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Abstract. I examine the ‘physical inconsistencies’ pointed out in a recent work
as deriving from the use of the expression dW/dt = ∂H(x, t)/∂t which appears
in fluctuation relations for manipulated system, such as Jarzynski’s equality. I
show that these inconsistencies are illusory, since the ‘arbitrary parameters’ that
appear in the expression of the free-energy difference obtained from this relation
turn out to have a direct and simple physical interpretation connected with the
physical setup needed to perform the manipulation.
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1. Introduction

An exciting scenario has recently been introduced for the investigation of nanosystems
through the derivation of identities that relate the statistics of the fluctuating work in
manipulated statistical mechanics systems with equilibrium properties. The most quoted
of these relations is Jarzynski’s equality (JE) [1]

〈
e−βW

〉
= e−β ΔF , (1)

which relates the fluctuating work W performed in a manipulation with the free-energy
difference ΔF . A number of works [2] have shown how to harness these identities to
explore the free-energy landscape of nanosystems via manipulations that do not necessarily
maintain the systems at thermodynamic equilibrium. These suggestions have been
explored experimentally with remarkable success [3].

A recent work [4] has challenged the possibility of evaluating free-energy differences
in this way. The authors of this work state that ‘Time-dependent Hamiltonians, however,
provide the energy up to an arbitrary factor (sic) that typically depends on time and
on the microscopic history of the system’. Such dependence prevents this approach from
being generally applicable to compute thermodynamically consistent properties.

To arrive at this conclusion, they consider a system described by the Hamiltonian
H0(x) under the effects of an external time-dependent force f(t). The total Hamiltonian
is given by

H(x, t) = H0(x) − f(t)x + g(t), (2)

where g(t) is an arbitrary function of time. The function g(t) does not affect the total
force acting on the system, F = −∂H0/∂x + f(t), but it changes the Hamiltonian.
Therefore, g(t) has to be chosen so that the Hamiltonian can be identified with the energy
of the system. Now the authors of [4] claim that the arbitrary time dependence of the
Hamiltonian, g(t), cannot be chosen so that the Hamiltonian gives a consistent energy.

I shall argue in the present work that the time-dependent Hamiltonian for a
manipulated system can be consistently identified, and that the apparent disagreement
between the results of [4] and the Jarzynski equality derives from the fact that different
quantities are considered in the different works. Indeed, the manipulation of a system takes
place by operating on a collection of bodies external to the system but which interact with
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it, which we shall call the steering bodies. It is therefore possible to define unambiguously
(apart from a time-independent additive constant) the time-dependent Hamiltonian of
a manipulated system by explicitly considering the energy of interaction between the
observed system and the steering bodies. Now, the thermodynamical work performed on
a system represents the work done by it on the steering bodies, rather than the work done
on the system itself by the external bodies: a point stressed, e.g., by Gibbs in his founding
book [5] on statistical mechanics. The connections between the different work concepts
and their fluctuation relations have been recently thoroughly discussed by Jarzynski and
Horowitz [6]. By these considerations, which are made more explicit in the following, one
can see that the worries expressed in [4] are misplaced.

2. Work on the system and work by the system

Let us consider a system like the one considered by the authors of [4], which is described by
a Hamiltonian H0(x) and is manipulated by moving some external bodies, whose positions
are identified by a = (ai), and are assumed to be so large that the fluctuations of their
coordinates can be safely neglected (cf [5, p 42]). Let the mutual interaction between
these bodies and the system be described by a potential energy function V (x, a), which
does not explicitly depend on time. Let us moreover define a manipulation protocol, in
which the coordinates a of the external bodies are expressed as functions of a parameter
μ, and in which μ changes as a given function of the time t. Then the manipulated system
is described by a Hamiltonian H(x, t) which depends explicitly on time, and is given by

H(x, t) = H0(x) + U(x, μ(t)), (3)

where U(x, μ) = V (x, a(μ)) is the mutual energy of the system and the manipulated
bodies. This quantity is identified up to an additive constant which is independent of
time. When the system undergoes a manipulation described by the change μ −→ μ + dμ
of the parameter, we can identify two different infinitesimal works:

• The work dW that the system performs on the external bodies, with the sign changed
for later convenience. Since the force Fi that the system applies to the body described
by the coordinate ai is given by Fi = −∂V/∂ai, we have

dW = −
∑

i

Fi dai =
∑

i

∂V (x, a)

∂ai

dai

dμ
dμ

=
∂U(x, μ)

∂μ
dμ =

∂U(x, μ)

