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Paired defects of nematic surfactant bilayers
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We consider the effects of the coupling between the orientational order of the two monolayers in flat nematic
bilayers. We show that the presence of a topological defect on one bilayer generates a nontrivial orientational
texture on both monolayers. Therefore, one cannot consider isolated defects on one monolayer, but rather
associated pairs of defects on either monolayer, which we call paired defects. Paired defects generally produce
walls, such that the textures of the two monolayers are identical outside the walls, and different in their interior.
We suggest some experimental conditions in which these structures could be observed.
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PACS numbes): 61.30.Gd, 61.30.Jf, 87.22.Bt

Nematic liquid crystals are fluid phases possessing a longather free. In the former, defects generate orientatiarzdls
range orientational ordefl]. Ordinary nematics in three- [9], i.e., ribbons where the director turns hyon a finite
dimensional(3D) space consist of rodlike molecules orient- length. Consequently, paired defects generally produce walls
ing parallel to some unit vecton, called the “director.”  thatreach the boundary of the sample: the textures of the two
Since nematics bear no polar orderand —n represent the monolayers are identical outside the walls and different in
same orientational state. Nematics exhibit strikifige or ~ their interior. The paired defect energy is dominated by the
point) topological defectd1,2]. The orientational order is Walls, and therefore scales linearly with the sample size
continuous outside the defect, but exhibits on it a singularity(rather than logarithmically
that cannot be removed by continuous deformations. We denote bym and n the directors of the upper and

Although several almost 2D nematic systems have beelpwer monolayer, respectively. Within the one Frank con-
investigated, such as thin nematic céB$and wetting layers ~stant approximation, the nematic free energy of the bilayer
[4], there are few examples of real 2D nematics, e.g., rod§an be written as
suspended on the surface of aqueous solufihgActually,
2D systems can only exhibifuasi-long-rangeorder, but this 10, ) ) 5
distinction is blurred for usual system sizegery recently it F= 5] dr{K|Vm[*+K|Vn[*=N(m-n)}, (D)
has been shown that amphiphilic bilayers made of dimeric
surfactantggemini) spontaneously form very long tubules of where, e.g.an|2=(9in,— 4in; and summation on repeated in-

mesoscopic radiu$]: this conformation can be theoretically dices is understood. To be definite, we sup 9. This is
explained by mt_roducmg a coupling between the surface U0 restriction, since there is always’ the freedom to redefine
vature and two independent monolayer nematic orggrsA :

number of independent arguments support the existence $ a 72 rotation, which effectively changes the sign of the
nematic order in these membrarjéd. teraction term in Eq(1). Let us calld, (respectively,f_)

In this Rapid Communication, we investigate the behaviorthe polar angle ofn (respectivelyn) relative to an arbitrary

e ; M) : )
of disclination defects in such nematic bilayers. For simplic-d'recnon' §ett|ngﬁi— z(d>_i1 ¥), we obta!n(up to an irrel-
ity, we restrict our attention to planar bilayers, which could evant additive constant =z (Fo+F,), with
be produced by osmotically blowing up the tubes, or by
patch-clamping techniques. We find radically new features Fo:f dzri(wi))z (2a)
due to the coupling of the nematic order between the two 2 ’
monolayers. Even if a disclination is present on only one
layer, the coupling generates a nontrivial texture on the op- K
posite one: this texture must be considered a “defect” even F>\=f dzrlE(V¢)2+)\ SirT2¢] . (2b)
in the absence of a singularity. We are thus led to consider
pairs of associated defects on the bilayers, one of which can . ) ) .
be virtual (of zero strength We call these structurgmaired ~ £duation(2a describes a free nematic, while E@b) de-
defects scribes a nematic subject taiaiformfield directed along the

We show that the two interacting nematic monolayers caf’ =0 axis[10]. The Euler-Lagrange equation derived from
be mapped on two independent, “virtual,” 2D nematic (2b) is @ sine-Gordon equation:
monolayers, one subject to an external orienting field and the

EV3(2y)=sin(2y), ()

*Present address: Dipartimento di Scienze Fisiche and” Unitavhere £&2=K/(2\). The lengthé¢ is the analog of the mag-
INFM, Universita“Federico Il,” Mostra d’Oltremare, Pad. 19, I- netic coherence length of ordinary nematié$ The corre-
80125 Napoli, Italy. sponding equation fos is simply V2¢=0.
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A topological defect of strength, located at the origin, is 3n/8 /4 /8
described in polar coordinates by solutions of the Euler-
Lagrange equations of the form

T2 T2 0
¢(r10):p0+ ¢C(r10)1 (4) 3m/4 T
(or the analog for)), wherep is a half-integer and(r, 6) is
a continuous function. Indeed, the director turns Ip/m2in sn/8 /4 78
any circuit around the origin. In the nematic under field, (a) (b)

minimization of the energy requires thét=km (wherek is S ) )

an integey over most of the sample. Therefore, all nonuni- FIG. 1. (a) Field lines of a[ 5,0] paired defect. The textures of

formity is confined within “soliton” walls of thickness the two monolayers coincide outside the wél). Level lines of the

