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Abstract – We consider a molecular machine described as a Brownian particle diffusing in a tilted
periodic potential. We evaluate the absorbed and released power of the machine as a function of
the applied molecular and chemical forces, by using the fact that the times for completing a cycle
in the forward and the backward direction have the same distribution, and that the ratio of the
corresponding splitting probabilities can be simply expressed as a function of the applied force.
We explicitly evaluate the efficiency at maximum power for a simple sawtooth potential. We also
obtain the efficiency at maximum power for a broad class of 2-D models of a Brownian machine
and find that loosely coupled machines operate with a smaller efficiency at maximum power than
their strongly coupled counterparts.

editor’s  choice Copyright c© EPLA, 2012

Introduction. – Understanding the efficiency of
the free-energy transduction in molecular motors and
more generally nano-machines requires a different set of
concepts than those used in the theory of Carnot engines
in macroscopic thermodynamics [1–4]. They work in an
environment at a constant temperature, and therefore
their maximum efficiency is equal to 1, and is reached
when their output power vanishes. It is more interesting,
therefore, to understand the behavior of their efficiency
as a function of their output power, and in particular
their efficiency at maximum power (EMP). The issue of
the EMP in nano-machines has recently attracted consid-
erable interest, see, e.g., [5,6] and references therein.
In particular the EMP in molecular motors has been
investigated in [7,8].
Since these systems are subject to fluctuating interac-

tions with their environment, they must be modeled as
stochastic processes. Their description can be performed
at different levels of sophistication: as Markov chains with
discrete states, or as diffusion processes with continuous
states (or as a combination in which some degrees of free-
dom are continuous and other discrete). In all cases, it
is important to take into account the constraints that
microscopic reversibility and thermodynamic consistency

(a)E-mail: imparato@phys.au.dk

impose on the dynamics. The de Donder relation [9], which
connects the ratio of the reaction rates in the forward
and backward direction with the free-energy difference,
expresses these constraints for a Markov chain model of
a nano-machine. It has been recently shown [8] that this
relation allows to derive a rather elegant expression for
the output power of the system as a function of the free-
energy imbalance which keeps it moving and of a single
time scale which depends on its detailed dynamics. This
has allowed for an investigation of the EMP for a set of
discrete models of nano-machines.
One can describe a molecular machine with a continuous

phase space as a Brownian particle diffusing in a poten-
tial [2]. The microscopic constraints are expressed in this
case by the Einstein relations between the kinetic coeffi-
cients and the noise correlations. A simple description is
obtained by considering a tilted periodic potential. In this
case one coordinate (x) describes the spatial location of
the motor, and the second coordinate (y) describes the
advancement of a chemical reaction, such as ATP hydrol-
ysis. Then the tilt in the x-direction describes the exter-
nal mechanical force applied on the system, while the tilt
in the y-direction describes the thermodynamic imbalance
between the “fuel” (ATP) and the “exhausts” (ADP+Pi).
In this work we wish to evaluate the output power of such
a system, and its corresponding efficiency.

60005-p1
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We will introduce and discuss a general formalism that
allows us to obtain the absorbed and released power of
model motors as a function of the applied mechanical and
chemical forces, for any choice of the underlying potential
in the 1-D case. We proceed by evaluating explicitly the
efficiency at maximum power for a sawtooth potential in
1-D, as well as for a specific class of 2-D potentials.

Unicyclic machines. – We shall first discuss unicyclic
machines, i.e., machines in which the mechanical and the
chemical cycles are tightly bound, so that the system is
constrained to move along a one-dimensional trajectory in
the (x, y)-space. This situation holds when the potential
driving the particle is much smaller along a trajectory
y(x) than far from it. In this case we can neglect the
fluctuations, say, of y at fixed x and describe the system
as a Brownian particle moving in a tilted one-dimensional
potential U(x) =U0(x)− fx, where U0(x) is a periodic
function with period L, and f is a generalized external
force coupled with the position x of the machine along
the cycle. The force f can be considered as the sum of
two contributions, f =−fext+ f µ where fext > 0 is the
external force opposing the motion and fµ > 0 is the
chemical driving force. Despite its simplicity, this model
is general enough to describe a large class of model
motors: as an example, the two-level ratchet motors can be
described as a Brownian particle diffusing in an effective
one-dimensional tilted potential [10,11].
When the machine completes a cycle in the positive

