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Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics
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We show that, in nonequilibrium systems with small heat flows, there is a time-scale-dependent effective
temperature that plays the same role as the thermodynamical temperature in that it controls the direction of heat
flows and acts as a criterion for thermalization. We simultaneously treat the case of stationary systems with
weak stirring and of glassy systems that age after cooling and show that they exhibit very similar behavior
provided that time dependences are expressed in terms of the correlations of the system. We substantiate our
claims with examples taken from solvable models with nontrivial low-temperature dynamics, but argue that
they have a much wider range of validity. We suggest experimental checks of these ideas.
[S1063-651%97)05903-3

PACS numbegps): 05.20-y, 75.40.Gb, 75.10.Nr, 02.50r

I. INTRODUCTION would indicate a thermometer brought into contact with the
glass and, again, we would be very surprised if it did not
No physical system is ever in thermodynamical equilib-coincide with the room temperature. We would be even more
rium. When we apply thermodynamics or statistical mechansurprised if, putting two points of the glass in contact with
ics, we idealize the situation by assuming that “fast” pro- both ends of a copper wire, a heat flow were established
cesses have taken place, and “slow” ones will not: hencethrough it.
we define an observation time scale which distinguishes In other words, although we know that equilibrium ther-
these two kinds of processés]. It follows that the same modynamics does not apply for the glass, we implicitly as-
system can be at equilibrium on one scale, and out of equisume that some concepts that apply for equilibrium are still
librium on another, and, more strikingly, that it can be atrelevant for it. This is not because the glass is “near equi-
equilibrium, but exhibiting different properties, on two scales|ibrium” but rather because it has been relaxing for a long
at once. time, and therefore thermal flows are small.
Since the assumption of thermal equilibrium lies at the \any attempts have been done to extend the concepts of
heart of statistical mechanics, it is usually hard to make thesfhermodynamics to nonequilibrium systems—such as sys-
considerations without a strong appeal to one’s intuition. Wgq o exhibiting spatiotemporal chaos or weak turbulence

shovy in the following that they can be ma_\de, in fact, quite 2.3]. In this context, Hohenberg and Shrain{@} have de-
precise for a class of systems characterlzed_ .by. very .SIO ned an effective “temperature” for stationary nonequilib-
energy flows. These systems are out of equilibrium, eithe

because they are very gently “stirred,” i.e., work is con- rium systen_\s through an expression involving the response,
stantly done on them, or because they have undergone tge correlatlon,.and the temperature_of the bath. A closely
quench from higher temperatures a long time ago. rglated expression appears ngturally in the theory of nonsta-
The most typical example of such a system is a piece ofionary systems exh|b|t|ng agirig, 3], .such as glasses.

glass that has been in a room at constant temperature for Y& show here that this expression indeed deserves the
several months. Since the glass itself is not in equilibriumname of temperature, becaugg the effective temperature

we have, in principle, no right of talking about “the tempera- 8ssociated with a time scale is the one measured on the sys-
ture of the glass,” but only about the temperature of thetém by a thermometer, in contact with the system, whose

room. However, we may legitimately ask what temperaturg’€action time is equal to the time scal@) it determines the
direction of heat flows within a time scale, afii) it acts as

a criterion for thermalization.

*Also at Service de Physique de I'Etat ConderSaclay, CEA, We shall here consider simultaneously two different con-
Saclay, France. Permanent address: Laboratoire de Physiqae Theditions in which a regime with small flows of energy exists.
ique de I'Ecole Normale Superieure de Paris, Paris, France. Elec- (1) Ordinary thermodynamical systems in contact with a
tronic addresses: leticia@:Iptl.jussieu.fr, leticia@spec.saclay.cea.fheat bath at temperatufiethat are slowly driver{“stirred” )
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and the manner of the stirring are such that, for long enouglwhere,(t) is the Gaussian thermal noise. korstirredsys-
times, the system entersstationary time-translational in- tems, we consider purely relaxational dynamics, where the
variant(TTI) regime[6]: one-time average quantities are in- average velocity;(s) is proportional to the gradient of the
dependent of time, two-time quantities depend only uporHamiltonianE(s):
time differences, etc. Stationarity is a weaker condition than
thermodynamical equilibrium, since it implies loss of by(s)= —E r. JE(s)
memory of the initial condition but not all other properties ! 7Y s
that are linked with the Gibbs-Boltzmann distribution.