~5¢, crossing whichy rotates by+ 7 [9,1]. Thus, a defect corresponding 3,3} paired defect.

of strengthp radiates a “star” of 2p| walls. Within aregion = _ . )

of size ~¢ around the defect the texture is similar to thatin Fig. 1(b): the bold lines are the level lines for the free

without field. nematic and the thin ones are the level lines for the field
In a mean field, the energy of a defect of strengtim a nematic. Figure 2 shows the analog texture ot 8] paired

free nematic is equal terk p?in(L/a) [1], whereL is the —defect.

linear size of the sample arais the radius of a core inside !N crossing a wall, bottp, and _ turn by + /2. The

which the nematic order is destroyed. The interaction energfctual thickness of the walls is5 ¢, as one finds by inte-
of grating Eq.(3). Besides, the walls probably have a persis-

two defects of strengthp, and p, is given by tence Ien_gtr*g’p, Whiqh is sev_eral tir_nes their thickness. S_ince

— 2K p,p,In(d/a), whered is the distance between the de- they are mterfaces.ln two dimensions, t.hey.fluctuate widely;

fects[1]. For the nematic under field, the defect energy istheir lateral excursiodu over a lengthlL is given by

dominated by the energy of the walls, which is equal kKo &

per unit length1]. Auz(
Since Eqg.(4) is linear in the defect strength, a paired

defect [p,q], i.e., the superposition of a defect with a

strengthp in the upper monolayer and a strenggtin the ~ WhereT is the temperature, measured in energy units. They

lower one, is equivalent to a pair of defects of strength therefore perform a random walk, but their angular fluctua-

+q in the free nemati¢described byg) and of strengttp  tion Aa=(T/4K)Y4(&/£,)"? is smalll, since we expedt to

T 1/2
ZWZK) (£L)12, @

—q in the nematic under fiel¢described byy): be of the order a few in a nematically ordered phase. The
fluctuations of the wall decrease the effective line tension by
p p+q a negligible amount.
q z[p—q]' ) The walls issuing from paired defects can recombine.

Since a defect of strength under field generateg 2| walls,

We callp+q thefree strengttandp—q thefield strengtrof @ [P,d] paired defect generates

the paired defect. It follows from our decomposition that a n=2[p—q| ®)
pair defect of free strength and field strengtm obeys the
relations walls. Now, if there are two paired defects of strendthsy]
y L and[p’,q'], respectively, the total field strength equals
)t —g+p’'—q’, and the number of walls that reach infinity is
0+((m]) 2[60(/)i0*(m)]’ 63 then dp—q+p’'—q’|. If this number is smaller than|g
—q|+2|p’—q’|, some walls must recombine. This happens
/ 1
F( [ m) ) = 5[Fo(/)+Fy(m)]. (6 "
T 0
In this equationdy(/) is the texture of a defect of strength \\3“ 4] 2“ 4 )
in a free nematicg, (m) is the texture of a defect of strength 3n/4 4
min a nematic under field, anfély(~), F,(m) are the corre- n
sponding energies. In particula®_([p,0]) = 6_({p,p}) -z 0
=1[6o(p)— A\(p)], and therefore there is a nontrivial tex-
ture even in the lower monolayer of[@,0] paired defect, '3’V - mf2 - Tt/4
where there is no singularity. L 3pe/q T4 o
By applying these rules, one can build up the textures “f 5
corresponding to different paired defects. Figute) Ehows
the texture of g 3,0] paired defect. The fulrespectively, @ ®)
a

dashedl lines are the field line$ll] of the upper(respec-
tively, lower) monolayer, and the wall boundary is indicated g, 2. (a) Field lines of g1,0] paired defect(b) Level lines of
by the dotted line. The correspondifig, 3} texture is shown the correspondingl, 1} paired defect.
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wander to the boundary of the sample. The elastic energy,
calculated as previously, is given by

a d?
— EK? ford<¢
Fine= (10

d
7K |na + Fwalls fOI‘ d>§ .