direction, it dissipates the energy win = fµL from the input
reservoir and delivers the output work wout = fextL to the
environment. The net energy dissipated after completing
a cycle is given by fL=win−wout. The mean times to
complete a full cycle in the positive and negative directions
are denoted by 〈τ+〉 and 〈τ−〉, respectively. The probability
distribution function (PDF) P (x, t) that the particle is at
position x at time t satisfies the Fokker-Planck equation

∂P

∂t
+
∂J

∂x
= 0, (1)

where the probability current is given by J(x, t) =
−Γ[∂xU P +T∂xP ]. Here Γ is the mobility, and we set
kB = 1 throughout.
With a straightforward calculation, one finds that

the steady-state probability distribution, satisfying the
boundary conditions Pss(0) = Pss(L), is given by [12]

Pss(x) =N
e−βU(x)

T

[

I(L)

1− exp (−βfL)
− I(x)

]

, (2)

where I(x) =
∫ x

0
dz exp[βU(z)], and N is a normalization

constant. Thus, one can obtain the steady-state current
Jss =ΓN , and the steady-state velocity vss = JssL=ΓLN .

Mean times and splitting probabilities. – We shall
now consider the expression for the splitting probabili-
ties, i.e., the probabilities p+ and p− that the particle
completes a cycle in the positive or negative direction,

given that it starts at x= 0 at the initial time. Given the
fact that the mean times 〈τ±〉 are equal, we can write down
a simple expression for the steady-state velocity.
The PDF P0(x, t) that a particle starting from x= 0 at

time t= 0 is found at position x at time t, without having
completed a cycle, satisfies eq. (1) with the absorbing
boundary conditions

P0(−L, t) = P0(L, t) = 0, (3)

and the initial condition P0(x, 0) = δ(x). We want to
characterize the PDFs P±(t) of the escape times for cycles
in the positive or in the negative direction, which read

P±(t) =
J±(t)

∫∞

0
J±(t′)dt′

, (4)

where J± are the (positive) probability currents at the
boundaries

J±(t) =∓ΓT
∂P0(x, t)

∂x

∣

∣

∣

∣

x=±L

, (5)

where we have exploited the boundary conditions (3).
It can be shown by directly solving the Fokker-Planck
equation that the currents obey the relation [13]

J+(t)

J−(t)
= efL/T . (6)

This expression enables us to evaluate the thermodynamic
quantities of systems with continuous phase space in
terms of a single microscopic timescale as described below.
Combining eqs. (4) and (6), we find that P±(t) are equal,
and hence

〈τ+〉= 〈τ−〉=

∫ ∞

0

t′P±(t
′) dt′ ≡ 〈τ〉. (7)

We have thus the somehow surprising result that the
characteristic times for performing a cycle “upstream”
are the same as for a “downstream” cycle. The splitting
probabilities p± are given by

p± =

∫∞

0
J±(t)dt

∫∞

0
(J+(t)+J−(t))dt

=
1

1+ e∓fL/T
. (8)

and satisfy the relation p+/p− = e
fL/T . As pointed out

by van Kampen [12, p. 317], this relation can also be
directly derived, without explicitly solving the Fokker-
Planck equation, by following, e.g., the method reported
in [14, p. 142f].
We are now able to establish a connection between

the steady-state process and the typical escape time 〈τ〉,
as obtained by solving the Fokker-Planck equation with
absorbing boundaries. One obtains indeed the following
relation:

vss =
L

〈τ〉
(p+− p−) =

L

〈τ〉

1− e−fL/T

1+ e−fL/T
, (9)

60005-p2
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which yields the value of 〈τ〉 once the steady-state PDF
(and thus vss) has been obtained from eq. (2). This relation
is verified by numerical simulations in the following.
According to (7), the typical times for forward and back-

ward motion are equal, and hence the power associated
with motion in the positive and negative direction is deter-
mined by the splitting probabilities. The input power in
the steady state is given by

Pin ≡ fµvss =
win
〈τ〉
(p+− p−) =

fµL

〈τ〉

1− e−fL/T

1+ e−fL/T
. (10)

Similarly, the power delivered by the motor is given by

Pout ≡ fextvss =
wout
〈τ〉
(p+− p−) =

fextL

〈τ〉

1− e−fL/T

1+ e−fL/T
.

