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Variational principles satisfied by various thermodynamic functionals are used to set 
up a completely renormalized scheme for the analysis of critical phenomena. Different 
aspects of Kadanoff’s universality can be expressed in a simple fashion in our language. 
The main result of the paper is a unified derivation of the scaling laws combining the 
variational principles with renormalization group techniques which are especially 
simple in this formalism. A suitable choice of the normalization point has led to a new 
renormalization group transformation. The corresponding differential equation can be 
solved even in the nonasymptotic region. The discussion of the asymptotic theory and 
of the approach to it is therefore simpler. The connection with the more traditional 
approaches is discussed. The calculation of the critical indices is reduced to only two of 
them which are directly expressed in terms of renormalized quantities. From this point 
onwards their evaluation proceeds along standard lines. Special emphasis has been 
given to the illustration of the power and conceptual simplicity of the method. 

Physical systems can be described by sets of parameters which can be classified 
in an order of decreasing generality in the sense that they describe finer and finer 
details of lthe system. 

At the top of the hierarchy to make an example, we may consider the dimen- 
sionality d: 
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We can then identify what we may call the “geometrical” features of the systems. 
First the continuous or discrete character of the systems; then, the nature of the 
microscopic objects under consideration: symmetric atoms, spins with different 
number of components, etc. Symmetry properties belong to this category. Among 
these we consider the symmetry of the lattice in the case of discrete systems and 
the symmetry of the many particle potentials present in the Hamiltonian. 

At the lowest level of our hierarchy we may put the number, strength, and 
detailed shape of the potentials. Boundary conditions usually can be reduced to 
the inclusion of some special potentials in the Hamiltonian and need not be 
considered separately. 

The hypothesis of universality at the critical point consists of a set of statements 
concerning the dependence or independence of the critical behavior with respect 
to the above hierarchy of properties. Roughly speaking it says that there is an 
increasing independence of the critical behavior as we follow the hierarchy of 
properties in the direction of decreasing generality. However to make this idea 
mathematically precise is not a simple matter. 

First of all one has to say something about the language employed in the 
description of the critical point. Following Kadanoff’s [la] original suggestion, 
the critical behavior is usually specified in terms of a hierarchy of singularities 
associated with the fluctuations of the variables thermodynamically conjugate 
to the interaction parameters appearing linearly in the Hamiltonian. The strongest 
singularities are often those induced by the one body and the two body interactions. 
For example in the case of a magnetic system these are the magnetic field and the 
temperature whose conjugate variables are the magnetization and the energy 
density respectively. The fluctuations can always be expressed in terms of correla- 
tion functions and the singularities in the interesting cases are supposed to be 
power law singularities specified by exponents called critical exponents or critical 
indices. 

The first statement of universality [l], which is largely euristical, now says that 
the critical exponents in general are completely determined by the dimensionality 
and some geometrical factors like the symmetries of the Hamiltonian. The number, 
strength and shape of the potentials on the other hand, in most cases do not seem 
to influence the indices. 

There is an important distinction, which has to be introduced at this point. 
Parameters like the magnetic field or the temperature whose conjugate variables 
exhibit strong fluctuations were called by Kadanoff relevant variables. All the 
remaining parameters are called irrelevant. In connection with this definition 
we add the following remark which anticipates the picture that we shall discuss 
later in connection with the renormalization group approach. The thermo- 
dynamic condition for a system to be critical defines a surface of critical points S, 
in the space of interactions. In geometrical terms relevancy or irrelevancy mean 
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that we are considering displacements away from S, or tangent to SC . Universality 
requires that the singularities of fluctuations be the same no matter where we 
hit SC except for particular situations, e.g., when the symmetry of the system 
changes. Thus in general displacement on S, cannot induce new singularities and 
therefore strong fluctuations. We then see that irrelevancy of a variable in the 
sense defined above means also irrelevancy in the sense that critical behavior is 
not influenced by that variable. 

The ideas developed so far are however not enough to derive further interesting 
and empirically testable conclusions. More detailed assumptions are needed. 

In this connection a very strong proposition was put forward by Kadanoff. 
This proposition states a structural property of the dynamical equations of the 
theory. II: says that near the critical point all the interaction parameters which do 
not induce singularities in thermodynamic fluctuations, can be eliminated from 
the equations, e.g., set equal to zero, by a resealing of the relevant variables. On 
the basis of this assumption Kadanoff was able to reconstruct the scaling theory 
of the critical point and to derive there from the scaling relations among the 
indices. 

Until the advent of the renormalization group approach all this was highly 
conjectural. The renormalization group techniques have offered in these years 
a major breakthrough and Kadanoff’s picture has been to a large extent imple- 
mented. Renormalization group ideas originated in field theory where they had 
some interesting applications although not very conspicuous. At the beginning 
to the worker in statistical mechanics they must have appeared rather abstruse. 

It is onle of the aims of the present paper to try to elucidate at least qualitatively 
the role of the renormalization group within a framework which is much more 
traditional many body theory than the language used in several recent papers. 

There is not a unique renormalization group. Its oldest version goes under 
the name of Gell-Mann and Low [2] although its existence had already been 
discovered by Stueckelberg and Petermann [3]. This is also the version which 
was first used in connection with critical phenomena [4]. After the work of 
Wilson [5] it became evident that one can define different and much more complex 
renormalization transformations and in fact he introduced a whole class of new 
groups. The results obtained in this way for the discussion and computation of 
both the critical behaviour and the approach to it, notably the +expansion, were 
also obtained within the old approach [6]. Recently [7] one of the authors, beside 
recalling some of the ideas developed here, has proposed a general definition of 
renormalization transformations which includes both Gell-Mann-Low and 
Wilson’s and indeed it has been clarified under what conditions two transforma- 
tions can be considered equivalent. Generally speaking a renormalization group 
is a set of transformations acting on the arguments of a thermodynamic functional 
and leaving this functional invariant in value. 
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In this work we use a realization of the local group transformations which is 
different for both Gell-Mann-Low and Callan-Symanzik versions. It maintains 
the advantages of both of them. In fact, the coefficients of the transformation 
depend only on the renormalized coupling constant as in the Callan-Symanzik 
approach and the related differential equation is homogeneous as in the Gell- 
Mann-Low approach. 