The energy in the first line is simply the integral of the
$\sir?y term. (The free and field elastic energies compen-
] 0 1”2 sate as previously.There is also a contribution due to the
[0](}_/)\2;& [1] [0] [11/2] walls, but it does not depend ah The first term in the
: second line represents the logarithmic attraction of the de-
(b) fects in the free nematids, 4 is the contribution from the

walls of the nematic under field. It will depend, in general,
© on the way the walls reach the sample boundary. Let us

FIG. 3. (a) Field lines of g 1,0] and[0,1] pair of paired defects. consider, e.g., the case in which the sample is a ribbon of

(b) Corresponding scheme of the wall connectidosPossible wall ~ Width 2L, with the two paired defects in the middle, each
connections between three paired defects. sending a wall to the opposite sides of the ribbon. Each wall

of lengthL wanders within a rectangular region of widiu
if (p—q)(p’ —q')<O0. Therefore, we can assign an arrow to 9Ven by EqQ.(7). Thus, ifd>Au, F,sis independent od,
each wall, pointingoutward from the paired defect if whereas, ifd<<Au, there is a Helfrich-like repulsion be-
—q)>0 andtoward it otherwise; walls with matching ar- tWeen the walls:
rows can recombine. We show in FigiaBthe field lines of )
two paired defect$1,0] and[0,1]. The two pairs of walls E ~L§
combine, connecting the two paired defects, as shown in Fig. walls™ K g2
3(b).

The interaction energy of |1,0] and[0,1] pair of paired  Therefore, the interaction is repulsive fd ¢, and is oth-
defects, which is equivalent to{a and 1, 1 and-1} system, erwise a combination of repulsive and attractive forces,
can be estimated using E@b). The first contribution3F,,  which identify an equilibrium distance
is one half of the energy of a pair of defects of strength 1 in
a free nematic, i.e.;- wK In(d/a), whered is the distance
between the defects. The second contributibi, , is one
half of the energy of the texture under field of a pair of
defects of strength 1 and1. Whend> ¢ it is dominated by Let us now consider a collection of paired defeqts,q;]
the two walls that connect the defects, and is thereforlaced in a region of siz® inside a sample of size>R.
=4K(d/£). Whend<¢ we can distinguish a region of size Since the total field strength is given Bp;—Zq;, there
~ & where the texture is similar to that without field, and anare
exterior region where) is exponentially close t&w. The
corresponding energy2b) contains two contributions: the N=2 2 p-—E q
elastic energyrK In(d/a) and the potential energy, which is R
estimated by integrating Asirfy for the free texture on a
disk of radius~ ¢£. One obtaing K(d/¢)?[In(&d)+2]. Sum-  walls going to the boundary. Since the total number of walls
ming up3F, and :F, we obtain issuing from the defects isX|p;—q;|, there are

(11

deq% %(‘fl—)uz- (12

(13

2 = PO L .
de_ E+In§ ford<§ M EI |p| qll ’Z Pi EI di (14)
4 22 d
Fine= d ©) walls linking two paired defects, which remain confined
4K — ford>¢. within R. Therefore, the dominant energy, which arises from
3 the walls, scales as

The two paired defects are therefore attracted by a force that L R

is almost constant at large separation, and vanishes roughly F~N KE+ M KE' (15)

linearly with d when d<¢. Indeed, when the two paired

defects sit on top of each other, they formB1] paired In order to minimize its energy, the system will first attempt

defect, which optimizes both the coupling and the elastido bringN to zero, e.g., by nucleating defects on the bound-

energies. ary, in order to equalize the total strengths of the defects in
A [1,0] and[0,—1] pair of paired defects which is equiva- the upper and lower monolayer. The following step will be to

lent to a{1 and—1, 1 and } system, generates two walls that bring together paired defects having field strengths of oppo-
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site signs, in order to reduce to¢ the total wall length. The the headgroupd is the membrane thickness, aAq is the
paired defects can then recombine. anisotropic Hamaker constant. Since Hamaker constants for
In unconstrained membranes, there are numerous aridteractions across a hydrocarbonic medium are of ofder
subtle effects of the coupling between in-plane order andi15], we takeA,=0.1T. Hence, withd=40A and/=10A
curvature(see, e.9.[12,13)). Here, in addition, the coupling we findA=2 10"’ Jm 2. Taking, e.g.K=3T, we obtainé
between the nematic directors and n, and the curvature =K%?%(2))Y?=1500A. The wall thickness, which is of the
tensorK, of the formK:(m@®m—n®n) [7], produces inter- order of %, should be in theum range.
esting but complicated effects, which are outside the scope One way to produce flat nematic bilayers would be either
of this paper. In particular, shape fluctuations introduce ano deposit the membrane on a water-air interface, or to com-
effective long-range coupling between director gradientpress a Langmuir monolayer of gemini until a second layer
[14]. On the other hand, the nematic tends to bend the mensverlaps the first. Due to the micrometric thickness of the
brane along its principal axel7]. Therefore, the texture walls, striking defect patterns should be directly observable
around a nematic paired defect will deform the membraneby optical microscopy.
and the membrane shape will react on the texture in a non-
trivial way.
The wall thickness can be estimated by assuming that the We thank A. Ajdari, P. Olmsted, and D. Wu for useful
\ term in Eq.(1) arises from anisotropic van der Waals in- discussions. L.P. would like to thank the ESPCI for financial
teractions:\ =A,?/(27d*), where/ is the linear size of support(Chaire Jolio}.
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