(11)
Equations (10), (11) represent the continuous phase space
analog of eqs. (3), (4) in [8]. The thermodynamic efficiency
is defined as η≡ Pout/Pin =wout/win = fext/fµ and is
bounded by 0< η < 1. At thermodynamic equilibrium,
f = 0, the efficiency attains its maximum value η= 1, but
the output power vanishes, which is a well-known result
for Carnot machines.
Let us define τ̃+ = 〈τ〉/p+ and τ̃− = 〈τ〉/p−, which

correspond to τ± in [8]. There, assuming an Arrhenius
expression for these characteristic times, the analysis is
carried out under the assumption that the quantities
xin =−d ln(τ̃+)/dwin and xout =−d ln(τ̃+)/dwout are
independent of f . However, by inverting eq. (9), one
can express 〈τ〉 in terms of the other quantities, and
thus obtain explicit expressions for xin,out, which are
not constant in general, as one can check on an explicit
example.

An example: the sawtooth potential. – A simple
example to illustrate the above concepts is provided by
the sawtooth potential

U0(x) =

{

γ0x, if 0<x< a,

δ1+ γ1x, if a< x<L,
(12)

with δ1 = (γ0− γ1)a, γ0 =U/a, γ1 =U/(a−L), and where
U =U0(a) is the potential maximum. For such a potential,
analytical expressions for all the relevant quantities (Pss,
and thus vss and 〈τ〉) can be readily obtained.
We first check eq. (9), by evaluating vss from the exact

relation vss = JssL for different values of f . We then
simulate the escape process in the potential (2), with
absorbing boundary conditions (3), to obtain an estimate
of 〈τ〉. Thus, in fig. 1, we plot the analytic prediction for
vss and the value obtained by the rhs of eq. (9), finding
an excellent agreement. As a further check, we report in
the same figure the results of simulations for the steady-
state diffusion in the potential (2) with periodic boundary
conditions. In the inset of fig. 1, xin and xout, as defined
above, are plotted vs. f for the potential (2). Such a plot
clearly shows that xout and xin vary with f and thus with
wout and win, respectively.
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Fig. 1: (Color online) Steady-state velocity vss in the potential
(2) as a function of the total force f . Comparison between
the exact value vss = JssL (full line), where Pss is given by
eq. (2), and the expressions (9) (squares), where 〈τ〉 is obtained
from simulating the escape process with absorbing boundary
conditions (3). Crosses: results of numerical simulations for the
steady-state diffusion with periodic boundary conditions. Inset:
plot of xout (dashed line) and xin (full line) vs. the total force f .
We take a= 0.35, T = 0.2, Γ =L=U = 1.

Efficiency at maximum power (EMP). – We can
now evaluate the EMP for the model machine, maxi-
mizing the output power with respect to win, wout, or
both. For fixed wout, the maximization condition reads
∂Pout/∂win = fext∂v/∂win = 0 giving the optimal input
w∗in =∞. Therefore the EMP vanishes for all values of
wout. On the other hand, if win is fixed, the condition
∂Pout/∂wout = 0 yields the value of the output w

∗
out that

maximizes the power, Pout(w
∗
out) = P

∗
out. The correspond-

ing velocities at maximum power and EMP are denoted
by v∗ss and η

∗ =w∗out/win, respectively. Figure 2 shows the
results obtained for the model in the potential (2).
It is interesting to remark that η∗ rises above its linear

response value 1/2 for small values of win and for values of
the asymmetry parameter λa = a/L< 0.5, and decreases
afterwards. In the low-temperature regime (U − fL)/
T ≫ 1 this can be understood by applying the Kramers
approximation, since in this limit the system can be
described by a one-dimensional Markov process with one
single state corresponding to the potential minima. Thus,
in this limit our description is approximately equivalent
to [8], and hence xout ≃−λa. Expanding in the chemical
driving force we obtain