The fundamental assumption of the modern approach to critical phenomena 
is that the properties of the critical point can be described in terms of fixed points 
of an appropriate renormalization transformation. 

The line of reasoning is roughly as follows. The critical surface S, is supposed 
to be invariant under the group transformations which are supposed to have at 
least one fixed point on S, (more complicated situations may appear as discussed 
in [(5b), cap. XII]. Any system on S, , because of the renormalization group 
invariance of the theory, is equivalent via renormalization group transformations 
to the system corresponding to the fixed point. This particular system is rigorously 
scaling invariant. The indices can be computed in terms of the eigenvalues 
of the derivatives of the renormalization group transformations at the fixed 
point [8]. 

The appeal of this scheme is clear. Besides recovering scaling and universality 
we get some understanding of its “geometrical” nature: the exponents may depend 
only on renormalization group invariants. The dimensionality and the symmetry 
properties of the Hamiltonian are not altered by the Gell-Mann-Low and Wilson 
groups. 

In the present version of the group the functions, which are asymptotically 
identified with the critical indices, depend only on these invariants and on the 
renormalized coupling constant by construction. 

Unfortunately the bulk of these ideas has not yet been proved to hold for 
general systems; among other things one would like to understand if and why the 
renormalization groups used so far represent a good choice. 

We now give a brief description of the plan of the paper. In Section 1 we intro- 
duce our formalism and we reconsider some of the problems of the present section 
from the point of view of the dynamical equations, i.e., from the angle of many 
body theory. 

In Section 2 the new renormalization group equations for the thermodynamic 
functionals and for the correlation functions are given. 

In the third section the group equations are discussed and the idea of relevant 
and irrelevant variables is cast into a precise mathematical form. 

In Section 4 the scaling relations among the critical indices are determined in 
terms of the two parameters characterizing the group transformation near the 
fixed point. 

The homogeneity of the equation of state and of the correlation functions and 
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the corrections to their asymptotic form are discussed in Sections 5 and 6. A 
detailed discussion of the specific heat is also given. 

In Appendix B the group transformation is expressed in terms of mass, wave 
function, and vertex renormalization constants. The critical indices are also given 
in terms ‘of their derivatives. 

The connection with the Callan [9] and Symanzik [lo] version of the group 
equation is discussed in Appendix C. 

1. FUNCTIONAL EQUATIONS AND UNIVERSALITY 

In principle every possible information on a phase transition is contained in 
the partition function. Usually this quantity can be given a very compact form by 
expressing it as a functional integral over appropriate “field” variables. Unfortu- 
nately direct computations of the partition function are often difficult and it is 
advantageous to have at disposal a more articulated scheme like a hierarchy of 
equations for the correlation functions. Many body theory offers more than one 
possibility and in the present paper we would like to rely on a formulation which 
in our opinion is especially suitable to reflect the structure of the critical properties. 

Our scheme is constructed through a multiple use of the functional Legendre 
transformation. To illustrate the idea it is expedient to start from thermodynamics. 
In Kadanoff’s words [la], a full description of a phase transition requires the use 
of a free energy and of thermodynamic field variables. The fields are intensive 
thermodynamic quantities which vary continuously across the phase transition. 

Usually two field variables are employed: one field, for example the magnetic 
field H in the ferromagnetic case, can be used to drive the system from one 
coexisting phase to the other. The other field for example T - T, , is intended to 
drive the orthogonal change, that is toward or away from the critical point. The 
logarithm of the partition function F, is then written in terms of these field variables. 
Its differential 

6F = q~ 6/z f K St; 11 - r;‘fiH, t - r;‘,8P(T - T,) (1.1) 

defines pairs of conjugate variables (9, h) and (K, t) so that the conjugate to the 
first field lis the order parameter. In most case the conjugate to the second field 
has the interpretation of an energy density. Here r. has the meaning of the range 
of the forces and the dimensions of t have been suitably chosen to be those of 
of a mass squared (mass has a dimension of the inverse of a length). Since F is 
dimensionless, the field operator and thus the order parameter have dimension 
1 - ~12 so that h has dimension d - (1 - e/2), E - 4 - cl. Functional Legendre 
transformations, allow a change from the thermodynamic fields t, h,... to their 
conjugate variables K, q,... . In general the “hamiltonian” of our system could be 
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specified by a set of parameter functions h,(x, ,..., x,) of dimensions d - n(1 - e/2) 
describing many-particle interactions in a parameter space {X}. X,(X) will for 
example coincide with h, h,(x, , xe) in the local limit when X2(x1, x,) -+ 
6(x, - x2) + (V2 + pee) 8(x, - x,) will represent the “temperature” t. F is a 
functional of (h}. 

To each field h, we can now associate a conjugate variable 

lr,(sl )...) x, ) {A)) = 
6F 

%(x, >..., x,). 
(1.2) 

Assume now that the system of equations (1.2) can be inverted and that we are able 
to express the h,‘s as functionals of the w,‘s. We can then define a new thermo- 
dynamic function W({w}) via a multiple Legendre transformation 

W({w)) = F - c 1 hnwn , 
n 

which satisfies a set of equations conjugate to (1.2) 

-&(x1 ‘...) x, ; {w>) = 
6W 

Sw,(xl )...) x,) . (1.4) 

The system (1.4) can be interpreted in two ways. If the w’s are known they define 
the fields in terms of the correlations they produce. However, in general the h’s 
are given and one wants to calculate the corresponding w’s. Equation (1.4) then 
represents a system of nonlinear equations for the w’s, which in this case should 
be written 

-h&Q >...T -%a) = SW (fly.*, x ) (1.5) n n 

The system (1.5) can be associated to a variational principle. In fact the functional 

where the {IY} and {X} are treated as independent variables, is stationary with 
respect to variations of the (~1) and its Euler equations are (1.5). 

