 2M2 °2U

Py \N.P_ (4. 144
The first order contribution to M™M? a_a:c_::" is given by the
diagram in fig. 51.
Q Fig. 54.
The diagram in fig.S51 is of degree -2 and hence has no
subtractions. The net result is
2 aq_,o-(l.) _a 2- €0 .
H oet Inep, P Te (4ver)
, (4.145)
To first order in €& we have therefore
- * - . £
2 3 (4.146)
To first order in u, we have
y(u) = -1 + &/2 : | (4.147)
therefore ' | '
Yr=1-¢c/R. (4.148)

125



It is clear how one can obtain higher order'corrections in to
these estimates, (cf.Parisi (1973) for a thorough review |
of various results). In an appendix we shall see how one
calculates the equation of state to first order in & within

our framework.

4.8 Connections with the Gell-Mann and Iow r.g.

In standard books, like Bogolyubov and Shirkov (1959),
‘one refers to the renormalization group as a group of
transformations which are strictly related to ours, but which
are different in some important aspects. Since these
transformations were first considered in detail by Gell-Msnn
and Low (1954) (although they were discovered by Stfickelberg
and Petermann (1951 )) we shall refer to them as the Gell-Mann
and Low (GML) renormalization group.

We shall discuss in this section +the relations between
the two different renormalization groups. :

In our framework the normalization conditions (4.3 ),
(#.4 ) are satisfied at a fixed temperature (characterizéd by M)
and at k = 0. In the framework of GML r.g. similar conditions
Ihold for the two- and four-point vertex functions at ¢ = 0, at
fixed external wavenumwbers (charaaterized by a parameter i)
and at all temperatures. The normalization coﬁditions
corresponding to (4.3 ), (4.4 ) in thevGell—Ménn and Low
formulation read as follows:

arev A :
--é—? CA,- |r,8;))"‘1 . V(’ (4.1/4-9

rf.?.\

c‘lll'A; - ‘ ‘ .
’ SRR U ~ (4.150)
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and the effective coupling constant, g, is defined by

tw) _ .
~ (ko yonisku ; £ A speay © 9 (4.151)
where the subscript é.p.(x) meéns that kl,...,k4 must be
chosen in such a way that kikj = - %-x2(1-46ij). This is

equivalent to saying‘that~they have'modulus A and are
direéted from the center towards the vertices of a regular
tetrahedron. The important point to be noticed is that
~eqs. (#.149), (4.150), (4.151) must hold at given A,g, for all
t, i.e. for all temperatures. This will not be possible in
general for a model in which g is fixed. Therefore the setb
of models which satisfy eqs. (4.149) -~ (4.151) for varying t
do not correspond to a single model in which g, is fixed and
T, only is allowed to vary. This makes this sort of normalization
gquite unnatural for the study of ecritical phenomena; |

The r.g. equations are thus obtained from the arbitiériness
of A along the same lines as the derivation of our T.g.
equations in section 4.1 (in fact the GML derivation of r.g.
equations has been the prototype of our discussion). Oﬁe
obtains an equation similar to our eq. (&.40 )

IAE\ « Pt ;il_ > QR \ka% v T §dx cec:r.)o_%”j.r(['.(?i;l}d,,xho 4.152)
where u is defined by g = u\® . This equation, like ours, is’
homogeneous. But the coefficients in eq. (#.152) cannot
depend only on u, since there is another dimensionless
combination of variables which they can depend on, namely t/ke.
In fact the normalization conditions (4.149) - (4.151) are
satisfied along the line A = const at all t, therefore t is

still a free variable at the normalization points. We obtain
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therefore instead of eq. (4.46 )

€ ? t | | |
el t = ¢ { =, 2 +
[P [A “) Y (;\1 «) FYS ( {—1' "‘-)]d"?wgm }WCQL*.U,))=°<4.153)

In order to obtain the critical behaviour for t - 0, it is
necessary to make some assumptions about the behaviour of the
coefficients p, o, for t-= O.

Unfortunately, it turns out that pertﬁrbation theory
yields infrared divergént expressions for these coefficients
if 4 < 4. Théy'can only be caiculated within the &-expansion.
Even the normalization conditions (4.149) - (4.151) cannot be
implemented for t = O in perturbation theory if & is nongzero.
For all these reasons GML r.g. is quite difficult to handle
in the theory of critical phenomena.

We shall now consider a model which satisfies conditions
(4.159) - (4.151) for given A and for some t. We shall show
how it is possible to relate it to a model renormalized in
our framework with an arbitrary M, and with s-ome suitable t.
It is easier to think of both models in (A,m) plane where

m is the inverse coherence distance.
p N

- | - - e-" ===

Fig. 52

. 4

*—> wn

In fig.52 we have such a plane. The broken line indicates
the set of the normalization points in the GML framework ét
given A. The dotted line indicates the set of normaligzation
points in the GML framework at fixed m. All models renormalized
on the dotted line are connected By a GML r.g. transformation.

The point ¥ is a normalization point in our framework. All
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points on the positive m axis represent possible normalization
points in one framework; the corresponding models are
connected by our r.g. transformations.

Let us consider a model with a given M, renormalized
at A. This is indicated by GML in fig.52 . Exploitiné the
arbitrariness of A and the fact that m cannot change for r.g.
transformations we can move along the dotted line.towards the
m-axis. It is readily seen from the perturbation theoretical
. expansions for P,Q,T in eq. (#4.152) that one obtains a finite
GML transformation between the model normalized at % and the
model normalized at A' for A'~ 0O, provided that m is
positive (cf. Brézin , ILe Guillou, Zinn-Justin (1973b>). For
A'= 0O, we reach the point labelled by 1 in fig.52 . A finite
transformation within our framework carries then the normalizatidn
point along the abscissa to the arbitrary normalization point
labelled M .

We see therefore that two models, one renormalized
in the GML framework, one normalized within our framework,
are connected by a finite transformation. We can therefore
say that the two renormalization schemes are equivalent (for m# 0).
Let U be the finite transformation obtained above for M = A,
and let  §' be a transformation of the GMI, r.g. and ¥ a
transformation of ouf r.g. Let the model be characterized

by the seb (t,g,%) in the GML framework. We have then:

-i .
(te'sa)z S (6,8,0) =U IV (¢,g,1) (4.154)
for a suitable ZZ . We see therefore that the fwo transfofmations

are related by a nonlinear similarity transformation in the

(t,g,1) space.
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4.8 Extensions

We conclude this chapter by congidering ways of
extending the method discussed in this work to different
hamiltonians. |

The most obvious extension is to allow <P to be a
vector in an n-dimensional space. {(In the introduction, we
discuésed the case of n = 3%). In this case the single major
modification is the appearance of two different 'masses’ Ty, T,
in the loop expansion at nonzero ¢ . In fact one cah easily
see (cf. Gervais and Lee ( 1969 )? Abers and Iee (1973 ),

Brézin, Wallace and Wilson (19725)) that the contributions

- of 2-type vertices in the loop expansion will depehd on.

whether the line one is ponsidering.for the correlation

between two components of ¢ is parallel or longitudina; to

‘the direction of g=¢ ¢> . The formalism becomes very

useful for the treatment of properties related to the continuous
symmetry of the hamiltonian, like Ward identities, treatment of
Goldstone modes, etc. Other extensions allow one to congider
the effect of the introduction of new fields in the hamiltonian.
Let us distinguish two cases.