η∗ = 1/2+1/8(1/2+xout)win/T +O(f
2
µ), (13)

which then explains the behaviour of the EMP for different
values of λa seen in fig. 2.
Far from equilibrium, fµ≫ fext, the Kramers descrip-

tion breaks down, and since vss ≃ Γf in this limit, the EMP
approaches 1/2 for fL≫U or, equivalently, win→∞, see
fig. 2. This behaviour is very different from the behav-
iour of the discrete system, where as win→∞ we have

60005-p3
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Fig. 2: (Color online) EMP η∗ for maximization with respect
to wout as a function of win in a tilted sawtooth potential
for different values of the temperatures T and the asymmetry
parameter λa. The rest of the parameters are as in fig. 1. Lines:
T = 0.4, Lines and symbols: T = 0.1. Inset: Plot of η∗ in the
large win regime, for T = 0.1.

η∗out→ 1 if xout > 0, or η
∗
out→ 0 if xout < 0 [8]. Again, this

is a consequence of the fact that xout is not constant, or in
other words that neither the microscopic rate constant in
the Kramers rate expression nor the position of the poten-
tial minima is independent of f .

2-D system. – We shall now describe the motor as
a Brownian particle in a 2-D potential, with a spatial (x)
and a “chemical” (y) coordinate. We take the mobilities for
the two degrees of freedom to be equal, i.e. Γx =Γy ≡ Γ.
We choose an unperturbed potential of the form

U0(x, y) =U1(z1(x, y))+U2(z2(x, y)), (14)

where U1 and U2 are periodic potentials with the direc-
tions defined by z1 = n1x−m1y and z2 = n2x−m2y and
periods L1, L2, respectively. The ratio U1/U2 thus repre-
sents the coupling strength between the two coordinates.
The tilts along the x- and y-direction are given by fx
and fy, respectively. With this choice for the potential we
have Pin = fyv

y
ss, Pout =−fxv

x
ss, win =Lyfy, wout =Lxfx,

where Lx, Ly are the periods of the potential along the
x- and y-direction, respectively.
When U2 = 0, the potential (14) is the particular case of

a washboard potential considered in ref. [2]. By making the
ansatz Pss(x, y) = µp(nx−my) = µp(z) (and dropping the
subscripts for now), where µ is a normalization constant,
the problem becomes one-dimensional. The solution for
p(z) is then given by (2) with the effective potential
V (z) =U0(z)− ξz, where the effective force becomes ξ =
(fxn− fym)/(n2+m2). In terms of the stationary current
J =ΓN obtained from p(z) the probability currents in the
original coordinates become

Jxss(x, y) = nµJ +Γ(αfx+βfy)Pss(x, y), (15)

Jxss(x, y) =−mµJ +Γ(βfx+ γfy)Pss(x, y), (16)

with α=m2/q2, β = nm/q2, γ = n2/q2, q2 = n2+m2. At
low temperatures we have J→ 0 as expected, and the
velocities are thus given by

vxss =Lx

∮

Jxssdy=Γ(αfx+βfy), (17)

vyss =Ly

∮

Jyssdx=Γ(βfx+ γfy), (18)

where we have exploited the normalization condition for
Pss(x, y). Hence, in this case the velocities are always
linear in the forces at low temperature for all values of fx
and fy. The optimizing force becomes f

∗
x =−n/2mfy, and

hence η∗ = 1/2. At higher temperatures, the particle can
diffuse out of the pathways introduced by the washboard
potential. Hence, the tight coupling is lost, i.e., the steady-
state velocities vxss and v

y
ss are no longer proportional, and

we expect that η∗ < 1/2. Thus, 1/2 is the maximum EMP
that can be achieved for a single washboard potential.
When U2 
= 0 the motion of the system can be described