Equations (1.5) if we use the one particle irreducible n-point vertex functions 
instead of the correlation functions, can be written in the form 

r(70 = A, +f’“‘({p’>), (1.7) 

which has a simpler diagrammatic structure. 
The above scheme clearly corresponds to solving statistical mechanics in the 

backward direction. How to perform the inversion of the system (1.2) and how 
to construct explicitely the W functionals or thef tn) has been discussed in Ref. [1 1, 
121. General arguments showing the interest of such indirect formulations can be 
found in the same references and also in [13, 141. 
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The existence of the phase transition will manifest itself in a natural way with 
the existence of more than one solution for the nonlinear system (1.7). For example 
it is very simple to deal with the case of spontaneous symmetry breaking. Therefore 
it is possible in principle to reconstruct the whole phase diagram and the stability 
of its geometrical structure by studying the multiplicity of the solutions of (1.7) 
upon variation of the interactions {A}. 

The critical surface SC is then microscopically defined as the bifurcation set [15] 
(or a subs,et of it) of the nonlinear system (1.7). 

The renormalization group allows us to obtain information on the critical 
behavior without actually solving the system (1.7). In fact: 

(1) .4 functional like (1.6) is invariant under the Gell-Mann-Low and Wilson 
renormali.zation transformations. This is easily demonstrated by considering that 
the free energy from which we started is invariant under such transformations 
and that the terms which are added by each Legendre transformation are also 
trivially invariant. It follows that also the system (I .7) is covariant under the same 
transformation. 

(2) !%nce the bifurcation set is a singular set for the system (1.7) and we do 
not expect that renormalization transformations change the structure of the 
singularitiies, it follows that the critical surface SC is invariant under the renormal- 
ization group. 

We add a few more comments. If {A*} is a fixed point of the renormalization 
group the solution of (1.7) has to be rigorously scale invariant. In simple examples 
[16, 171 it can be shown that the requirement of rigorous scale invariance on the 
solutions of (1.7) indeed gives for the {A*} the same result as the renormalization 
group. For {A} # {A*} but (A) ES, we expect the r (‘o to become scale invariant 
only for asymptotic values of their arguments. 

We will now exploit our language by working out systematically the conse- 
quences of the renormalization group invariance of our functionals. In particular 
we show that the methods introduced in [4] and extended1 in [6] are enough to 
achieve a complete description of the critical behavior which is alternative to the 
new renormalization group approach proposed by Wilson, at least as far as we 
limit ourselves to the use of perturbation methods. 

The modifications here introduced turn out to be very useful to discuss 
the asymptotic behaviour, scaling, zero mass limit, large wave vector limit and 
corrections, to scaling. 

1 These methods had been partially extended in an unpublished work by G. Jona-Lasinio where 
the fixed point idea as introduced in Ref. [19] was used to derive scaling equations for the n-point 
vertex functions. This work was presented at the meeting of the European Physical Society, 
Florence, September 1971. 
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2. GROUP EQUATIONS 

So far our considerations have been general. To make our discussion definite 
we suppose we are dealing with a system where the relevant fields are only two, 
e.g., t and h, and the coupling is specified by the quartic term 

h(x) - h(x), &(x, , x2) - t@, - x2) + (V2 + pllc) &G - x3, A, - A, (2.1) 

X has dimension E in terms of the mass. 
The correlation functions are given by 

G’“‘(x I >.*.> &) = (@(XI) ‘** $%b&,onn,,ted 

(2.2) 

By means of one Legendre transformation we can define the functional 

r[{y)] = F - i hg, d”x. (2.3) 

The one-particle irreducible n-point vertices P) are generated by successive 
functional derivatives of r 

Similarly for the external field and the “energy density” c 

-h = ($)t, r7 = ($), . 

(2.4) 

(2.5) 

r can therefore be expanded in terms of P) as 

r = c & j dx, ... dx, rcnTxl ,..., 4cp(xd - q,(xd> ..- (T,(L) - F&G&. (2.6) 11 
Above T, , yO can be taken equal to zero. Below T, it is enough to take vO greater 
than the value for which Gf2) is well defined. 

A second Legendre transformation gives the functional W(q, Gt2), h) where t 
is eliminated in favour of Gc2). 

The corresponding variational equations are 

6W 1 SW 
gG(2,=--’ -zzz 

2 b 
-tcp - h. 
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Since PI, h and I? are given in terms of I’, all the other physically relevant quanti- 
ties as the inverse of the susceptibility r = X-I = P)(P = 0), the inverse coherence 
distance squared m2 = P2)(k2 = 0)/(ar(2)/8k2)1k2_0 the specific heat c N &/at, 
the order parameter +j, implicitely defined by 6I’/6p, lrn+ = 0, are also defined in 
terms of A!Y So that the equation for I’ completely determines the theory. 

Followjng the argument given by Coleman and Weinberg [lS] introducing an 
arbitrary normalization point M of dimension of the mass corresponding to 
some value of the coupling A, a variation of v, t, and X can be compensated by a 
variation of M, leaving the functional I’ invariant. The invariance of r as given 
by Eq. (B.l), is manifestly expressed by the key equation 

The coefficients oto, ago, and #o are determined by the normalization The coefficients oto, ago, and #o are determined by the normalization 

( arc2’ ( arc2’ 
z.zz z.zz 

ak2 cYk2 > > 
1 1 

kLO.~=O.t=f k~=O.~=O.t=f 

( arc2) > ( arc2) > 
A = p4))~,Z=o,e=o,t=T. A = (r(49t,Z=o,e=o,t=T. 

at at 
=l =l 

2=o,m=o.t-S 2=O,m=O.t-S 

If we introduce the dimensionless variables 

Eq. (2.8) reads 

(2.9) 

[1Gi & - utt’ $ + + g - a, 1 9)’ &] rw, t’, u; M) = 0, (2.11) 

where 

ut = 2 + UtO, 0,=l--” 2 + GO, t/s= -a+-$. (2.12) 

In the case of homogeneous system M(iY,/aM) can be trivially removed from 
Eq. (2.11) by simply resealing the volume and a d appears in the equation: 

Of course, we cannot hope to obtain information on the microscopic critical 
region k/m > 1 from this last equation. For instance we can get only the 

aq v 
P)(ki = 0) = arp” . 
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In the case that the variable v’ maintains its dependence on x’, then I’ will 
depend on M in an implicit way through these x’s We can eliminate neither 
M(a/aM), nor the functional derivatives from the equations. Then because the 
dimensionless P) in k space are defined as 

W, + k, + -.- + k,) r”(k, ,..., (2.13) 

their group equation is easily obtained from Eq. (2.12) 

a __ _ ki' a/Q' s y’ &, + d - nu, I 
I-) = 0, (2.14) 

where ki’ = kJM. 
In fact, Fir,) is dimensionless and therefore M(a/aM) -+ d - C ki’(a/ak;). This 

last fact allows us to obtain information relative to their behavior as a function 
of k. 