∂μ
μ̇ dt =

∂H(x, t)

∂t
dt. (4)

• The work dW0 that the external bodies perform on the system. This is given by

dW0 = −∂V (x, a(μ))

∂x
dx = −∂U(x, μ)

∂x
dx. (5)

These two elementary works are not equal. It is easy to see, indeed, that

dW0 − dW = −∂U(x, μ)

∂x
dx − ∂U(x, μ)

∂μ
dμ = −dU. (6)

Let us now consider a quasistatic manipulation, in which the external bodies affecting the
dynamics of the system are manipulated so slowly that the system can be considered to
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be at thermodynamical equilibrium at all times. In this situation, the infinitesimal work
dW qs performed in an infinitesimal change dμ of the parameter μ (i.e., for very small
displacements dai = (∂ai/∂μ) dμ of the external bodies which interact with the system)
does not fluctuate, and is equal to the average 〈dW 〉, given by

〈dW 〉 =

〈
∂U(x, μ)

∂μ

〉

μ

dμ. (7)

Here 〈· · ·〉μ is the canonical average with respect to the ‘instantaneous’ Hamiltonian
H0(x) + U(x, μ):

〈A〉μ =

∫
dx A(x)

e−β(H0(x)+U(x,μ))

Zμ
, (8)

in which β = 1/kBT and Zμ is the μ-dependent partition function

Zμ =

∫
dx e−β(H0(x)+U(x,μ)). (9)

It is then a simple matter to see that, in these hypotheses, one has
∫ μ

μ0

dW qs = −β−1

∫
dμ

d ln Zμ

dμ
= −β−1 [ln Zμ − ln Zμ0 ] . (10)

Thus the total reversible work W qs =
∫

dW qs is related to the change of the partition
function. We can express this change in terms of the internal free energy of the isolated
system, F0, defined as

F0(μ) = −β−1 lnZμ − 〈U(x, μ)〉 = 〈H0〉μ − TS(μ), (11)

where S(μ) is the entropy of the system in the canonical equilibrium state defined by the
‘instantaneous’ Hamiltonian H0(x) + U(x, μ).

For infinitely slow manipulations, because of equation (6), one has indeed

〈W0〉 − W = 〈U(x, μ0)〉μ0
− 〈U(x, μ)〉μ, (12)

so that

ΔF0 =

∫
〈dW0〉. (13)

However, as soon as the manipulation takes place at a finite speed, so that the manipulated
system drops out of equilibrium, the fluctuations of W and W0 are different. The
fluctuations of W obey Jarzynski’s equality (1), which relates them to free-energy changes,
while the fluctuations of W0 obey a relation found long ago by Bochkov and Kuzovlev [7],
namely

〈
e−βW0

〉
0

= 1, (14)

where 〈· · ·〉0 is the average over all paths followed by the system upon manipulation, when
the initial state is described by the unperturbed Hamiltonian H0(x).

Let us consider in particular the effects of a sudden displacement of the steering
bodies (represented by μ0 −→ μ), so fast that the system does not have time to change its
coordinates. In this case one has of course W0 = 0, and Bochkov and Kuzovlev’s relation
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is trivially satisfied, as noticed in [4]. But in order to displace the steering bodies, some
work has to be done on them. This work is equal to the change in the potential energy of
interaction of the system with the steering bodies:

W = U(x, μ) − U(x, μ0). (15)

As shown in [1], the Jarzynski equality follows immediately from this relation and the
assumption that the system was at equilibrium before the manipulation.

Let us point out that Gibbs explicitly remarks [5, p 4, footnote] that the energy
function of a statistical system should include ‘that energy which might be described
as mutual to that system and external bodies,’ and that it is clear from Gibbs’s treatise
[5, p 42] that his definition of the thermodynamic work corresponds to what I have denoted
by W rather than to W0.

3. An elementary example

We shall now make these considerations more explicit, by considering a simple
thermodynamical system, i.e., a one-dimensional oscillator characterized by its mass m
and spring constant k, kept at a fixed temperature T . This system has also been examined
in detail by the authors of [4]. It is described by the Hamiltonian

H(p, x) =
p2

2m
+

1

2
kx2. (16)

In the following we shall focus only on the displacement degree of freedom, namely x. Its
equilibrium distribution is given by

peq(x) =
e−kx2/2kBT

Z
, (17)

where Z is given by

Z =

∫
dx e−kx2/2kBT =

√
2πkBT/k. (18)

We shall now apply a uniform, but time-varying, force f(t) to the system. We wish
to evaluate the thermodynamical work performed on it, as the applied force changes from
f0 = 0 to f , so slowly that the system can be considered to remain at thermodynamical
equilibrium at all times.

