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Paired defects of nematic surfactant bilayers

J.-B. Fournier and L. Peliti*
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~Received 18 June 1998!

We consider the effects of the coupling between the orientational order of the two monolayers in flat nematic
bilayers. We show that the presence of a topological defect on one bilayer generates a nontrivial orientational
texture on both monolayers. Therefore, one cannot consider isolated defects on one monolayer, but rather
associated pairs of defects on either monolayer, which we call paired defects. Paired defects generally produce
walls, such that the textures of the two monolayers are identical outside the walls, and different in their interior.
We suggest some experimental conditions in which these structures could be observed.
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Nematic liquid crystals are fluid phases possessing a lo
range orientational order@1#. Ordinary nematics in three
dimensional~3D! space consist of rodlike molecules orien
ing parallel to some unit vectorn, called the ‘‘director.’’
Since nematics bear no polar order,n and2n represent the
same orientational state. Nematics exhibit striking~line or
point! topological defects@1,2#. The orientational order is
continuous outside the defect, but exhibits on it a singula
that cannot be removed by continuous deformations.

Although several almost 2D nematic systems have b
investigated, such as thin nematic cells@3# and wetting layers
@4#, there are few examples of real 2D nematics, e.g., r
suspended on the surface of aqueous solutions@5#. ~Actually,
2D systems can only exhibitquasi-long-rangeorder, but this
distinction is blurred for usual system sizes.! Very recently it
has been shown that amphiphilic bilayers made of dime
surfactants~gemini! spontaneously form very long tubules
mesoscopic radius@6#: this conformation can be theoretical
explained by introducing a coupling between the surface c
vature and two independent monolayer nematic orders@7#. A
number of independent arguments support the existenc
nematic order in these membranes@8#.

In this Rapid Communication, we investigate the behav
of disclination defects in such nematic bilayers. For simp
ity, we restrict our attention to planar bilayers, which cou
be produced by osmotically blowing up the tubes, or
patch-clamping techniques. We find radically new featu
due to the coupling of the nematic order between the
monolayers. Even if a disclination is present on only o
layer, the coupling generates a nontrivial texture on the
posite one: this texture must be considered a ‘‘defect’’ ev
in the absence of a singularity. We are thus led to cons
pairs of associated defects on the bilayers, one of which
be virtual ~of zero strength!. We call these structurespaired
defects.

We show that the two interacting nematic monolayers
be mapped on two independent, ‘‘virtual,’’ 2D nemat
monolayers, one subject to an external orienting field and
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other free. In the former, defects generate orientationalwalls
@9#, i.e., ribbons where the director turns byp on a finite
length. Consequently, paired defects generally produce w
that reach the boundary of the sample: the textures of the
monolayers are identical outside the walls and different
their interior. The paired defect energy is dominated by
walls, and therefore scales linearly with the sample s
~rather than logarithmically!.

We denote bym and n the directors of the upper an
lower monolayer, respectively. Within the one Frank co
stant approximation, the nematic free energy of the bila
can be written as

F5
1

2E d2r $Ku¹mu21Ku¹nu22l~m•n!2% , ~1!

where, e.g.,u¹nu25] inj ] inj and summation on repeated in
dices is understood. To be definite, we supposel.0. This is
no restriction, since there is always the freedom to redefinn
by a p/2 rotation, which effectively changes the sign of th
interaction term in Eq.~1!. Let us callu1 ~respectively,u2)
the polar angle ofm ~respectively,n) relative to an arbitrary
direction. Settingu65 1

2 (f6c), we obtain~up to an irrel-
evant additive constant! F5 1

2 (F01Fl), with

F05E d2r
K

2
~¹f!2 , ~2a!

Fl5E d2r H K

2
~¹c!21l sin2cJ . ~2b!

Equation~2a! describes a free nematic, while Eq.~2b! de-
scribes a nematic subject to auniformfield directed along the
c50 axis @10#. The Euler-Lagrange equation derived fro
~2b! is a sine-Gordon equation:

j2¹2~2c!5sin~2c! , ~3!

wherej25K/(2l). The lengthj is the analog of the mag
netic coherence length of ordinary nematics@1#. The corre-
sponding equation forf is simply ¹2f50.

ta
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A topological defect of strengthp, located at the origin, is
described in polar coordinates by solutions of the Eu
Lagrange equations of the form

f~r ,u!5p u1fc~r ,u! , ~4!

~or the analog forc!, wherep is a half-integer andfc(r ,u) is
a continuous function. Indeed, the director turns by 2pp in
any circuit around the origin. In the nematic under fie
minimization of the energy requires thatc5kp ~wherek is
an integer! over most of the sample. Therefore, all nonu
formity is confined within ‘‘soliton’’ walls of thickness
.5j, crossing whichc rotates by6p @9,1#. Thus, a defect
of strengthp radiates a ‘‘star’’ of 2upu walls. Within a region
of size 'j around the defect the texture is similar to th
without field.