along the two independent coordinates z1 and z2. The
Fokker-Planck equation decouples and can hence be solved
analytically only when z1 and z2 define orthogonal direc-
tions. Then, one can evaluate the two independent steady-
state PDFs along z1 and z2, as given by eq. (2), solve
the problem and revert to the original coordinates. In
the following we consider two sawtooth potentials with
barrier height U i and asymmetry parameters λi. Further-
more, we take z1 = x− y, z2 = x+ y. Since in the follow-
ing we want to use a Kramers formalism to describe
the 2-D diffusion in the low-temperature regime, and the
sawtooth potentials are not differentiable at their extrema,
we approximate such potentials with their Fourier series
up to the third order. The exact results for the steady-state
velocities obtained with the approximated potentials are
however very similar to the ones obtained with the original
sawtooth potentials.
The resulting EMP as a function of fy and δ =U1/U2

is shown in fig. 3 for T = 0.1. We note that as the
system changes from being a loosely coupled, truly 2-D
system (δ ≃ 1) to becoming a strongly coupled, effectively
1-D system as δ is increased, the EMP increases. For
sufficiently high δ, the EMP goes beyond the linear
response result 1/2 as expected for the 1-D motion along
the z2-direction, since here λ2 < 0.5. Note that the equality
Pout/Pin =wout/win derived for the 1-D case only holds
for 2-D systems in the tight-coupling and low-temperature
limit where vxss ∝ v

y
ss. The reason for the above is that we

cannot define a single timescale 〈τ〉 for motion in a general
2-D potential. Furthermore, we emphasise that in order
to obtain η∗ > 1/2, an additional structure determined by
U2 has to be introduced on top of the pathways defined
by a single washboard potential U1. In fig. 4 the EMP is
plotted for two different values of λ2 and U1 . We see that
for large U1 the EMP goes beyond 1/2 for λ2 = 0.1, while
is stays below 1/2 for λ2 = 0.8, as expected. For a truly 2-
D system, i.e. U2 = 1.3 in this case, it is harder to predict

60005-p4
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Fig. 3: (Color online) EMP η∗ as a function of the chemical
driving force fy and of the coupling parameter δ=U1/U2,
for the two-dimensional potential (14), with T = 0.1, λ1 = 0.5,
λ2 = 0.1, L1 =L2 = 3. Pout is maximized with respect to fx.

Fig. 4: (Color online) EMP η∗ as a function of fy for the two-
dimensional potential (14) with T = 0.1, λ1 = 0.5, L1 =L2 = 3,
U2 = 1 and for different values of U1 and λ2. Lines: U1 = 1.3 ,
lines and symbols: U1 = 5.

the behaviour of the EMP beyond the linear regime as we
will illustrate by using a 2-D Kramers model considered
in the next paragraph.

2-D Kramers system. – In the low-temperature
(high barrier) limit a Kramers description for the 2-D
system described by (14) can be developed. In this limit
the dynamics can be approximated by a discrete Markov
process on a lattice with the lattice points determined
by the location of the potential minima. The orientation
of the lattice is given by the two directions a and b, where
the a-direction forms an angle θa with the positive x-axis,
and the b-direction forms and angle θb with the negative
x-axis. The separation between the points in the two
directions is denoted La and Lb, respectively. In principle,
the Kramers formalism allows us to study an arbitrary
number of directions. However, the assumption of two
directions is the simplest one that allows us to illustrate
our arguments, and the results can be compared to the
analytical results of the preceding paragraph.

The four transition rates for the problem become k±α =
k0 exp(−(Eα− f±α )/T ), where α= a, b, and k0 is a micro-
scopic rate constant assumed to be the same for both
directions. The saddle points of the unperturbed potential
determine the barrier height Eα and the position xαLα of
the barrier along the α-direction. The quantities f±α are
the changes in the barrier height due to the chemical and
mechanical forces, as given by

f+a = (fx cos θa+ fy sin θa)xaLa, (19)

f−a = (−fx cos θa− fy sin θa)(1−xa)La, (20)

f+b = (−fx cos θb+ fy sin θb)xbLb, (21)

f−b = (fx cos θb− fy sin θb)(1−xb)Lb. (22)

The velocities along the a and b directions become
vα = (k

+
α − k

−
α )Lα, and hence we obtain

vx = cos θava− cos θbvb, (23)

vy = sin θava+sin θbvb. (24)

In this model we can thus obtain explicit expressions for
the EMP optimized with respect to fy. We have studied
the expansion η∗ = η0+ η1fy +O(f