The equations for iip(“‘/8k’2, i3f(2)/&‘, and fC4) follow from Eq. (2.14) 

[ 
-k’ $ - utt’ $ + $ ; - c, j ?’ ?- + d - 2u, - 

h,’ 
ut 1 arln, = 0, 

at 

a A a __- ki' &' Uff’G f $- - urn 
at’ 8U 

j c$ 6 + d - 4u,] fc4) = 0. 
(2.15) 

As it is shown in Appendix A, t can be expressed in terms of fully renormalized 
quantities as ni2 = m2/M2 - fc2)(k’ = O)/(af(2)/8k’2),,_, , which being the ratio 
of two p’s is invariant under the group transformations, i.e., 

Om = 0 Of [-u,tt -& + $ f - u,P)’ +$ + 11 m’ = 0, (2.16) 

where the operation 0 is defined in Eq. (2.8). 
Because m is invariant under the group transformation it is most convenient 

to take it as one of the variables. 
We specify the normalization point (2.9) so that t = i when m = M (m’ = 1). 

This means that at the normalization point 

(2.17) 
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Equations (2.15) and the normalization condition (2.9) then imply 

(2.18) u,&)= 1 -;-fmt a(aP/aky 
hi I 3 k’“=o,QJ’;=o,m’=l 

a,(u) = d - 2a, - m’ 
a(aP)pt I) 

ad > p+J a’=0 w&‘=l I I 
#(q = u [-c _ Zn2’ a(awfk’3 + *llt aPp) ] 

k’Lo,m’=(j,m’=l 
. (2.20) 

(2.19) 

The choice of the normalization point is arbitrary. The advantage of this choice 
with respect to the Gell-Mann-Low choice (k2 = M2, F = 0, Vf) or the Coleman 
and Weinberg [18] one (k2 = 0, v = M1--E/2, Vt) is that the coefficient us,, ut , 
and # depend only on u.l 

The connection with the Callan-Symanzik equation [9, IO] is given in Appen- 
dix C. 

The role of the renormalization constants is shown in Appendix B. The group 
transformation in differential form (2.11) is completely determined by the three 
coefficients (2.18)-(2.20) when only t, v, and h are taken as variables, i.e., when 
only mass, wave function and vertex renormalization are required. 

3. SOLUTION OF THE GROUP EQUATION FOR ~---RELEVANT AND IRRELEVANT 
VARIABLES 

We reca.ll that I’ is obtained by means of a functional Legendre transformation 
from the leogarithm of the partition function. It is dimensionless and in the homo- 
geneous case it satisfies Eq. (2.11’) 

We shall show that r has an asymptotically homogeneous solution in y’/t’e; 
then because as we have already stressed, all the other physically relevant quantities 
can be derived from I’, the scaling scheme follows. 

The solution of Eq. (3.1) is obtained by means of the characteristic curves 
method: 

dt’(s)= -a&(s)) t’(s), F = dub) 
ds -%MN v’(s), 7 = +(w) (3.2) 

1 While preparing the revised version of this work, we became aware of two papers: S. WEINBERG, 
New approach to the renormalization group, PI’ZJX Rev. D 3 (1973), 3497, and The new improved 
renormalization group for scalar fields, by C. Callan, where an approach similar to ours is 
discussed in a different context. 
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with the boundary condition 

f’(0) =. t’, 
Then 

qm) = y’, u(0) = u. 

I-($, t’, Ii) = edslyp’(s), t’(s), u(s)). 

Solutions of Eq. (3.2) are 

with 

(3.3) 

(3.4) 

(3.5) 

As ( s I+ co, U(S) tends to the fixed point u*, where u* is a zero of the function 
#(u> 

qqu = u*> = u [--E - 2r7i a@F;;!y’z’ + 772’ “;(y]k,2=, m,--O m,=l u=u* = 0 
. . # 

(3.6) 

The fixed point for s -+ - co corresponds to unstable solutions for t’(s) and y’(s) 
when c~(u*) and u&u*) are both positive. In this case the two relevant variables t 
and q must be zero 

t’ zzz y’ zzz 0, 4s) +u*#O with o&u*) > 0, (T,(u*) > 0. (3.7) 

If such a fixed point as (3.7) exists, in its vicinity the group transformation is 
determined by the two parameters 

q(U*) = q*, u,(u*) = urn*. (3.8) 

We thus make them explicitly appear into the equations. We can rewrite t’(s) and 
v’(s) as 

t’(s) = ,te-Ot*s 5tMs>> 

it(u)’ 

5&(s)> 
v’(s) = p’e-““*” i,(u) ) (3.9) 

where 

5(u*) = 1, 
(3.10) 

i s* 1 = 00. 

If we take t(s) = &(u(s)) then 

s=$ln&, u(s) = d,, = p-l [ p(u) + $ In & 1 . (3.11) 
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Equation (3.3) now reads 

As t’ + 0 and ‘p’ + 0 the fixed point (3.7) is reached as 

9,* - u * = u(s) - u* tyo (u - U*)(tp-* 

provided. 