In a mean field, the energy of a defect of strengthp in a
free nematic is equal topKp2ln(L/a) @1#, where L is the
linear size of the sample anda is the radius of a core insid
which the nematic order is destroyed. The interaction ene
of
two defects of strength p1 and p2 is given by
22pKp1p2ln(d/a), whered is the distance between the d
fects @1#. For the nematic under field, the defect energy
dominated by the energy of the walls, which is equal to 2K/j
per unit length@1#.

Since Eq.~4! is linear in the defect strength, a paire
defect @p,q#, i.e., the superposition of a defect with
strengthp in the upper monolayer and a strengthq in the
lower one, is equivalent to a pair of defects of strengthp
1q in the free nematic~described byf! and of strengthp
2q in the nematic under field~described byc!:

Fp

qG5H p1q

p2qJ . ~5!

We callp1q the free strengthandp2q thefield strengthof
the paired defect. It follows from our decomposition tha
pair defect of free strengthl and field strengthm obeys the
relations

u6S H l

mJ D 5
1

2
@u0~ l !6ul~m!# , ~6a!

FS H l

mJ D 5
1

2
@F0~ l !1Fl~m!# . ~6b!

In this equationu0(l ) is the texture of a defect of strengthl
in a free nematic,ul(m) is the texture of a defect of strengt
m in a nematic under field, andF0(l ), Fl(m) are the corre-
sponding energies. In particular,u2(@p,0#)5u2($p,p%)
5 1

2 @u0(p)2ul(p)#, and therefore there is a nontrivial tex
ture even in the lower monolayer of a@p,0# paired defect,
where there is no singularity.

By applying these rules, one can build up the textu
corresponding to different paired defects. Figure 1~a! shows

the texture of a@ 1
2 ,0# paired defect. The full~respectively,

dashed! lines are the field lines@11# of the upper~respec-
tively, lower! monolayer, and the wall boundary is indicate

by the dotted line. The corresponding$ 1
2 , 1

2 % texture is shown
-

,

t

y

s

s

in Fig. 1~b!: the bold lines are the level lines for the fre
nematic and the thin ones are the level lines for the fi
nematic. Figure 2 shows the analog texture for a@1,0# paired
defect.

In crossing a wall, bothu1 and u2 turn by 6p/2. The
actual thickness of the walls is.5 j, as one finds by inte-
grating Eq.~3!. Besides, the walls probably have a pers
tence lengthjp , which is several times their thickness. Sin
they are interfaces in two dimensions, they fluctuate wide
their lateral excursionDu over a lengthL is given by

Du.S T

2p2K
D 1/2

~jL !1/2, ~7!

whereT is the temperature, measured in energy units. T
therefore perform a random walk, but their angular fluctu
tion Da.(T/4K)1/2(j/jp)1/2 is small, since we expectK to
be of the order a fewT in a nematically ordered phase. Th
fluctuations of the wall decrease the effective line tension
a negligible amount.

The walls issuing from paired defects can recombi
Since a defect of strengthl under field generates 2ul u walls,
a @p,q# paired defect generates

n52up2qu ~8!

walls. Now, if there are two paired defects of strengths@p,q#
and @p8,q8#, respectively, the total field strength equalsp
2q1p82q8, and the number of walls that reach infinity
then 2up2q1p82q8u. If this number is smaller than 2up
2qu12up82q8u, some walls must recombine. This happe

FIG. 1. ~a! Field lines of a@
1
2 ,0# paired defect. The textures o

the two monolayers coincide outside the wall.~b! Level lines of the

corresponding$ 1
2 , 1

2 % paired defect.

FIG. 2. ~a! Field lines of a@1,0# paired defect.~b! Level lines of
the corresponding$1,1% paired defect.
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if ( p2q)(p82q8),0. Therefore, we can assign an arrow
each wall, pointingoutward from the paired defect if (p
2q).0 and toward it otherwise; walls with matching ar
rows can recombine. We show in Fig. 3~a! the field lines of
two paired defects@1,0# and @0,1#. The two pairs of walls
combine, connecting the two paired defects, as shown in
3~b!.

The interaction energy of a@1,0# and @0,1# pair of paired
defects, which is equivalent to a$1 and 1, 1 and21% system,
can be estimated using Eq.~6b!. The first contribution,12 F0 ,
is one half of the energy of a pair of defects of strength 1
a free nematic, i.e.,2pK ln(d/a), where d is the distance
between the defects. The second contribution,1

2 Fl , is one
half of the energy of the texture under field of a pair
defects of strength 1 and21. Whend@j it is dominated by
the two walls that connect the defects, and is theref
.4K(d/j). Whend!j we can distinguish a region of siz
'j where the texture is similar to that without field, and
exterior region wherec is exponentially close tokp. The
corresponding energy~2b! contains two contributions: the
elastic energypK ln(d/a) and the potential energy, which i
estimated by integrating12 lsin2c for the free texture on a
disk of radius'j. One obtainsp

4 K(d/j)2@ ln(j/d)11
2#. Sum-

ming up 1
2 F0 and 1

2 Fl we obtain

F int.5
p

4
K

d2

j2F1

2
1 ln

j

dG for d!j

4K
d

j
for d@j .