2
y ), and for the first

term we obtain

η0 =
1

2

(

L2a cos θa sin θa− e
∆L2b cos θb sin θb

)2

×
{

[

(La cos θa)
2+ e∆(Lb cos θb)

2
]

×
[

(La sin θa)
2+ e∆(Lb sin θb)

]

+ e∆ [LaLb sin(θa+ θb)]
2
}−1

, (25)

where Δ= (Ea−Eb)/T . From (25) we obtain η0 � 1/2,
which can be easily shown to hold generally in the linear
regime due to the linear structure of the velocities. We
also note that η0 does not depend on the asymmetry
parameters xα. Furthermore, in the limit Δ→∞, eq. (25)
gives η= 1/2, while from eqs. (2) we obtain that vx ∝ vy.
Thus we confirm the result already found numerically for
the sawtooth potential, that in the linear regime the EMP
for loosely coupled 2-D systems is always smaller than
1/2 and approaches the limit 1/2 for the tightly coupled,
effectively 1-D system. The expression for η1 is quite long
and cumbersome and will therefore not be presented here.
In the limit Δ→∞ it reduces to

lim
∆→∞

η1 = 1/8(1/2−xb) sin θbLb/T, (26)

as expected from (13). The sign of η1 depends in a
complicated way on the parameters of the system: whether
the EMP for a 2-D system can rise beyond 1/2 in the non-
linear regime is thus model parameter dependent. We have
compared the Kramers model with the exact results for a
Fourier series expansion for a 2-D sawtooth potential as
described in the preceding paragraph. Furthermore, in this
study we have included the dependence of the position

60005-p5



N. Golubeva et al.

Fig. 5: (Color online) EMP η∗ as a function of fy for the two-
dimensional potential (14) with T = 0.1, λ1 = 0.5, L1 =L2 = 3,
U1 = 1.3 , U2 = 1 and for different values of λ2. Solid lines:
exact, dashed lines: Kramers approximation. Symbols represent
different values of λ2.

Fig. 6: (Color online) EMP η∗ as a function of fy for the two-
dimensional potential (14) with T = 0.1, λ1 = 0.5, L1 =L2 = 3,
U1 = 5, U2 = 1 and for different values of λ2. Solid lines:
exact, dashed lines: Kramers approximation. Symbols represent
different values of λ2.

of the minima and the saddle points on the forces, i.e.,
xα(fx, fy) and Lα(fx, fy). The overall agreement is good
as can be observed in figs. 5 and 6. However, for very
asymmetric potentials, e.g., λ2 = 0.1 or 0.9, the agreement
between the exact results and the Kramers approximation
is not as good, since our assumption that the microscopic
rate k0 is the same along all the directions breaks down.
For an effective 1-D system (fig. 6) the discrepancy is
already present for λ2 = 0.2 and 0.8, since in this case the
asymmetry around the minima is more pronounced than
for the truly 2-D case.

Conclusions. – We have used a Fokker-Planck formal-
ism to study the kinetic and thermodynamic properties of
model molecular machines. In the 1-D case, we exploit the
general result that the ratio between the currents along
the positive and a negative direction only depends on

the imbalance between the mechanical and the “chemical”
force. We can thus write down a simple expression for the
steady-state velocity that only depends on a microscopic
timescale for the motion and the splitting probabilities,
eq. (9). Our formalism thus allows us to gain a deeper
insight into the connection between the mechanics and the
thermodynamics of our model machines. Furthermore, we
investigate the specific example of a sawtooth potential.
We also study a broad class of 2-D potentials in both the
continuous and in the Kramers formalism, where we can
obtain the exact steady-state velocities along the spatial
and the chemical directions. We find that for a loosely
coupled system, the EMP is always smaller than for a
tightly coupled one, where tight coupling corresponds to
introducing a “pathway” for the particles in the potential,
i.e., an effective 1-D system. In the linear regime we obtain
that the EMP is always smaller than 1/2 and approaches
1/2 as the coupling increases in strength.
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Additional remark : After the submission of this paper
a relevant preprint concerning the present problem
appeared, Van den Broeck C., Kumar N. and
Lindenberg K., arXiv:1201.6396.
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