I’ assumes the form 

which has the homogeneity properties required near the critical point if 

339 

(3.12) 

(3.13) 

(3.13’) 

(3.14) 

(3.15) 

It is therefore plausible to assume that the critical behavior is determined by the 
properties of the group transformation near the fixed point (3.7) where $(u*) = 0, 
ut* > 0, o.,* > 0. This point is stable against changes of u if condition (3.13’) 
(4 > 0) is satisfied [19]. The discussion [6] of Eq. (3.6) around dimensionality 4 
leads to the E-expansion by Wilson and Fisher [20] within the Gell-Mann-Low 
approach. In the c-expansion below 4 dimensions condition (3.13’) is indeed 
satisfied for the nontrivial fixed point U* # 0. 

When $’ > 0, u - u*, whose scaling index is -#‘, is an irrelevant variable. 
Jt has been eliminated in favor of a resealing of the other variables by the corre- 
sponding factor &Ju), providing us with a precise mathematical mechanism for 
the Kadanoff ansatz, discussed in the introduction. 

Any other variable z with the corresponding (T,* < 0 would have disappeared 
in the same way at the fixed point because as s --f - oc), Z(S) + 0, z being manifestly 
irrelevant. 

In the E-expansion Eq. (3.6), beside the nontrivial fixed point with the proper- 
ties (3.7) and (3.13’), has [6] a gaussian fixed point u* = 0 for which ut* and urn* 
are reduced to their trivial part. They are therefore still positive but 
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i.e., for d < 4 in this case ~1 becomes a relevant variable and at the fixed point 
we have to impose 

f ’ Y-z q’ = 1, = 0. (3.17) 

The introduction of further interactions (specifically a C$ term), would allow for 
the discussion of the tricritical point in three dimensions as it has been done by 
Riedel and Wegner [21] within the Wilson’s scheme. 

4. DERIVATION OF SCALING LAWS 

In this section we show explicitly how the usual scaling laws are obtained. 
This can be done in two ways. 

For each quantity we can derive from Eq. (2.11) for r, the corresponding 
group equation, whose solution can be worked out exactly in the same way as 
for I’ and therefore will not be discussed again. 

More easily from the solution (3.14) of Eq. (2.11’) by simple differentiations 
we have the corresponding asymptotic behavior for all the quantities in which 
we are interested. In this last case however, as already stressed, we cannot obtain 
the k behavior of the correlation functions and 7 should be determined by their 
behaviour in t. For their homogeneity property in k and m also, one has to go 
back to Eq. (2.14). 

All the critical exponents will be expressed in terms of ut* and u,* which are 
now identified with the Kadanoff scaling indices xt = l/v and x, = 1 - ~12 + 312. 

a. IdentiJication of the Indices a,* and crt* 

Equation (2.14) for the pin), at 9’ = 0 and at the critical temperature t’ = 0, 
has the asymptotic solution as k + 0 (ki’ = kE,‘) 

r”h)(k I 1 ,..., k,‘) k-0 kd-now(u*‘. (4.1) 

o,(u*) given by Eq. (2.18) evaluated at tl = U* is identified with 

a, *=xwxl-;++ 

= 1 - i - km’ 
@2)/8k’2) 

) 
(4.2) 

am, 
IC’LO Q’& m’=l us?.&* . , , I 

In the same way Eq. (2.16) for the dimensionless inverse coherence distance m’ 
at q’ = 0 as t’ + 0 gives 

111’ ho (t’)-l’ot(“*). (4.3) 
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This gives Us in terms of v’: 

ut* = .-it = l/v’ = 2 - rj - 111’ 
a(a@jat ‘) - 

am’ 1 
. (4.4) 

k’~o,*‘=&m’=l,u=u* 

The same result is valid for v. Equation (2.16) is solved for 9’ = +‘. Equations (2.18) 
and (4.2) have been used in (4.4). Equation (3.6) determines U* in terms of diagrams, 
then the two independent critical indices X, and xt are given by Eq. (4.2) and (4.4). 
The E-expansion of these indices has been performed by field theoretic methods 
in Ref. [6, 20b, 221. 

We now derive the scaling relations in terms of them. 

b. The Susceptibility 

The inverse susceptibility is given by P)(/? = 0) = r. Its dimensionless expres- 
sion i is determined by Eq. (2.14) for n = 2 at kf2 = 0. Its asymptotic solution 
reads 

(4.5) 

We thus obtain the first scaling relation 

y’ = (2 - 7) v’. (4.6) 

c. The Critical Isotherm 

The dimensionless field h” = (1/Md)(U’/6y’) satisfies the equation 

C a a 
-ua,t'T@- + $iu> z - 0, j c$ & + d - 0~1 h‘ = 0. (4.7) 

At t’ = 0, as 9’ + 0, the solution reads 

h” ,yo ($)(d’o@*)-l. 

Its expression in terms of 6 gives the second scaling relation 

d. The Spec~jic Heat 

The index 01 has been already obtained in (3.15) by the condition that 

(4.8) 

(4.9) 

595/8712-6 
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To evaluate its correction to scaling, we shall need the group equation for its 
dimensionless form c” = c/M”w4 = a/at’(sr/&‘),,=, . This is easily derived from 
Eq. (2.11) 

T 

[ --otf’ & + $ g + d - 24 c = 0. (4.10) 

As t’ 4 0, this leads to the scaling (3.15) with u or LX’. 
The case 01 < 0 deserves special consideration3 and will be considered starting 

from Eq. (4.10) together with the correction terms in Section 6. 

e. The Order Parameter 

The fourth and last scaling relation 

was already given in Section 3 by the Eq. (3.15). However its explicit derivation 
has to be given in terms of the order parameter + determined by the condition 

(4.12) 

A variation of M, t, and h in $? must reproduce the correct variation of 9) to leave 
r at v = C$ invariant, i.e., from Eq. (2.8) 

In terms of dimensionless variables 

[ 
a a 

--a&' 61' + # jfjjj + urn I q' = 0. 