(1) If the field is conjugate to an operator which reduces
the symmetry of the hamiltonian (the n-dimensional spin |
rotation symmetry), it is possible to find a gquantity
related to the vertex functions which vanish  where the
full symmetry is restored. In this éase, we can use that
DParameter in much the same way we used g, to label the

hamiltonian.

(ii) If the field does not reduce the symmetry of the

hamiltonian, one treats it in a way similar to the one used for t

140
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namely one imposes a normalization condition to the derivative
of a suitable vertex function with respect to a quantity which
is a linear function of that field. In this way one obtains
the freedom of choosing an additive coénstant in such a way that
the quantity one introduces vanisheé where the theory reduces
to a simple ¢4 theory.

In any case the modifications which appear in the r.g.
equatiohs are essentially the introduction of new terms
proportional to the derivatives of U with respect to the
logarithm of the new fields. If around the fixed point
where these fields are zero (i.e. the one we have discussed
in ¥this chapterj the coefficients are positive, the new fields
are irrelevant; if they are negative, they are relevant.

The first case happens for interactions of d" R Cf)g etc. type

in the € -expansion, thus justifying the use of the Landau

theory with only a ¢“ term. (In this case the renormalizability
condition demands that 6ne'consider only linear perturbétions

in the new fields.)
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5. COMPARTSON WITH OTHER APPROACHES.

5.0 Introduction

We have seen at the end of the previous chapter that
the method used in this thesis’for the study of}critical
phenomena i1s strictly related to the Gell-Mann and Low
(1954)'formu1ation 6f the renormalisation group. The
feature which distinguishes it is that the peculiar
renormalisation scheme we have chosen yields a r.g.
equation which shows the advantages of the Gell-Mann and
Low r.g.equations (in the form presented by di Castro (1972)),
namely homogeneity, and those of the Callan-Symanzik equations
(as used e.g. by Brézin, Le Guillou, Zinn-Justin (1973%a) (1973b)),
namél& the mass independence of the coefficients of the
transformation. |

A new approach to renormalisation group has béen recently
formulated by Wilson (/8%la)}, (44%#ib), (19736); (for excelient
reviews, cf. Wilson and Kogut (1972), Ma (1973)). It is naturallr
to dompare our method with this. Since we have already shown
the relations between our method aﬁd the one used by Gell-Mann
and Low, I shall present here in some detail the relations of
Wilson's r.g. to Gell-Mann aﬁd Low's r.g., since they are
somewhat easier to obtain.

I learnt much of the arguments presented in the following
from Wilson's lectures at the 197% Cargese Summer School and
from discussions with C. di Castro, G. Benettin, A. Stella.

I have however never seen these arguments spelt out in print.
I found it convenient, therefore, to present them here in
some detail. The responsibility of any misunderstanding is

obviously mine alone.



Other Lypes of approaches to critical phenomena have
been discussed in the literature. They are more or less
of the bootstrap type, i.e. they trj to find homogeneous
solutions to some integral equations which, by suitable
handling, are brought into a form in which only correlation
functions appear. At the end of this chapter I shall present
an argument by which the validity of this approach is justified

within our framework.

5.1 Wilson's rénormalization group
We can formulate Wilson's rénormalization group.as

follows (cf. Wegner and Houghton (1973), Wilson and Kogut
(1972)). Consider a hamiltonian H{®I with a cutoff A .
We shall keep our choice of ¥ , quite genefal: in particular,
- we shall not consider only hamlltonlans of the 8¢ type. We
shall only ask that it can be expanded in Volterra series in

¢ around b0

°° tw)

HEP) » S'dx, L P Y - Plru) (5.1)

,,-
(We shall only consider the case in which only even powers

of ¢ appear in (5.1), but this restriction can be lifted with
‘no conceptual problems); moreover we shall demend that HT$]
is short-—ranged;- this is equivalent to the condition that the
Fourier transforms of the coefficients &w) in eq. (5.1) are
snalytic in the wavenumbers k. We shall consider M  as a
vector in an infinite-dimensional space ;3’ , Which is
represented by the set of its components ia“)f in some

suitable basis.
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All information about the behaviour of a model whose
hamiltonian is H can be obtained by the generating
‘functional (2.8 ) for the connected correlation functions,

Fir, &l , defined by

_ §dt @ dex)

where we define the average of any functional oL$l of ¢
by

-HE -HLP]
"/ §dntor 2 (5-3)

{OTPID, = (dalOI Ol$T €
Given any hamiltonian He 6 we can define a set of
hamiltonians H, depending on a parameter & (pé¢ ¢ ® )

such tha't

FEMe, 6] =FOMQ] (5'4)

where 4, is related to 4 by

= ! x') t :
In eq. (5.5) gt_ is a positive factor to be specified later and
the kernel K, 1is given by -

. -t
EOEELZSE LSRR

Ke(x xt) = Scm ! ¢ , (5.6)

We have explicitly shown in eq. (5.6) the exponential cutoff
factor. To see the meaning of the transformation we transform

eq. (5.5_) into Fourier space, obtaining
-kz/Az _c
fe(k) =3¢ ¢ fH(ke™)
(5.7)
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We see that & (&)  is obtained from § (k') by
performing the following three steps:
(1) one defines a new rescaled wavenumber k= k€ ;
- ' LY/ SO |
(ii)  one cuts off by a factor e J

(iii) one multiplies by a factor Iy .

We shall assume that all He (0% e<ﬂ°5 belong to %,
i.e. maylbe represented in the form of eq.‘(5.1), with all &‘“).
analytic in Fourier space.
The important property of the transformation W¢: K- .

is that it can be obtained from a differential equation of the

type

(2!_2-.{? = [ He]

(5.8)

where F is 2 (nonlinear) operator defined on ﬁ? and whose
range 1s @r itself. One expects that this operator is smooth
in some sense, as it involves averaging over very few degrees
of freedom. We shall also define gt in such a way that it
satisfies an equation analogous to (5.8):

d3e

y 2 (AE){l—jgt_

(5.9)
where <« 1is s function defined on fb' and with real positive
values. '

If we take the n-th functional derivative of (5.4) ahd we
set B to zero, and we then take the Fourier transform of the
result keeping in mind eq. (5.7), we obtein the following relation
between the n-point connected correlation functions of M and

of 7-(.&:
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) -h : - (5'10)
6‘-"‘(kw'--»kn;ﬂr)= ge ed"(,(c k,,...,€ ku',)k) .

where we have explicitly indicated the dependence of the
correlation functions on the hamiltonian. The factor Q"u—'
comes from the § . functions which must be removed in the
definition of &’ Ck,,... chny M) .

Let us now consider the set of hamiltonians qS') such Ormat

that for any k = (with k2 ,;,) .