~9!

The two paired defects are therefore attracted by a force
is almost constant at large separation, and vanishes rou
linearly with d when d!j. Indeed, when the two paire
defects sit on top of each other, they form a@1,1# paired
defect, which optimizes both the coupling and the elas
energies.

A @1,0# and@0,21# pair of paired defects which is equiva
lent to a$1 and21, 1 and 1% system, generates two walls th

FIG. 3. ~a! Field lines of a@1,0# and@0,1# pair of paired defects.
~b! Corresponding scheme of the wall connections.~c! Possible wall
connections between three paired defects.
g.
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e
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wander to the boundary of the sample. The elastic ene
calculated as previously, is given by

F int.5 2
p

48
K

d2

j2
for d!j

pK ln
d

a
1Fwalls for d@j .

~10!

The energy in the first line is simply the integral of th
1
2 lsin2c term. ~The free and field elastic energies compe
sate as previously.! There is also a contribution due to th
walls, but it does not depend ond. The first term in the
second line represents the logarithmic attraction of the
fects in the free nematic.Fwalls is the contribution from the
walls of the nematic under field. It will depend, in gener
on the way the walls reach the sample boundary. Let
consider, e.g., the case in which the sample is a ribbon
width 2L, with the two paired defects in the middle, ea
sending a wall to the opposite sides of the ribbon. Each w
of lengthL wanders within a rectangular region of widthDu
given by Eq.~7!. Thus, ifd.Du, Fwalls is independent ofd,
whereas, ifd,Du, there is a Helfrich-like repulsion be
tween the walls:

Fwalls'
T2

K

jL

d2
. ~11!

Therefore, the interaction is repulsive ford!j, and is oth-
erwise a combination of repulsive and attractive forc
which identify an equilibrium distance

deq'
T

K
~jL !1/2. ~12!

Let us now consider a collection of paired defects@pi ,qi #
placed in a region of sizeR inside a sample of sizeL@R.
Since the total field strength is given by( i pi2( iqi , there
are

N52U(
i

pi2(
i

qiU ~13!

walls going to the boundary. Since the total number of wa
issuing from the defects is 2( i upi2qi u, there are

M5(
i

upi2qi u2U(
i

pi2(
i

qiU ~14!

walls linking two paired defects, which remain confine
within R. Therefore, the dominant energy, which arises fro
the walls, scales as

F'N K
L

j
1M K

R

j
. ~15!

In order to minimize its energy, the system will first attem
to bring N to zero, e.g., by nucleating defects on the boun
ary, in order to equalize the total strengths of the defects
the upper and lower monolayer. The following step will be
bring together paired defects having field strengths of op
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site signs, in order to reduce to'j the total wall length. The
paired defects can then recombine.

In unconstrained membranes, there are numerous
subtle effects of the coupling between in-plane order a
curvature~see, e.g.,@12,13#!. Here, in addition, the coupling
between the nematic directorsm and n, and the curvature
tensorK , of the formK :(m^ m2n^ n) @7#, produces inter-
esting but complicated effects, which are outside the sc
of this paper. In particular, shape fluctuations introduce
effective long-range coupling between director gradie
@14#. On the other hand, the nematic tends to bend the m
brane along its principal axes@7#. Therefore, the texture
around a nematic paired defect will deform the membra
and the membrane shape will react on the texture in a n
trivial way.

The wall thickness can be estimated by assuming that
l term in Eq.~1! arises from anisotropic van der Waals i
teractions:l.Aal

2/(2pd4), where l is the linear size of
K,

ti
.

n

nd
d

e
n
s
-

e,
n-

e

the headgroup,d is the membrane thickness, andAa is the
anisotropic Hamaker constant. Since Hamaker constants
interactions across a hydrocarbonic medium are of ordeT
@15#, we takeAa.0.1T. Hence, withd.40 Å andl .10 Å
we find l.2 1027 Jm22. Taking, e.g.,K.3T, we obtainj
5K1/2/(2l)1/2.1500 Å. The wall thickness, which is of th
order of 5j, should be in themm range.

One way to produce flat nematic bilayers would be eith
to deposit the membrane on a water-air interface, or to co
press a Langmuir monolayer of gemini until a second la
overlaps the first. Due to the micrometric thickness of t
walls, striking defect patterns should be directly observa
by optical microscopy.
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