(4.13) 

(4.14) 

An alternative explicit derivation of Eq. (4.14) is given in Appendix B. Its asymp- 
totic solution 

Y -’ ;;fot 
m,*lo~* (4.15) 

gives the scaling relation (4.11). 

f. The Cross-Over Index 

Any other index relative to fields h, or their conjugate operators may be obtained 
by a straightforward generalization of the method used for t and y. We discuss 
very briefly the case of the anysotropy h,v,v, and of its cross-over index CD. 

a Thanks are due to Dr. G. Parisi for pointing out to us this special point. 
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The group equation (2.11) would read: 

where 

and the definition of #(u) is conveniently modified. uhR may be obtained by 
imposing the normalization condition 

(4.18) 

and by applying to it the group equation. 
Around the fixed point II = u*, h, = 0, h A would then scale like to. 0 is related 

to the fixed point value of uhA by 

A calculation of Q, in this spirit by means of the Callan and Symanzik equation 
in the e-expansion has been performed in Ref. [23]. 

5. HOMOGENEITY PROPERTIES--EQUATION OF STATE 

Since the homogeneity properties of the Pn) in h- and t”, which can be obtained 
by solving Eq. (2.14) at y’ = 0, have been discussed by several authors [4, 5b, 
20b, 22, 241, we shall dwell on the homogeneity properties of the equation of 
state. 

Since for F’ independent of the position, h” = (1 /W)(W/S~‘) = (l/M” V)(aI’/Zpl’), 
rather than starting from Eq. (4.7), h” is easily obtained by taking the derivative 
with respect to q’ of Eq. (3.12). 

&A t’, 4 = (&) 

(d-om*)lat* 

where the s’s and I?, which stands for z&f , are defined in Eqs. (3.10) and (3.11), 
respectively. 

Recall that 
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and 

zi - 11” N (11 - u*> f” ‘of*, cl(G) + 1, as t’+O, lp' - 0. (5.3) 

The equation of state assumes the asymptotic form 

We have to ensure the right behavior in t’ as CJJ’ goes to zero and vice versa. 
Equation (5.1) can be written as 

R(cp’, t’, u) = (+g)“” g R($ i, zi), 

where 

(5.4) 

(5.5) 

(5.6) 

The A on the right-hand side of Eq. (5.5), may be expanded by means of Eq. (2.6) 
in terms of rj? as it is evaluated far from the critical temperature. If t’ is very small, 
then fi N u* and the coefficients of the expansion are universal: 

R(cp’, t’, u) - ___ f’,g,‘-)O r,iu, i 1 a+1 ‘6 f *=I.. c&*) T1 
Using Eq. (5.2) it reads 

This expansion ensures the right behavior in t’ as v’ goes to zero, i.e., 
x-1 - ah”/ag N try. 

We have now to check that h is regular in t’ at t’ = 0, when q’ # 0. We use 
the group equation (4.7) for the function 

i&z, f, ii) = [,(Lfi) I?($, f, ii), (5.8) 

which reads 

[ -u,@) i $ + $(zz) g - u&q $ + + d - nu,(zi)] h 

= qqli) J5g /G = [cr,* - a&i)] R. (5.9) 
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For the last step in Eq. (5.9) we have used Eq. (3.10). For t’, 9’ < 1, u” is very 
near to t!* and we may neglect terms in u” - U* which will be considered in the 
next section. Thus, Eq. (5.9) is transformed into 

where 

We can repeat the argument for AR and obtain: 

[ -C&*+5 + + d - ua* - ut*] Ah = A$, 

(5.11) 

(5.12) 

where AZ& is defined symilarly to AR, and thus generally 

[ 
-urn*+ + + d - ow* - m,*] An/i = A”+%. (5.13) 

We have thus obtained a hierarchy of equations relating Apz/i to AN+%. Assume 
we may ‘truncate it somewhere, say at the nth equation by neglecting An+% 
Then it has the solution 

(5.14) 
j=O 

This equation suggests that in the neighborhood of the critical point when v’ > 65, 
Eq. (5.1) has the form: 

wheref($ is regular around x = 0. 
Thus one can see that the regularity of the equation of state is a consequence 

of the assumption that on the one hand, far from the critical temperature, the 
functional r can be expanded as in Eq. (2.6), on the other hand, that in the 
hierarchy 1c5.13) the right-hand side may be neglected at least from some order on.3 

3 This last point was made plausible by performing a loopwise summation in the E-expansion 
by E. Brezin, J.-C. Le Guillou, J. Zinn-Justin (preprint C.E.N.-Saclay (1973)), who treated this 
problem by means of the Callan-Symanzik equation. We benefited in this context from their 
point of view in writing the final version of the paper. 
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The E-expansion by graphs method of the homogeneous equation of state was 
given by Brezin, Wallace, and Wilson [25]. 

Equations (5.7’) and (5.15) give the homogeneous correction terms to the leading 
asymptotic power. If we keep terms of the order fi - u* into the equation we have 
corrections to the homogeneous form controlled by the index #‘. This is what we 
shall do explicitly for the specific heat in the next section. 

6. SPECIFIC HEAT WITH NEGATIVE 01 AND THE CORRECTION TERMS TO SCALING 

So far we have considered the homogeneous preleading terms. We introduce 
now the corrections to the scaling form of the physical quantities due to the 
approach to the fixed point. Both of them were considered by means of the Wilson 
recurrence relation [8]. In the present formulation it was stressed [6, 191, that 
the rate of approach to the fixed point $’ allow to calculate this second type of 
corrections. In fact it is clear by now that depending on which variable z we are 
considering similarly to Eqs. (3.13) ii,, approaches Use as 

lb’:0 
zi,, - u * - (II - u*> [f&l i*. (6.1) 

We specify the method of calculation to the case of the specific heat to show 
also how the case 01 < 0 can be included. 

The equation (4.10) for the specific heat is 

r 
r --a,t’ $g + $ g + d - 2Ot] F = 0. 