)
& (ki'k > ) ¢o (5011)
and
We can t.hen_ define 3& as follows. Consider 2 defined by
(5.13
2? = GQ)CR,-Rg)-L)/)Ln' ( )
where R is given by
Rz Na - : (5.14)
‘(In {(5.13) the d_i’re-cfion of the vector R does not matter).
If we define a new hamiltonian H' by
. e -!
it is readily seen that
. | b . |
CERUR,R H) = AR . (5.16)
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Let us 'now- define a space of hamiltonians é* in such
a way that, if }(_’egf , condition (5.16) is satisfied. For
any hamiltonian H belonging to ¢f* it is possible.to define
a2 new H' , via a trivial change of variables, which belongs
to ’g* . .
' We can now define the transformation We: H 2 He in
such a wey that, if Ke f  then Me € § ° , too. This
is no restriction, as we see from (5.10) that if 6-‘““...“;3)
has no zero for real positive k*® , neither does & *V(kkjw')

But in this way we have identified %, : in fdct from
¢2) : ¢ de @)
R, -RIR = S e 6 (et"f‘eﬂ;u) (5.17)

‘and from condition (5.16) we obtain

ey, -k -
Ce = (edqxz e x’.,-e.bx;n))"z (5.18)
If we take the logarithmic derivative of eq. (5.18) with

respect to t and we use condition (5.16) for MH'= M, we

obtain an expression for ALHe]

ALHe? = & - 2 & | -
¢ 2 ot G i, -k; e, n | (5.19)
However, the interesting feature of eq. (5.18) is that its
r.h.s. is calculated with the tro hamiltonian instead of X,
This fact will be of great importance later.

Let us now let t go to infinity. It may happen that M.

tends to a certain H*¥ , which is a solution of

FLwT.
10 (5.20)
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. ¥ o . .
In this case we say that H is a "fixed point" and that H
(the hamiltonian we started with) belongs to its "attraction -

domain". We shall assume that JF may be linearized around

y Tl

TSR] =8 LK
S | (5.21)

where M. is sny hamiltonian belonging to §y ® 1is a very

)
small number, and £ is a linear operator on ;c( .(there may
be some restrictions on ¥ for this to happen - but we are not
going to discuss it in more detail).
On the other hand & DX will have some value, say M*
Tet us assume that & can be diagonalized, and let £ Ai%
be the set of its eigenvalues, §Mi§ the set of its right
eigenvectors. (They are specified up to a multiplicative
constanf). Let us now consider
He H* v T 8 HC
1 * (5.22)
where o¢ are very small quantities. If we indicate
;ZH.‘ 5¢ 343 Hs we have from (5.21) the formal expression
Hy-7n* 2 ¢ el Hg
Therefore, if we write He= H* & ? 8§ (k) My we have

EAS - |
Si(e) = e & - (5.23)

‘We can now distinguish three cases.
(1) XiKo | . In this case, if £t , He
approaches H¥ . If we consider eq. (5.10) we see that in this

case the behaviour of the correlation function at sufficiently

low k is determinéd in terms of their behaviour for H:W . 1In

 this case we say that W« 1is irrelevant.
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(ii) Ai>o . In this case, if't-aoo -, He is
carried away from ¥* . That means that K does not belbng_tb-
the attraction domain of X* . We say in this case that H{ is
relevant. If ¥ is very mear #* , it belongs to the attraction
domain of H¥ only if it has no components along the

direction of the relevant eigenvectors of L .

(iidi) Al=o . In this case the behaviour of Me is |
determined by terms of second order (or higher) in § . Ve

shall call all H;'s for which A{=¢ marginal.

I refer to Wilson and Kogut (1972) for a discussion of how
these eigenvalues are related to the critical indices. Here I
should only mention that in the same region around H" one has

m’
3& = Coﬂs" . e't

If we take M= H-*, then He*MHY for any t. Therefore one

obtains from (5.10) that for arbitrary t

A (e AN e,

Do) . - .t
G Uy, -y leny H*) 2 e,. G’(Ch.,...,?kn‘,){*) (5.28)

tn? .
The & are therefore homogeneous functions of the wavenumbers
k¢ of degree d¢ aA”  if H=H* ; but this is also true
for svffiventty low k  if X Dbelongs to the attraction domain
of ¥*¥ . The above is a sketch of how Wilson's r.g. justifies

universality.

5.2 Gell-Msnn and Low renormalization group

Let us now consider the following problem. We wish to
investigate the asymptotic behaviour for large t of the

transforms Wb)-{, ~ , where M. is @ hamiltonian belonging to a
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set g, < )‘;f . We first consider the case in which"_sln
is a one parameter set labelled by a dimensionless parameter
Ue  and 1s all contained in the attraction domain of a fixed
point - H* . The set S, we are considering will be called
the "elementary surface". The hamiltonian belonging to &1
corresponding to the value We of the parameter will be
indicated by M {uwe) ‘

From (5.10), (5.18) we see that for any t (ot¢<o)

n - - -"lz ‘_‘é
G liegy - kay, Hetde)) = (k2657 (e 1, - €k y e tue)) g‘“ )¢
Wy, “Ey .
G ek, o, €7 k) Helde)) _ (5.25)
where ¥, (u4o) is that solution of eq. (5.8) which satisfies

the boundary condition

He (Uo) = H¢ (09 (5.26)

The 1l.h.s. is calculated with M,.(4e) which does not
necessarily belong to ,S: » Whereas the r.h.s. is calculated
with J{,(«e) . The trouble is that it is calculated in the
low k region, in which perturbation theory is unreliable. We
shall however try to define a transformation which acts
within &% eand which is sufficiently smooth to be calculated
in perturbation theory(provided that the expansion parameter
of perturbatidn theory is not too large).

" Let us define g by:
(3‘ ( k> 6Lk, -k; M tuwod )
3 LNy He (o) - >-27)

’-é’uo -
A

"in
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where A is any wavenumber less than A (we shall not
distinguish between the vector A and its modulus: its
direction is of no interest). We have explicitly indicsted
“the cutoff dependence of g for future reference. We.see from

(5.10), (5.18) that for any t

Lz G'c”(k. k) Ke(u.)) g (k (A&/){) A ,“o))‘

(5.28)
Ne  is defined by
(5.29)
Note that % has the following two properties:
A A )
A, 2,0« = .
3 (4 frve)=n (5.30)
for all A, u, , and
A A .\l
k
3 (;\, -;‘:xuo)—. 3 (—,-: ;u.)% (' "“’) (5.31)

where k,A, A" are arbitrary.
We can define a new set of correlation functions depending

on the parameter A by
& ke kn; e 3 (A6 (A, -2, o)) )'G“Ex:. vk Hetta)) (5 52)_

. \ cad
which by (5.25), (5.29) are easily related to G’(u“.",kuiﬂtiud)‘
We can analogously define the Xdependent vertex functions by:

tnl 2 L) "2
. = At G P (w
[ Cyen ) kg A ue) 3 ¢ A=k ue)) Fu(,,, ykay Hetue) ) (5.33)

Let us consider the case in which, for,t'sufficiently large, the
set Mf{ua) at varylng T and We considered as a subset of &
is a one parameter set ?:(u) wheretA is any appropriate
parameter in one-to-one correspondence with the elements of the .

set Q: . Properly speaking, this will never happen° we shall
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discuss later under what conditions we may coﬁs‘iderhit to happen.