(2) Purely relaxational systems that have been preparetthe symmetric matriX’ is related to the correlation function
through some cooling procedure ending at tiwed and are  of the noisez by the Einstein relations
kept in contact with a heat bath at a constant temperature
up to a(long) waiting timet,, (as in the example of the (mi(1) m(t'))=2TTy; 6(t—t"), 2.3
glass. t, is also usually called “annealing time” in the glass )
literature. In this case physical quantities need not be TTIWhereT is the temperature of the heat bath. Averages over

and in interesting cases they will keep a dependence typon the thermal history, i.e., averages over many realizations of
(and also, in many cases, upon the cooling procédoreall  the same experiment with different realizations of the heat

later timest= 7+t,,. bath, will be denoted by angular brackets. We assume of
We shall treat in parallel the “weak stirring(D—0) and ~ course(#;(t))=0, Vi,t. We have chosen the temperature
the “old age” (t,—) limits: both takenafter the thermo- Units so that Boltzmann's constant is equal to 1. The equi-
dynamical limit of infinite number of degrees of freedatte librium distribution is then proportional to the Boltzmann
show that they lead to the same behavior, from the point ofactor exg—E/T). .
view of thermalization and effective temperatures, provided For stirred systems, we add tb; a perturbation propor-
that one expresses time dependences in terms of the correfenal to D, that cannot be represented as the gradient of a
tions of the systenh7]. function (i.e., is not purely relaxationgl but is otherwise
As a test of our ideas, we discuss thermalization in thedeneric. We then hav&V=(Z;b;(s)s;)>0 at stationarity,
context of the mean-field theory of disordered systems, ofi€aning that work is being done on the sysfdm,15.
the low-temperature generalization of the mode coupling We denote the observablesnergy, density, magnetiza-
equations, but the nature of our results makes us confide®on, etc) by O(s). Throughout this work we shall denote by
that they have a much wider range of validity. t,, ort’ the earliest timdto be related to the waiting timet
In Sec. II, we recall the generalization of the fluctuation-the latest time, and the relative timet—t,,. These times are
dissipation relation to the nonequilibrium case. In Sec. Ill,measured, in the case of the unstirred systems which exhibit
we consider the reading of a thermometer coupled to a syfding, from the end of the cooling procedure.
tem: when the system is in equilibrium we show that the Given two observable®; andO,, we define their corre-
thermometer measures the temperature of the heat bafitions Cix(t,ty)=(O1(t)O,(ty))—(O1(t))}(Ox(ty)), and
while when it is out of equilibrium it measures different their mutual response
effective temperatures depending on the observation time
scale. These effective temperatures are equal or higher than Rys(t,t,)= 604(1) (2.4)
the one of the bath and are closely related to the FDT viola- 12 Shy(ty,)
tion factor [8-13,4,3 introduced to describe the out-of- ] ) o
equilibrium dynamics of glassy systems. In Sec. IV, we re-whereh, appears in a perturba_mon of the Ham_lltom_an qf the
call how time scales or correlation scales are defined iform E—E—hy(t)O,. Obviously, causality implies
systems with slow dynamics. We then argue that, if the FDTR12(t,ty) =0 for t<t,,. It is also useful to introduce the in-
violation factor is well defined within a time scale, a single tegrated responssusceptibility
degree of freedom thermalizes within that time scale to the .
cqrrespond_mg effective temperature. In Sec. V, we extend Xlz(t,tw)EJ dt'Rys(t,t"). (2.5
this analysis to several degrees of freedom and show that the ty
effective temperature determines the direction of heat flows,
and can be used as a thermalization criterion. In Sec. VI, weet us now make a parametric pl&] of x(t.t,,) vs C(t,t,)
discuss various phenomenological “fictive temperature”for several increasing values of. We thus obtain a limit
ideas that have been used for a long time in the theory ofurve lim _..(t,t,)=x(C). In the case of a weakly driven
structural glasses. Our conclusions are summarized in Sesystem, we wait for stationarity and plog(t—t,) vs
VI, where some experimental implications of our work are C(t—t,,) for several decreasing values of the drivibgWe

(2.2

suggested. thus obtain the curve lig,ox(t—t,,,D) = x(C).
The fluctuation-dissipation theore(RDT) relates the re-
II. THE FLUCTUATION-DISSIPATION RELATION OUT sponse and correlation function at equilibrium. One has