According to the discussion previously given the solution reads 

(6.2) 

Define 

@) = ~~“(72) Z(l&7), 22). (6.4) 

As for the case of 6 in Eqs. (5.9) and (5.10), near the fixed point the equation 
for c” reads 

($(22) $ + d - 20,*) Qi) = Ot, (6.5) 

* This point was first considered by G. Parisi (private communication). 
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where 

Contrary to the case of Eq. (5.10) we now allow u” to be different from K* according 
to Eq. (6..1) for z’ = t’. We approximate #(a) - #‘(17 - u*), then Eq. (6.5) goes 
into 

[ 
(22 - u*) a 

i d - 2o,* 
qs-zizi*) %’ 1 

c”(u‘) = Lx . 
4”’ 

If AC” is regular in ii, i.e., AC” -A&U*) + (aAcPji;(zi - u*))(Q - u*), then the 
solution of Eq. (6.7) 

reads 

+ a(zz _ U*)-(d-Bol’)/$’ 

A+*) 
E(C) = d _ &* + 

1 i3AE 
d - 2a,* ( 1 + 1 azl 

(22 - u*) 
czu* 

+ a(s _ K*)-(d-w)i~’ + . . . . 

(6.8) 

(6.9) 

Introducing Eq. (6.9) in Eq. (6.3) with u’ - U* = (U - ~P)[t’/~~(u)]~““~*, we have 

(d-2al*)lot* 

(d - 2:,“),0,* + b (&)“‘uL*] + const. (6.10) 

Finally, 

co> -&[I + const(t’)“] -j- const. (6.11) 

The first term in Eq. (6.9) allows for the asymptotic power law behavior. The 
second term gives the correction to scaling. The third term cancels the explicit 
power of t’ giving a constant which is essential when 01 becomes negative. The 
same is for the OL in the denominator which makes the cusp point upwards when cy 
is negative. 

In the case CL = 0, i.e., d = 25,*, the solution of Eq. (6.5) for 2? - U* reads 

c N -d&u*) log(u” - u*) + regular terms, (6.12) 

thus leading to the well-known logarithmic divergence. Similar results are valid 
for any quantity whose scaling index vanishes. 

On the basis of Eq. (6.1) it is obvious what the correction terms look like for 
any other quantity previously considered. 
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APPENDIX A-RELATION BETWEEN t AND r 

The functional W(y, Gt2), X) gives the possibility to express t in terms of 
renormalized quantities only. 

Its variational equation (2.7) 

6W 1 
$p= --t 

SW -= 
2’ sp, 

-ty - h (A.1) 

permits an other independent definition of r as 

Where G@‘(y’) is solution of the first of Eqs. (A.l), ypo has to be choosen in such 
a way that this solution is meaningful. 

A straightforward computation from Eqs. (A.1) gives 

The right-hand side of Eq. (A.3) contains only renormalized quantities from 
which CT$ can be computed diagrammatically. 

In terms of r the propagator satisfies the equation 

APPENDIX B-THE MASS, WAVE FUNCTION, AND VERTEX 
RENORMALIZATION CONSTANTS 

In this appendix we formulate the group equations introducing the renormaliza- 
tion constants. 

As it has been already stressed r is invariant for variation of QJ, t and h provided 
we suitably change M. In terms of the dimensionless variables this means 
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In the same way 

+f$) (k’3, y’, t’, u; M) 

#2' 

[ 

k r2 
Y'Z-1'2 

= ‘-’ rYk’2/(M’/M)2 (M’/Mj2 ’ (M’/M)1-‘/2 
t 'ZZ,l uz2z,l 

’ (‘M’/M)2 ’ (M’/M)2 ; M ’ I 

03.2) 

g (0, cp’, t’, u; M) 

af'"' -11" 

= ';' at'/(M'/M)Z [ '7 (&&l-r:e 

1 2 -1 

3 (t$& , $~,~~~ ; M' 1 9 (8.3) 

$!- (k’2, p’, t’, u; M) 

k;’ F’z-1’2 t ‘zz;l uz2z,l 
(M’/M)2 ’ (M’/M)1-c12 ’ (M’/LW)~ ’ (M//M)’ ; M’ ’ I 

(J3.4) 

Equations (B.2)-(B.4) also follow from the Dyson equation and from the 
analogous expression for fC4) which are trivially invariant for the relevant trans- 
formation. 

is obviously invariant under the group transformation, i.e., 

It is obvious then to use m’ rather than t’ as a variable, since as shown in Appen- 
dix A we can express t’ as a function of renormalized quantities. 

We can then choose the arbitrary normalization point at k’ = 0, CJI’ = 0, 
m’ = 1 (i.e., t’ = i’), where we assume 

I af(2) is ak’z ) N p. = 
1, ($), p = 1, (C,, p. = 1. (B.6) 
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This leads to the identification 

z-1 (g ) 11) := +$! (P, 0, g, u; M)i*,,) 

z,’ ($-) uj = $ (0, 0, m’(f), u; M)im,cM,,M1 

z,l (G , u) = c (0, 0, -g ) u; Mj’ 

(B.7) 

03.9) 

and 

z-1(1, U) = ZLl(l, u) = Z,l(l, U) = 1. (B.lO) 

The differential equation (2.11) for I’ and (2.16) for WI’ follow from Eqs. (B.1) 
and (B.5) when we take the derivatives with respect to M/M and then put M’ = M 
with 

a 
[ 

zzp 
ut(ll) = - aMl/M (MJ/M)Z 1 M’z,,, ’ 

,. 
44 = - a;,M 

z-112 
@f/M)'-E/2 I M'=M ' 

a 
[ 

uz2z,1 
#+‘) = aM’/M (Ml/M)’ 1 ’ M’=M 

The equation for the order parameter +’ is determined by the condition 

Sr(q’, t’, u; M) 
I 

= aJ’(+‘, t’, 4 M’) 
SF’ m’=x$ S@’ ) 

= o 
2 ,g+” 

with 
-l/2 

g;' = (M”,;,l-e,2 ) 
uz2z-l 

' = (M',& ' 

then 

(B.ll) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

Taking the derivative of Eq. (B.16) with respect to M’/M at M’ = M we obtain 
the differential equation (4.14) for 9’. 
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APPENDIX C-CONNECTION WITH THE CALLAN~YMANZIK EQUATION 

It is easy to establish the connection between the group equation (2.8) and the 
corresponding Callan-Symanzik equation [9, lo]. If for simplicity we use 1~ as 
a variable instead oft’, in terms of dimensional variables, Eq. (B.1) reads 

r(y, m, u 1 M) = T(pF’“, m, uZ’Z;l I M’). 