W
Let us assume that a good parameter to label the set C is

the following:

_ A , -€ :
U = .'_ i (kar. oy kn})‘t)ls.p.(ﬂ-) .g (5.54)
where X is given by eq. (5.14),5:;.-& and the notation
"s.p.(k)", where k is sny wavenumber, means thit the four

wavenumbers lky, ..., ku have to be chosen in such a way that

ki k= - ékz (A-48i) o (5.35)

_ In eq. (5.34) r( is any hamiltonian belonging to
the set ¢ |

The two assumptions viz.(i) for any Mo and t sufficiently
large )-{_klb\v)&t and (ii) there is a one-to-one corresp'ondence
between the elements of 'C and W, ..(eq. (5.34) so ﬁhat we can
write P = H(w) if M e manifest themselves _in some
properties of the set fo we are now going to derive.

From the equation analogous t0o eq. (5.10) fo;; the vertex
functions we obtain:

- tw? _ oAt ew
2T Oy s M Vg ™ e Tl e A el (5.36)
Sp- (e gf)

where AL is given by eq. (5.29) and k is arbitrary.. In

particular if }{,(¢e) = M(n) we have

- € .
W = }\t r “ (k‘l’”’ k‘;? At lu’)ls.p. (,\b) ) (5~37)
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Let us define.a function (A4, ue) by

N o) = 2~& Pl : :
u (_JV/"“ 7224 r Chisershaa 3 2)40) IS-P«J&)' | . (5.38)
The condition that, for sufficiently large t,He(usdeT
and hence may. be labelled by the single parameter % , may now
‘be stated as the following condition for the set M, tue):

If two hamiltonians, ¥ (ue), He(w) - are such that for

two.suitable Ay, AT

a (A;h,ka. = a’ ‘1'/A39‘0)

(5.39)

then the behavidur, of their correlation functions for wave-
numbers k smaller +than A, A" respectively must be the same
(i.e. they must be e_Quél apart from a rescaling in k and an
overall 3 factor). Of course, this condition is never
_ saﬁisfied, since. two W lue) starting from different H,(us’,
are never equal -for any finite value of t (except in the case
for which Hg(de) = M, (us) - but we are not interested in
this case).

Let us consider now the set ¢ and s hamiltonian.
Hiw) €T. If we define He(4) such that Helw)z M (w) ang
that #y (%)  obeys eq. (5.8) we have - |

arpgtu) _ _
7 F D]
at : ’

(5.40)

on the other hand our hypotheses imply that ) e T for
any t. Therefore we can consider eq. (5._40) as an equatién for

W : if we define Ugtw by

H, twrs H (Uetw)) |
(5.41)
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we have that w must satisfy one equation of the kind

d Ue
- = KU | (5.42)

We see however, from (5.3%7), (5.38) that if Mg (e )= MLl |
. o

A
%" = @ ()'i-o,y, PRAY' u’) (5.43)
If we take the derivative of (5.43) with respect to t and we
recall the definition of Xt we have: '

dUe

~ .
hrp }\t“_a W, (.)\x»..k., » Ny ko)

(5.44)

‘where the subscript 4 indicates derivative with respect to the
first srgument. On the other hand eq. (5.42) tells us that the
r.h.s. of eq. (5.44) must only depend on Uy itself. To
express 1t algebraically we must express We as a function of
"N, A and « . Let us consider the following implicit

equation for Mo at given «w, X :

{IC}IA,M?):P‘

(5.45)
If we consider its solution aq as a function, of u, A A
_ we can write
a(}.,/\,&o (}")/\»“)):M‘
: (5.46)
Let us then rewrite eq. (5.44) as follows:
oU ' ~ ~
—-—-t = /\b’to Wi CAepe, AJ“""&«:.:/‘:“))
2t ' (5.47)

The r.h.s. still depends on A, Ay, ; we shall deal with that
later on. Let us now express ;4 in terms of wvertex functions.

Let us define the following functions:
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-4

C o ™

;:»I'R'
>ix

,u) 7\ I‘ ( ..,k;.',A,qo(/\:/\a“))\s.?.c:;)

(5.48)
L A oA : .
.3 (;nan“): 2 (;,£‘V.(z”&u)) | (5.49)
Note that Y and a have the following broperties:
b’(!) .é,u):u
' (5.50)
wys (2 ¢ =
X("J ) ( ) X(,A,s-—) %.) X(%o;A-, ) _,_' ))0 (-)") )
%(*1310)54
(5.51)

RRee) 2y (5 2 LAY 58 B0) 57 (5 ) § (26w
These equations are immediate consequences of the definition of
' f,g . They are known as the Gell-Mann and Low r.g.‘equations
(Bogolyubov and Shirkov (1959), Di Castro (1972)).

From the definition (5.38) of (4 and from (5.50), (5.51) we
see that | ' |

~ 1 . ANt
' 0 2, ) - =, -2 )
G Xt ke on) < (R0 '»'“) (3 8w) (5.52)
Therefore
2‘&1()” A al° (ﬁ;_ﬁ,u.)) S -€4 "Xo("’ é}nvu)- 2-3 (4, A “) (5.53)
. _ ': N

‘which is the same as the equation obtained by Di Castro (1972),
were it not for its cutoff dependence. From (5.55); (5.44) we

obtain therefore

- o - .
a——— = - é (u t A, — 1/ 'u(- - _/-\.
ot ] ey ( At e, ) 23‘ (‘ “e:‘?‘(é‘) (5.54)
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The interesting features of eq. (5.54) are that (i)

it is calculated within the elementary surface Sy (ii) that
the hypothesis that F [} 7] (eq. (5.8)) is smooth entails that the
r.h.s. of eq. (5.54) is also smooth: in particular, that it can

be calculated in perturbation theory if'QLe is small.

5.3 Renormalization

Let us now deal with the problem of the cutoff dependence
of eq. (5.54). We shall show that this corresponds to the
problem of finding conditions under which eq. (5;59) implies
equivalent behaviour of the correlation functions of two
different mddels.