OF EQUILIBRIUM
1 9C(t—ty)
Let us consider a system witN degrees of freedom Rlz(t—tw)=fT.
(s1,-.-,Sn), Whose dynamics is described by Langevin equa- W
tions of the form

(2.6

1
si=bi(s)+ 7(1), 2.1) X12(t= 1) = 7 [C12(0) = Coat—tw)]. (2.6b
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12 — . ; dx(C) _ X(C)
jic - T 2.7
1 - -
This corresponds to
0.8 | .
X(C) dC(t,ty)
X(t—tw) 0.6 | i R“JW__T_"TEI_’ (2.9
04 - 4 where the derivative is taken with respect to the earlier time.
We have thus defined(C), the FDT violation factof4,5],
02k i for nonequilibrium systems with slow dynamics.
When FDT holds, foD—0 (or t=t,—, respectively
0 ! . ! . we can treat the system as being in equilibrium anténds
0 0.2 0.4 0.6 0.8 1 to 1 in the limit. When this does not happen, we may inquire
Ot~ tw) about the physical meaning &f(C). In order to answer this

guestion, let us first recall the relationship there is between
FIG. 1. The susceptibility(t—t,,) vs the autocorrelation func- the EDT and the equipartition of energy.
tion C(t—t,,) for the model of Appendix A once stationarity is

achieved. The paramet® is equal to 0.05, 0.375, 0.025, and
0.0125, respectively, from bottom to top. The dots represent the
analytical solution for the limiD—0. One sees that, in this limit,
the FDT violation factorX(C) tendscontinuouslyto the dotted

Ill. FREQUENCY-DEPENDENT THERMOMETERS
THAT MEASURE EFFECTIVE TEMPERATURES

straight lines. The value & at the breakpoint i€F*, the Edwards- We use a harmonic oscillator of frequeney to measure
Anderson order parameter or the ergodicity breaking parameter ithe “temperature” of a degree of freedo@(s) [O(s) may
the language of the MCT. be the energy, or some spatial Fourier component of the

magnetizatiofh At the waiting timet,, we weakly couple the
If the equilibrium distribution is asymptotically reached for oscillator to the system vi®(s), while we keep the system
t,— (or D—0 in the case of stirred systemthe FDT in contact with a heat bath at temperatdreWe wait for a
implies that the limit curvey(C) is a straight line of slope short time until the average energy of the oscillator has sta-
=1/T. bilized. If the system were in equilibrium, by the principle of

However, there is a family of systems for which the lim- equipartition of energy we would hai&,q»)=T.

iting curve x(C) does notapproach a straight linesee Figs. Assuming linear coupling, the Hamiltonian reads
1 and 2. For driven systems this means that the slightest
stirring is sufficient to produce a large departure from equi- Etota= E(S) + Eosct Eint. (3.9
librium even at stationarityFig. 1), while in the case of a

relaxational system it means that the system is unable t&”hefe
equilibrate within experimental timggig. 2). 1 1
Let us denote by-X(C)/T the slope of the curvg(C): EOSC=§ X2+ > w%xz, 3.2
1.2 T T . . Ein:=—aO(s)x. (3.3
| i The equation of motion of the oscillator reads
o %o , | X=—wix+ao(t). (3.9

(tt) 06 v In the presence of the coupling, #@Xx(t) is sufficiently
X yqw . I~ -

small(an assumption we have to verifyposteriorj, we can
use linear response theory to calculate the actio® af the
0.4 § oscillator:
02t - t
O(t)=0p(t)=a | dt'Rp(t,t")x(t"), (3.5
0 ! | 1 H 0
0 02 0‘4C(t,tw)0'6 08 ! whereOy(t) is the fluctuating term and where the response

function Ry is defined by

FIG. 2. The susceptibility(t,t,,) vs the autocorrelation func-
tion C(t,t,,) for the model of Appendix A al <T, (D is strictly Ro(t,t)=
zerg. The full curves correspond to different total timgsequal,
from bottom to top, to 12.5, 25, 37.5, 50, and 75, respectively
(t,>t/4 throughout The dots represent the analytical solution We assume moreover that the avera@g(t)) exists(we set
whent,,—. Neither x(t,t,,) nor C(t,t,,) achieve stationaritysee it to zero by a suitable shift of) and that the fluctuations of
Fig. 3. O,, (in the absence of couplingre correlated as