Then for ,Vf’ 3 m we have the Callan-Symanzik normalization and 

cc.11 

r(y, m, u / M) = r(yZ;l’“, m, uZ,Z,-,l / m) = T(@ m, U j m) = T,(@, in, ii). 
(C.2) 

Its derivative in terms of 1~1 leads to 

As in Appendix B we have 

ag, 
m 3z 1 = ym a2,1/3 - --(scDoy, wa=M am 1 VL=M 

au 
m  7j-g 

1 

= III (G2z3 

TZ=M am ) 
= 0. # 

WL=M 

Moreover, 
ar 

nz __ 
1 am .?*=M 

am2 -l 
= 2m2 AT, at 

( 1 
, 

m:=M 

(C.4) 

W.5) 

(-9 

where due to the normalization 

Since 

and 

y = m2Zr1 G3) 

ar 
( 1 

az 
am2 &=M2 

=I--mm2 * ( 1 &LM2 
= 1 - cr,o, (C.9) 

then at ( 1 am2 1 m2,Me = - aqoa ((2.10) 
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Equation (C.10) together with Eqs. (C.4)-(C.6) allow to read Eq. (C.3) as the 
Callan-Symanzik equation for ri 

i 
r ? 

m & + $0 g - UQO r, = 2(1 - urn”) m2 AT,. (C.11) 

ACKNOWLEDGMENTS 

This work has been carried out partly at the “Istituto di Fisica dell’Universit8 di Padova” 
and partly at the “Istituto di Fisica dell’Universit8 di Roma.” We thank both institutions for 
making this collaboration possible. 

We also thank Dr. G. Parisi for useful discussions. 

REFERENCES 

1. a. L. P. KADANOFF, in “Proceedings of the International School of Physics ‘E. FERMI’ LI 
torso,” p. 100, Academic Press, New York, 1971. b. R. B. Griffiths, Phys. Rev. Left. 24 
(1970), 1479. 

2. M. GELL-MANN AND F. E. Low, Phys. Rev. 95 (1954), 1300. 
3. E. C. G. STUECKELBERG AND A. PETERMANN, Helv. Phys. Acta 24 (1951), 153. 
4. C. DI CASTRO AND G. JONA-LASINIO, Phys. Left. 29A (1969), 322; G. JONA-LASINIO, in “Critical 

Phenomena In Alloys, Magnets and Superconductors” (R. E. Mills, E. Ascher, and R. I. 
Jaffee, Eds.), p. 189, MC. Graw-Hill, New York, 1971; F. DE PASQUALE, C. DI CASTRO, AND 
G. JONA-LASINIO, in “Proceedings of the International School of Physics ‘E. FERMI’ LI 
Corso, p. 123, Academic Press, New York, 1972; C. Dr CASTRO, Riv. Nuovo Cimento 1 
(1971), 199. 

5. a. K. G. WILSON, Phys. Rev. B 4 (1971), 3174, 3184. b. K. G. WILSON AND J. KOGUT, Physics 
Reports, to appear. 

6. C. DI CASTRO, Lett. Nuovo Cimento 5 (1972), 69. 
7. G. JONA-LASINIO, “Proceeding of the Nobel Symposium,” vol. 24, p. 38, Academic Press, 

New York, 1973. 
8. F. WEGNER, Phys. Rev. B 5 (1972), 4529; Phys. Rev. B 6 (1972), 1891; For a lucid exposition 

of this point see also S. K. Ma, preprint 1973. 
9. C. G. CALLAN, Phys. Rev. D 2 (1970), 1541. 

10. K. SYMANZIK, Comm. Math. Phys. 18 (1970), 227. 
11. G. JONA-LASINIO, Nuovo Cimento 34 (1964), 1790; H. D. DAHMEN, G. JONA-LASINIO, Nuovo 

Cimento 52A (1967), 807. 
12. C. DE DOMINICIS AND P. C. MARTIN, J. Math. Phys. 5 (1964), 14. 
13. H. L. FRISCH AND J. L. LEBOWITZ, “The Equilibrium Theory of Classical Fluids,” pp. l-77, 

W. A. Benjamin, New York, 1964. 
14. M. S. GREEN, J. M&. Phys. 9 (1968), 875. 
15. See, for example “Bifurcation Theory and Non-Linear Eigenvalue Problems” ed. (J. B. Keller 

and S. Antman, Eds.), W. A. Benjamin, New York, 1969. 
16. K. G. WILSON, Phys. Rev. D 7 (1973), 2911. 
17. T. TSUNETO AND E. ABRAHAMS, Phys. Rev. Left. 30 (1973), 217. 
18. S. COLEMAN AND E. WEINBERG, Phys. Rev. 07 (1973), 1888. 



RENORMALIZATION GROUP 353 

19. K. G. WILSON, Whys. Rev. 03 (1971), 1818. 
20. a. K. Ci. WILSON AND M. FISHER, Phys. Rev. Lett. 28 (1972), 240; b. K. G. WILSON, Phys. Rev. 

Lett. 28 (1972). 548. 
21. E. K. RIEDEL AND F. WEGNER, Phys. Rev. Lett. 29 (1972), 349; F. WEGNER AND E. K. RIEDEL, 

Phys. Rec. B7 (1973), 248. 
22. E. BR&ZIN AND J-C LE GUILLOLJ, J. Zinn-Justin Preprint C.E.N. Saclay (Dec. 1972). 
23. Y. YAnrAzAKr AND M. SUZUKI, preprint, 1973. 
24. K. SYMIANZIK, Comm. Math. Phys. 23 (1971), 49. 
25. E. BRE:IIN, D. J. WALLACE, AND K. G. WILSON, Phys. Rev. Lett. 29 (1972), 591; Phys. Rev. 

Lett. B 29 (1972), 232. 