Consider the implicit equation for «e , eq. (5.45).
Since w and w®we are dimensionless by definition, & can

only depend on Asi and we .

o - ~ -é . - .
w= & (R u0) | (5.55)
Therefore, the solution as is a function of b!;' and w
Ro = o (2 w) (5.56
© = ?;’_ : 5-5 )

Consider we  first calculated with A, and then with A' but with

the same u. Then

<
1
2
'
wi>
<
o
™
i
1 4
N
H]

~olA A w |
& (Rouelfw)) (5:57)

- We may consider this equation in two ways: either A has changed,
or the cutoff has changed. If we choose the second way we'may
define a varying cutoff A, and a correspondingly varying ue

such that W keeps the same value. We cah choose in other words
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u’ = Ue

~ %o) U-) (5'58)

- We can then let Ao go to infinity and choose w, accordingly 'l
keeping A and u fixed. If in this case all A dependent
correlation functlons defined by egns. (5.322), (5.33) have a.
' finite limit, we say that the theory is "renormalizable". 1In
this case the only remaining parameters to label the theory
are A and u, but they are related by eq. (5.52) calculated with
fixed A, A', u and diverging cutoff. Therefore the set of
hamiltonians K¢ one has to consider is a one parameter set,
labelled by u, exactly as we had assumed.
- It cannot be overemphasized that this is the basic step
in the whole Gell-Mann and Low approach, which otherwise would
yield only trivial results. Definitions (5.32),»(5.35) imply
egns. (5.50), (5.51) immediately; +therefore the latter have no
physical content. But when we let the cutoff A go to infinity we
are making a very strong assumption, and the nontrivial resulté
which then follow from eq. (5.54) are eventually consequences of
this assumption. ILet us consider this problem in more detail.
In Fig.53 we represent a surface in E;‘ . The fixed
point ig M* . The line" S," is the intersection of the
elemeﬁtary surface &S, with the attraction domain of ®*¥
We assume that W, 1is such that all M (4e) lie in the surface

here represented
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Se-

Consider two hamiltonians belonging to &, , e.g8. H,. My .
The dashed lines in fig.53 fepresent the set of wyn, .
Wy M2 respectively (ott¢ew) - The dotted line is

a line u = const. where u is given by eq.A(5.34).» We

see that for some t, W¢ N, is on the dotted line, as
well as Wi X, for some different t'. The- two
ha.miltlonians WeH, and Wex, are however, different.

Let us call ¢ the difference between t' and t.

In this case, 1f N, zMccue) , MHa =2 tuh) we have:
~ A ~ A ) ' ‘ ’
K(frue)= El5ove)=u (5-59)
where
A :\L?,'t
(5.60)

i ~c!
A=Ke = Ae” "

If the two hamiltonians, WgM,, Wt M, were strictly equal.
The following relations for their correlation functions should

hold:

w2

G (kiyeiy hn) Aue) 2 G‘“Zu.,..,u.;)\‘,u; ) (5.61)
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This is not true, since the two hamiltonians are diffe;‘ent.
If we choose however, another pair of hamiltonians, say M3
and X, such that Wew Hy ,w. . ')4,, are both on the dotted
line, we expect that if t" is much larger than t, W M, W, My
are closer to each other than W, Wi Ao respectix}ely.
In this case the difference between the A dependent correlation
functions cal'culatred with the different models .would be
smaller. |

Now, instead of cénsidering. two different A's, as
defined by eq. (5.60), and a fixed cutoff AN , consider f
eq. (5.61) as ”being én équatioxi relating correlétion functions
of two models with the same and.‘fixe.d‘small 7\.,. but cutoff with

two different A's , namely

Ao = Aet
NI (5.62)
If we now let A, go to infinity, keeping u, A fixed, and
choosing WUe according to
Ue = te (%",'u)

(5.63)

we obtain that eq. (5.61) expresses the fact that 6" is only a
function of u, A. Now let us consider a different A' ,. and a

different w! , where

u‘:a(g"a" g,u)> B _(,5'&‘)..

In this case the set of correlation functions labelled 5y
u', A, A can be obt‘ained from the set of correlafion functions
labelled by W, A, A by performing a transformation of the |
kind (5.52), (5.%3). In this case We does not change and

the transformation is trivisl. But if A is very large with
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respect to A we can think of it in a different way: if we

choose u' such that it satisfies the equation
] AP A' L 1 V
w = - 5\ A
VoL ' o
where N is given by

- A
M n LR (5.66)

we obtain a'slighfly different model, which'is labelled by
‘A', a slightly different u', and N' . Since the two
hamiltonians, M. (ﬁo(a.v)),n‘(di(g.u)) are different,
(5.61) will not hold'ekactly. ‘However, we assumed that it
must hold if Ase . Therefofe,'if A‘ goes to infinity, the
two models, labelled by u, A, and u', A' respectively, ﬁust.
be obnnected by & transformation of the kind of (5;54)
(integréted) regardless of how one built up the two models.
But in this second case the underlying transformation t5.65)"
is nontrivial, since we have changed the hamiltonian.
Therefore the assumption that the infinite cutoff limit

exists must lead to nontrivial results.

5.4 Treatment of relevant operators

The method has a direct extension to the case 'in which
the elementary surface ﬁ% does not lie within the attraction
.domain of a fixed point H". Here I shall follow Wilson (1973b) .
more closely, except for an observation which I believé to be
quite common knowledge to workers in the field, but which, to
my knowledge, is not in print.-

Let us consider the two parameter set S labelled by the
two dimensionless parameters po, Wo o iet us assume that there

is a subset gl properly contained in S which' is contained
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in the attraction domain of a fixed point A" . To fix one's

ideas, we may consider the case in which K" corresponds to the

fixed point which describes the critical behaviour fron® and

z
3. A€ are the coefficients of &%, @Y " in H(re, ue)
i
respectively and S'e = { w, (o)} in the set of critical

peint hamiltonians.

In this case it is possible to find a qﬁan’city defined via
correlation functions which is zero if Weé Sc and nonzero
otherwise. An obvious candidate for this quantity is m? , the
inverse square coherence length. This is the one we shall |

choose. Then we may define, along the lines of the previous

~sections, a set of theories which depend on “w,wm?* and A in

the following way.

If MeSe , the method used in the previous sec.ti.on
applies without modifications. . If )»u},s,_’,mg is nonzero. Let
us define m2 in such a way that it does not change when the
transformation to the A-dependent correlation functions (5.32),

2‘-is the inverse coherence length,

this is immed_iate).' Let us now consider the case in which m2

(5.33) is performed. tIf m

is very smsll. Then from (5.10) we see that for He=> WX

m* (Me)z 5 mrin. | (5.67)

If m*®) 1is very small, even for quite large t, m* (%)
will be small: there will be cases in which w?(M.) is S0
small that M, is very near MW* . (This does not necessarily
imply that X is near }(," : because we did not assume that the
whole of Sc is near to ¥*). We can therefore choose w*(K.) and

W{MHe)  to label the set W H ke, We) , as in the case where u

" is the only parameter. This will be possiblé if one performs

the infinite volume limit. Then the whole method presented
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previously holds, but the new variagble must be introduced in
all equations. For further details, see Wilson and Kogut (1972).