One then proceeds as follows:

(1) One writes down the Hamiltonian of the system in the presence of the applied force:

H(x, f) = 1
2
kx2 − f (x − γ) . (19)

Here γ is defined as the point at which the potential of the applied force vanishes. This
point might depend on f , but we shall here assume that it is fixed. It is determined
by the actual device used to apply the constant force on the system, as discussed in
the following.
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(2) One applies either Gibbs’ equation (117) [5, p 45], or Tolman’s equation (124.1) [8,
p 542], to obtain the quasistatic thermodynamical work dW qs associated with a small
variation df of the applied force:

dW qs =

〈
∂H

∂f

〉
df = −〈(x − γ)〉df = − (〈x〉 − γ) df. (20)

In this equation, 〈A〉 is the canonical average of the function A(x):

〈A〉 =
1

Z

∫
dx A(x) e−H(x,f)/kBT . (21)

In our case, one obtains

〈x〉 =
f

k
, (22)

from which dW qs can be calculated via equation (20).

(3) One integrates the result with a variable force f ′ from the initial value f0 = 0 to the
final value f , obtaining

ΔF =

∫ f

0

〈
∂H

∂f

∣
∣
∣∣
f ′

〉

df ′ = −
∫ f

0

(
f ′

k
− γ

)
df ′ = −f 2

2k
+ γf. (23)

In this expression, ΔF is the change in the Helmholtz free energy, F = E−TS. Since
it is easy to see that in the present system the entropy S does not change during the
manipulation, we can equate it with the change in the internal energy E. We have
therefore

ΔE = −f 2

2k
+ γf. (24)

The authors of [4] find that this result is not physically acceptable. They raise the
following objections: setting first γ = 0, one obtains ΔE = −f 2/2k, which is a negative
value inconsistent with a non-spontaneous process. More generally, the change ΔE can
be positive or negative depending on the value of γ, which is a constant parameter which
does not affect the dynamics of the system. Therefore they conclude that these estimates
are not suitable for obtaining thermodynamics properties, such as whether or not a given
process occurs spontaneously.

I shall now show that the expression (24) corresponds to the actual change of energy
of the system upon manipulations, when the mutual energy of the system and the
manipulating bodies is taking into account. Indeed, in order to apply uniform but time-
varying forces to the system, it is necessary to act on it by manipulating external bodies.
I shall consider two possible conceptual setups: one electrostatic and one exploiting the
Earth’s gravitational field.

Electrostatic device

Let us assume that the mass of the oscillator carries a small charge q. We place two
point-like charged bodies on the x-axis at ±∞, one carrying a charge +Q and the other
carrying a charge −Q. We then let these two charged bodies come closer and closer to
the origin (the equilibrium point of the oscillator), by letting the charge +Q be situated
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at the point −X +γ, and the charge −Q at the point X +γ. Thus the electric field acting
on the oscillator at point x is given by

E =
Q

4πε0

[
1

(x − X − γ)2
+

1

(x + X − γ)2

]

=
Q

2πε0

(x − γ)2 + X2

[(x − γ)2 + X2]2 − 4(x − γ)2X2

� Q

2πε0

{
1

X2
+

3(x − γ)2

X4
+

5(x − γ)4

X6
+ · · ·

}
. (25)

If X is large enough, then all terms beyond the first one are negligible, for the expected
excursions of the oscillator from the origin. Then the force applied by the charge Q is
given by

f =
qQ

2πε0

1

X2
. (26)

Let us choose Q such that, even for the largest force f1 which we wish to apply, X is so
large that the terms beyond the first in equation (25) are negligible. Thus by moving the
charges ±Q from infinity to ±X + γ, always symmetrically around the point γ, we can
apply a uniform but time-varying force to our oscillator. It is now clear that γ, far from
being a fictitious parameter, corresponds to the location of the center of the device by
which a uniform force is applied to the system we are studying. In order to change γ,
external work must be supplied to the apparatus.