Thé observation I should like to make is the following.
Imagine that one i1s interested in knowing the eigenvalue of
the relevant eigenvector of W' (If S, is a two-parameter set
and S, & one-parameter set and we consider the case in which
Ke S, and H 45¢ for t sufficiently
large, then §.H can have one and only one component along
the direction of a relevant eigenvector of H* ). But imagine
that one does not wish to calculate FLs] around W*
because H¥ 1is a very complicated hamiltonian. Is it possible
"to calculate this eigehvalue within S, ? |

We shall answer this queétion in two steps

(a) Call WM, the relevant eigenvector of M¥, A,its

eigenvalue. Define an operator £ (x) by

WY = Jdz oo (5.68)

The “"density" §,cx) will only depend on the behaviour of

¢("") for x' around x because of our short-range assump{:ion
(see 5.1). H, is only defined up to a normalization constant:
we shall define this constant for any M in such a way that the
following normalization condition is satisfied:

an2 \'.k.'& *kz‘j‘kl?
(®") de dy di ¢ <€~.c:=>¢cq7¢ca»hu=5(“-"“‘“‘3) (5.69)

where ky, Ky, ky satisfy the condition
L. A .2 E o
L'\‘f - '2 w? (A 35!_,) | : 3 (5.70)

and is defined by eq. (5.14).. ' ' | Gt
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It is then clear how one can calculate the component
of W¢H along W, from a knowledge of the correlation
function in (5.69) at different wavenumbers A. The method
is identical to that followed in the calculstion of 3, in
section 5.1. | )

(b) The problem one still has is that K, . is a
property of K , too. This may be solved by noting that if
H (oo, o) belo'ngs fo So and H(‘r.g. r&ha , u0) does not, then
if Wy Hivee,ned) is sufficiently hear 5‘-", W H (racrdre, uo) ~ for
some t is_sufficientiy near W* , too, but it has a component
along the direction of M, . As a ¢onsequence, instead of
using H, for the above reasoning, one can use OM/ove :
Cif K (voyue) .is of g $“ type, one can use ¢ x)instead of
fctx) . This is why one introduces the renormalisation of t

in our method.

5.5 'Bootstrag

We shall now see how our framework allows one to give a
Justification to a different kind of approach to the

investigation of critical behaviour: +the "bootstrap” approach

(Migdal (1969), Polyakov (1969), de Pasquale and Tombesi (4a%1 y,

Parisi and Peliti (1971) (1972), Abrahams and Tsuneto (1973)).
In the bootstrap approach one firstiobtains a set of infegral
equations which only involve the correlation functions of the
theory whose critical behaviour one wishes to investigate,

then looks for solutions of these equations which have the

required homogeneity properties. The remarkable fact is that
these solutions do not corresﬁond to a hamiltonian determined

by some interaction parameters: the theory "bootstraps".
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Let us consider a model of g 47" type. We can wi‘ite

its hamiltonian as follows:

HIPI= g fdridxe pex, x2d Pexy Pexads

- 1
P:-:‘: de,dzzdxadxu YIx XXy Xau)d ¢(x.)¢u;)¢(xa)¢'<h) (5 7 ) :
In the case discussed throughout this thesis, ¢ and v are
given by:
-t . ?
(R X3) 2 S e ‘e'k I
t* C2n)92 [
gok" *“'o (5.72)
aka dks A g:“.z*kéﬂ‘})/ﬁ T RURETL FC R ey )
VI ¥y Fuw) =% S(u‘)d’& (:.n)"?- (‘uﬂdff- (4 (5,73)
For the sake of brevity we shall indicate by §, (x.-%:) the
. WAz R
Fourier transform of & n
I
dke e-%\'-tk'u.’h‘\
.—xt ) ?: ‘5 — -
8‘\ &4 (Zﬂ)d‘z (5 74)
We shall also indicate A, by %, ... Ln by W© , and we shall

put a bar over the variables which are meant to be integrated

over. Let us then consider

FLnGal=Flpv, 63 (5.75)
where FUM,4J is defined by eq. (5.2) and is thought of as
a function of ", v , with KX given by (5.71). If we take
the derivatives of FE}"a ~>, 607 with respect to wm, v, A we

have:

>F
She)

= KPD = Q,4) - | (5.76)
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4
—_— = E(@u)@(l)> 2 G (41)

Sptiad (5.77)
5F A
- . .78
Soames - @ (QOEDHDEuS 2@, (4234) 5.78)
We can solve egs. (5.76), (5.77), (5.78) (cf. Jona-Lasinio
(1964), Dalmen and Jona-Lasinio (1967)) expressing
as functionals of Ql’ Q2, Qu, and define a new functional
WLl@R: @3 bY )
WIR 0:Rul * FCOpP,u,3 ~QUA) T) - QGADIMAD) + ‘
: ‘ - (5.79)
- QL (X2TEOVTZEL)
The new functional W  satisfies equations which are
conjugate to (5.76), (5.77), (5.78):
SW - o
Salo - - &) _ | _(5.80)
SW .
e = _j.L(_(Z) .
5@, (42) . o (5.81)
—§“" = - v{i3L) _ '
0@, Li130) B S | (5.82)

We Can'think of the system (5.80), (5.81), (5.82) either as
expressions of .&,P,v.as functionals of Ql, Q2’ Qq, or.as
equetions in which &, M,V are given and Ql; U Qq'aré
uﬁknown. If we take this second point of view, we may find

Ql’ QQ’ Q# also as solutions of a.variational principle.
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Define the functional
TR 6, v TWTQARR] + QO QT 4 vLT{)Q,,(ZZ)»

234) (5-83).

>~

£ V230 Q¢

in which the ‘e"C"‘) appear as independent variables; we
then trivially see that if the Q;'s satisfy the corresponding
equation in (5.80) (i=1, 2, 4), for some values of &, u,v

33 .
sa; ° | - (5.84)

Let us now consider that via our normalization we have

chosen p,v as functions of Y, , M2 :

M12) - 2 V28, (42> ¢ ¢+ ¥ Sa(A-2) +o SaiA~1)

(5.85)
~ .86
V(423L) = €v-g Bald-) §at2-u) da (3-4) (5.86)
where we have defined .'(&vb and é’v by
A (o
& - = O-E'/Y‘ (5.87)
and 6. is given by eq. (3.34), and
o~ ~ '
gav =g ~ (5.88)

If we insert egs. (5.85), (5.86) into (5.83), and let

h=0 (since we wish to keep Ql as a free variable) we obtain:
T LR Qu0, n Le,gont),vig, ®_HJ =
2 W@ @) + v SAU-D) Q(T) - (VPS5 (-2)) QulAE)
¢ i g SUID 5y G SAGD QUUTEE) (5-89)
N SN T Qe (42)
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‘We see that the variational principle (5.84) is equivalent
to a variational principle for W, with some constraints:
iﬁ eq. (5.89) the parameters &, 2¢,2Zv play the role
of Lagrange multipliers. (This approach and in particular
this result is due to Dahmen and Jona-Tasinio (1967)). The
~constraints are of course the normalization conditions presented
in Chapter 3.
If we now let A= ¢ at old& we have that

Sali-1) = 5C4a-2) : (5.90)

and the 2’ factors in (5.89) tend to a finite limit, (depending
bﬁly on uzg/MméE ). The last term in (5.89) however, diverges.
We shsall ignore this term since we have shown that it is
possible to define the theory in such a way that ‘this divergence
can be controlled. If we denote by Z,2e¢, &v the limits of
the corresponding 2 eq. (5.89) becomes: (we disregard
the last term): _

F =W+ Z ¥ S(R-1) @2UAD) ~2 (V3E(X-2)) @ (XD) &

*2v g SCi-Gr8¢2-G) 83 -L) QuAZTGL) (5.91)

Let us now consider the results of Chapter 4 from the
following point of view. If we impose, -in' our model, some
arbitrary normalization conditions (i.e. some value for r,
some value for u) we are not going to have scaling. Even if
we are at r=0, i.e. at the critical f)oint: the correlation
funcrions will shoﬁ their homogeneous behaviour.
only in a certain range, for wavenumbers k. - sufficiently
small, it is only when r=0 and u=u* that full (i.e. for all k)
homogeneity holds. Let us coﬁsider the case in which we are
interested in i‘inding stationary solutions of JF  which have

homogeneous forms. The results of the previous chapter tell
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us that we cannot ask for homogeneity and at the same time
impose constraints, i.e. normalization conditions. That
means that we must not look for stationary solutions of

I but of W. The fixed point correlation functions. .
will therefore be obtained as solutions of the equations:

0

5@ =0 (= 4,20) ' 4{ (5.92)

Let us denote the homogeneous‘solutions of eq. (5.92) by CQ?
If we compare eq. (5.92) with egs. (5.80), (5.81), (5.82),
we obtain that for &; :Q? the external fields
must vanish: i.e.
> - ¥ - »

206 )= plE@i2I=» QL] (5.9)
Therefore it is justified to look for homogeneous sqlutions
of equations in which the interaction parameters in the
hamiltonian have Pbeen made to disappear. On the other hand
comparison of eq. (5.92) with (5.91) shows that for
eilther the Z factors vanish or they diverge, in such a way

that the corresponding fields (e.g. r in eql (5.91)) must be

fut equal to zero. {This was pointed out by Jouvet (49323)).

The distinction between relevant and irrelevant fields
can be understood in this context by investigating the effecté
of small perturbations around the homogeneous solution CQ:' .
Consider the stationary solutions Qh of the functional F,
defined by
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whére A 1s a very small quantity and éﬂ 1s a suitable
integral of one of the correlation functions Qi'(i =1, 2, 4).
If the Qk is not essentially different from Qi’ we say that A
is an irrelevant field. If it is instead very different, A
is a relevant field. It is clear how one can relate the
critical indices to the derivatives of Z with respect to u.

See Brezin, Le Guillou, Zinn-Justin (1973a).
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6. CONCLUSION

We have seen in this work how it is possible to get a
unified and relatively simple treatment of critical proPérties_
by applying the renormalisation group transformatioﬁs to the |
generating functional {" . We have seen that our choice of
normalisation produces a remarkably simple form for the r.g.
equation for [ , which combines the advantages of both the
original GML r.g. equations and the Callan~8ymanéik equation.

Moreover, we have seen, at the end of Chapter 4, that a
framework is built up in which generalisations of our treatment
to different models can be made without conceptual difficulties.
The whole treatment of r.g. transformations within our
framework may be carried out by the use of ordinary»quantum
field theory methods. Because of this the r.g. transformations
do not carry us away from the space of interactions we started |
off with. In this way, for example, the.treatment of models
containing interactions with cubic symmetry may be simplified.
From this point of view the method has some advantages over
the Wilson r.g. method.

The homogeneous form of our equations makes the treatment
of vertex functions in high energy physics simpler in that it -
allows one to distinguish between hypotheses which are due |
simply to formal features of Callan—Symanzikhequations and
hypotheses which are related to physically relevant difficulties.
In particular it justifies the neglect of the inhomogeneous term

of the Callan-Symanzik equation for nonexceptional momenta.
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APPENDIX A

Relation to the Callan-Symanzik equation

We show in this appendix how our equation (4.45) is related

to the Callan-Symanzik equation (Callan (1970) - Symanzik

(1970) as used by Brezin, Le Guillou, Zinn-Jﬁstin (197%b).
The functional [ in the Callan-Symanzik equation is

defined in such a way that it satisfies the normalisation

conditions:
Tor = w2 )
)y =
@)= (A.1)

U,

}Co) =4, (4.3)
at all temperatures (i.e. for all values of m™ Yo If we
express our functional ® as a function of m* we obtain
the following relation between T, and ©

GOCR3, whu) = TP, we, w, Haw?) o

Let us keep the normalisation point of ' in eq. (A.y)
fixed and let us consider T, at a different temperature,
for which m'z=w?2 , We have: '

_'c@f-P'J,'m‘z, W )= PP, whw, i wity,

- (4.5)
= T{led, w' u, M2=m?) |
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where (p' and W' are related to @, u by

- M
R A (4.6)
! w! m! _e'
Wau 2y (7;1’“) ('-W-\) (A.7)
If we take the derivative of eq. (A.5) with respect to w' and
we set - we have:
P 2 4 g (4.8)
w = Fhea) & -~ 2
- om
where Yg (o) is defined by
(4.9)

3l = Cewy
If we consider the relation between m and r, eq. (3.9 ) and,

between r and t at the normalisation point, we can write:

2r
m — = 2x(n 2 or _
S (cd+ ¥¢ )) m a._t. = (2_-3/3(“))%253__;- (A.lO)
From (A.9) (A.10) we obtain
2 . D _ A | :
L waw thw W ?:6’31“)5d1<e(a)§ 3‘2-‘-(2-;’;&)) mt 2r (A.11)
S@x) de

which is identical to the Callan-Symanzik equation.
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APPENDIX B

Treatment of the specific heat

We defined I in such a way that it vanishes at Q;c» at

any temperature. It would have been possible to define it

in such a way that it vanishes §n1y at the normalisation
temperature, together with its first and second derivatives with
respect to t. In this way the infinite cutoff limit.would have
also been finite. On the other hand this would have produced
an inhomogeneous term in our r.g. equations, due to the fact
thét we must subtract [ and its first two derivatives at the’
different normalization point. This inhomogeneous term is
independent of ¢ ; therefore it would mot affect any of the
conclusions about the behaviour of the equation of state and
related quantities. It appears explicitly if one wishes to
discuss the behaviour of the specific heat. We shall see in
this appendix how this problem can be treated.

Let us consider the specific heat defined by:

: 2
Cleu, )= - Z5E@=el, 0, /v

(B.1)
It follows easiiy from eq. (4,25) that
¢ty MYz 2" (%",.‘) ¢ {F,u, ™) }Cousr.' | (B.2)
ﬁhere .
e IC N a5

The constant must be chosen in such a way that C(t' ', @)

vanishés at its normalisation temperature t’ . We have therefore:
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i ' ¢y o -2 ’ . ’
Clt,uw, M= 2o (BLuw) Ctt,u,mrac (Mhu,m) (3.4
where
! ‘ . -2 I _ - . ' i .
ClRyu, M) =20 (B,u)e (52, (2‘)‘*): wm) (B.5)

If we take the derivative of eq. (B.5) with respect to M' at

M'=M we have

= 9 . ‘
(M2, chtl B 247 ¢ teum) = BCaum) (B.6)
where ACCU, M) is the derivative of C' (eq. (B.5)) with

respect to M' at M'sM. Dimensional analysis on eq. (B.6) yields:

Lotem) € & tw 2 “af
) 3 +A 3 +olt-?.oc(u)’SCCt',u,H) SACCu, M) (3.7

We shall assume that AC is a regular function of u for 1 mnear
wWe. Egq. (B.7) can be then solved along the same lines as

eq. (4.36); one obtains that one need only consider the
behaviour of C around the fixed point uz=w* .