Let us now evaluate the internal energy of the system as a function of X. We have

E =
〈

1
2
kx2 + U(x, X)

〉

=
1

Z

∫
dx e−H(x,X)/kBT

[
1

2
kx2 +

qQ

4πε0

(
1

x + X − γ
− 1

X − x + γ

)]
. (27)

The first term yields
〈

1

2
kx2

〉
=

1

2
k

[〈
(x − 〈x〉)2

〉
+ 〈x〉2

]
=

1

2
kBT +

1

2

f 2

k
. (28)

The first term is given by the equipartition theorem, and the second by equation (22).
One can expand the second term in powers of 1/X, obtaining

〈U(x, X)〉 = − qQ

2πε0

[
1

X2
〈(x − γ)〉 +

1

X4

〈
(x − γ)3

〉
+ · · ·

]
. (29)

Thus, if 〈(x − γ)2〉/X2 � 1, we have

〈U(x, X)〉 = − qQ

2πε0

〈(x − γ)〉
X2

= −f 2

k
+ γf, (30)

where we have exploited (26) and (22). Summing up, we obtain

E =
1

2
kBT − f 2

2k
+ γf, (31)

in agreement with equation (24).
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Gravity-field device

A simpler conceptual experiment can be set up, imagining that the oscillator mass is
constrained to move along a rectilinear frictionless guide, which can rotate around a point
H in a vertical plane. Let us set a fixed, two-dimensional coordinate system, with ξ and
ζ denoting horizontal and vertical position respectively. When the guide is horizontal,
the equilibrium position of the spring coincides with the coordinate origin O. We shall
denote by x the displacement of the mass along the guide with respect to the equilibrium
point of the spring. Let m be the oscillator mass, g the acceleration of gravity, and let
the hinge H be placed at (ξ = γ, ζ = 0), corresponding to x = γ. If the guide is now
rotated clockwise by an angle θ, the oscillator mass will be acted upon by a uniform force,
directed towards increasing values of x, and of intensity mg sin θ. On the other hand, if
the mass is at location x along the guide, its height is given by ζ = −(x − γ) sin θ. It is
then a simple matter to evaluate the average of U(x, θ):

〈U(x, θ)〉 = mg〈ζ〉 = −mg sin θ〈x − γ〉 = −f 2

k
+ γf. (32)

Adding to it the average elastic energy 1
2
k〈x2〉 we recover equation (24) again. But it is

amusing to verify that this result does indeed correspond to the work done by the system
on the external device. Let us consider the line to be tilted by θ, and the position of the
oscillator to be x. Then the oscillator applies to the rectilinear guide a torque

τ = mg cos θ(x − γ). (33)

As the angle changes by dθ, this torque executes on the guide a work τ dθ = mg(x −
γ) d sin θ. The infinitesimal quasistatic work performed by the system on its environment
is given by the average of this expression, namely

−dW qs = 〈τ〉dθ = mg (〈x〉 − γ) d sin θ. (34)

The change in the internal energy due to the transformation is given by dW qs, integrated
between 0 and the final value of θ. It is easy to check that it yields again the result (24).

When the rectilinear guide is tilted, the oscillator spring is stretched and its elastic
energy is increased. On the other hand, the potential energy of the mass in the gravity
field can either increase or decrease, and the resulting total energy change can be of either
sign. If γ = 0, one has, for instance,

ΔE = −m2g2 sin2 θ

2k
= −f 2

2k
. (35)

The authors of [4] claim that this result is inconsistent, because a negative free-energy
change (which coincides in our case with the energy change) would imply that the process
is spontaneous, and that the spring is unstable, in contradiction with elementary physics.
It is clear however that, if the rectilinear guide is free to rotate around the origin, the
system is indeed unstable: the guide would rotate until it reaches a vertical stand, with
the oscillator mass hanging on the spring. Thus, far from being unphysical, the result
yields the correct prediction for the physical setup that one is considering. Of course, in
an actual experiment, one would constrain the guide to being at a given angle θ, and the
oscillator will find equilibrium around a point 〈x〉 given by equation (22).
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I should also like to mention that Mazonka and Jarzynski [9] have exactly evaluated
some time ago the distribution of W in the model which the authors of [4] attempt to
solve numerically in their letter. It turns out that this distribution identically satisfies
Jarzynski’s equality.

4. Closing remarks

Following similar reasonings, one is also led to conclude that there is no need to worry even
about the presence of an additive time-dependent constant like g(r), which may be safely
subtracted out from the estimated free-energy change, if one wishes to get rid of it. I leave
the interested readers to work out the details for themselves. We can be assured, therefore,
that the misgivings of the authors of [4] are misplaced. The time-dependent Hamiltonian
of manipulated systems can be unambiguously defined, and the thermodynamical work is
more closely related to the quantity W that appears in Jarzynski’s equality than to the
one, W0, that appears in Bochkov and Kuzovlev’s one.
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