We have:
X ,
Lot & 2 +a +z§t*] ¢ ('{'-,u"}r{) 2 ACLUR, M) - (B-8)

The solution of egq. (B.8) reads as follows:

2
Cleu*, H) = coumt. 7 d"ﬁ““ o
/ / - ) + A( 8 — . (B )

where const. ﬁeans an arbitrary constant. We see that the
effect of the inhomogeneous term is to give a constant additive
term. In this way we are able to obtain a positive -specific
heat aléovif the exponent'(d+2““yo<“ is negative. if one‘
‘imposes in this case that C has some value at t=0, say (o , we

obtain:
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- delx? . (B.10)

¢ Ce,ur,R)= K - L_ or +C, _ -
-where the constant K can be obtained from the condition that
the specific heat vanishes at the normalisation temperature

E2¢* . We have:

dtzd“

K : - Qo (%) = (B.11)
" For d+2“ o . we have therefore a cusp in the specific °

heat. vThe necessity of a special treatment for this problem

was pointed out to me by G. Parisi.
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- APPENDIX C

One~loop calculation of the equation of state

The equation of state around the critical point has already
" been cialculatedﬁa number of tiines (Brezin, Wallace, Wilson
(1972a), Avdeeva and Migdal (1‘:972), BJ;'ezin, Le Guillow,
Zinn-Justin (197%b)) by means of different techniques. The
present calculation aims only at giving a working example of
our renormalisation scheme.

We shall calculate the equation of state to first order in €,
Since the fixed point value of the dimensionie_ss coupling
constant is or order € (?q,-(4.ua)) we must only calculate %
(i.e. U/ P ) up tovone-loop contributions.: -

We shall use the é—dépendent scheme. . The zero-loop

contributions to the magnetic field h, defined by

Ute) . : ,
b= a‘-&; . - (C.1) -

are as follows:

fm b s AR 53 - |
A YR ' c.2)

To .calculate th-e onéfloOP contributions we use the following
trick. First let.us put M=4 for simi)licity (if M#4 , the
r.g. equations assure us that it may be put' équal to_fo;y.a
suitable Ye.s(:aeiug of ¢, andb ). Thus define a t* which

is equal to t i)lus a 'constanf, and which is equgl to one of

the normalisation poinjl;s'.' Then all subtractions must be
performed,é.t the normalisation point. The one-loop contribution

to h'is given in the diagram of Fig.S3y .
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A Fig. 54

Its associated.diagram, i.e. the diagram in which the wavy

line is replaced by a stump, is of degree two. It must
therefore have three counterterms: one is the integrand
‘calculated at  t'=4 twoare the first order contributions to the
Taylor series expansion of the integrand in(t'-4) and '-..';._‘92

around k'=4, =0 Tespectively. The contribution is therefore:

, A 4
- “w - 2
% = 2 dk . R — ucb‘ }_&'e_.* _{_ (005)
2 ¥ ‘S k%t‘«‘%“" P e )q‘n—o"l ‘ _

(The two last subtractions are summed together in (Ce5). The

.~ integrations can easily be.performed and yield:

-0 = D¢ (Eedqr) % (b qt) o ~ (c.8)

Therefore the full contribution up to one-loop to h _is:'
- ¢ ! ‘. ' o
4= _tt_f"3_,‘[’7’*‘-3}?(t’r%?‘)eg(b‘f-%cez) (€.7)

We must now find the constant shift between & and ' . We
" can find that by looking for the value of ' for which the
zero-field inverse susceptibility oh/d¢ 1is zero at zero-field.

It is easier to work with G/¢ : then ¢/, defined by
t'akrth o o - (C.8)
is g'iven by

o= %

Tlees 6ot b Gio 9

which has the solution

A - e



Therefore t'» can be put equal to zero in the € -expansion.
One can then replace w and &' in (C.7) by w* , the fixed

. point value of the dimensionless coupling constant, given 'by
wo= g - (C.11)
S'TLZ ) ) : .
and by t respectively. One obtains
A w”* )
-_ B E v = 2 ' ,.e_ u* 2 ’ > .
¢ p et (befet) gl fe) (c.12)
One can see that if one defines the variable <;> by

¢ =5t | | : | (_0.13).

the variable X by

- 2 €
b= ©°C4 r< 4 )

(C.14)
one can write eq. (C.12) as follows:
£,
mArx ¢ € Lx g (C.15)
(DsCA«-éQ&q;) fba(; t?)%(lﬁa) . .

We can interpret the lo.garithms in eq. (C.14), (C.15). as the.
first order contributions to the expansion of cp”ﬂ', 458 in
powers of & , where B and o are the critical indices given

by:

(C.16)

§=3%te | | o (caD



Eqg. (C.15) can then be given the form:

f\'s A+ S (243)0¢
¢ 6 g (x+3) (C.18)

where % is given by

X~ E/pln (€.19)

Eq. (C.18) differs from the ones which appear in the works by
Brezin, Wallace, Wilson (1972a), Breszin, Le Guillou, Zinn-Justin,
(1973b) by the normalisation of h and x.

We now sketch how one arrives at eq. (C.12) in the
r—-dependent sohéme. In this case the diagram in Fig. S«
should be subtracted once_ét q&oA Same temperature, once at
_V:-H};CPSO yielding a term equal to the first order term in
the Taylor expansion of the integrapd in powers of -‘% cpz-
at =0, vr=4 - We have theréfore the Zero-1loop

© contribution:

h=re - @2 (C.20)

The one loop contribution is

%‘?S dk (—___,_',(__._._—- _ 4 o« ? A ]
k"-l—\’f%q?z kerr 2 0‘34_‘)1 (0-21)
The result is therefore
zre ¢ 2 3% T U
3 ; ¢Llre i )eﬁ(”%?z) -rér ] (C.22)
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We must now calculate the t-dependence of r. This may be done

as follows. Consider the éonti'ibutions to D(—!a-r’- up to one

loop:
@_.('- A = .Q . S
or (C.23)
The diagram in eq. (C.5) is of degree zero and must be
subtracted at v= [M?® . Its contribution is:
C.
2 &2’.’33 (k_z*“')t . E .
. e .
with w=w , Mz 4 we have:
P>l
O . - & (C.25)
ov é st. .
If we integrate this relation we obtain
sy - & |
t- 4 6 V‘CQSY‘—ot) + Coust , -. (0.26)
The constant may be fixed by imposing that Yo as v-ao
One has:
tlrz0)20 + cowst . (C.27)
Therefore the constant is zero to first order'in'e- as we

saw previously. If we invert eq. (C.26) to first order in &€ we

obtain

r= C(A+ S0k ) CA-ér¢ .
| ¢ v / ) (C.28)



The constant (4-&r¢ ) may be reabsorbed into a rescaling of &
t (it is &* ) and does not influence the critical behaviour.

We have:_
_ u* » |
beter F @t galorde) gnyer) (c.29)

which is identical to eq. (C.12).
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