O)(t)

S (3.6
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{Op(1)Op(tw))=Co(t,ty), (3.7 so that the measure is “as local as possible in time.” In fact,
these two quantities are standard in the experimental inves-
whereCq(t,t,,) is a quantity ofO(N). tigation of aging phenomena in spin glas§#s,19.
The equation fox then reads The natural definition of the frequency- and time-

dependent temperature 6f is then

t
'>'<=—ng+aob(t)+azfodt’Ro(t,t’)x(t’). (3.8 -
Tolwo.ty)= 22020 ) (3.19
Thus the oscillator takes up energy from the fluctuations of Xo(®o,tw)
O, and dissipates it through the response of the system.
Equation(3.9) is linear and easy to solve in the limit of small If equilibrium is achieved, then the temperature is indepen-
a? by Fourier-Laplace transform. One thus obtains the fol-dent oft,,, of the frequencyw, and of the observabl®, and
lowing results, whose proof is sketched in Appendix B. coincides with that of the heat bath. The ind@xecalls that
Consider first the case of stirred systems at stationarity, ithe effective temperature may depend on the observable. The
which both the correlation and the response are TTIl. Thdrequency-dependent temperature defined by either Eq.
average potential energy of the oscillator reaches the limit (3.13 or (3.15 is compatible with the Fourier transformed
expression of the FDT violation factd®.8) provided that it
1,5, 1 woColwo) does not vary too fast witlw,. We show later that this is
2 0o(X)= 2 (Eosd = 2x5(wg) (3.9 indeed the case for systems with slow dynamics.
For this definition we have chosen somehow arbitrarily an
after a time~t given by oscillator as our thermometer. However, we show in Appen-
dix C that the same role can be played by any small but
2w (3.10 macroscopic thermometer, weakly coupled to the system.
T a’y"(wp) ' The role of the characteristic frequeney is then played by
the inverse of the typical response time of the thermometer.
We have defined Now To(w,t,) only deserves to be called a “tempera-
ture” if it controls the direction of heat flow. A first way to
PR - it check whether this is the case is to consider an experiment in
X' () =Im fo dt R(t)e™., which we connect the oscillator to an observablg and let
it equilibrate at the temperatuﬁéjl(w,tw). We then discon-

(3.19) nect it and connect it to another observalilg and let it

' equilibrate at the temperatu%z(w,tw). This is not like a
] Maxwell demon, since the times of connection and discon-
If we now define the temperatui,(w) as nection are unrelated to the microscopic behavior of the sys-
tem. The net result is that an amount of eneﬂ'gyl(w,tw)

tc

C(w)=Re J:dt C(t)eiet,

To@)=(Eos, 312 —To,(w,ty) has been transferred from the degrees of free-
we obtain dom associated witlD, to those associated with,: there-
~ fore the flow goes from high to low temperatures. This is an
woCol(wg) actual realization of the idea of “touching two points of the
To(w)= W- (3.13 glass with a copper wire” described in the Introduction.

This observation also suggests a possible explanation of

This is precisely the temperature defined by Hohenberg anthe fact that all FDT violation factors that we know of are

Shraiman[3] for the case of weak turbulend¢he spatial smaller than one: iffo(w,t,) were smaller than the tem-
dependence is encoded @(s)]. perature of the heat bath, it could be possible, in principle, to

Let us now turn to the case of relaxational dynamicseXxtract energy from the bath by connecting between it and
where TTI is violated. Here we have to take into account theour system a small Carnot engine. The argument can be
timet,, at which the measurement is performed, and consideiade sharper by considering a stationary situation in a
wq 1<t <t,. Then, a similar calculation yields for the en- weakly stirred system: but to argue that this situation would
ergy of the oscillator lead to a violation of the second principle one needs to prove

that the equilibration times of the Carnot engine are short
wOEO(wOvtw) enough to make the power it produces larger than the dissi-

1 1
2/y2\ _
5 @o{X,= 5 (Eosor, = 2 (oot (3.149  pated one.

where the averag(axz}tw is taken on a comparatively short IV. EQUILIBRATION WITHIN A TIME SCALE

time stretch aftet,,. This definition of the frequency- and

waiting-time-dependent correlatio@o(wg,t,) and out-of- Before discussing the effective temperature as an equili-
phase susceptibility;(wq,t,,) closely follows the actual ex- bration factor we need to introduce some general features of
perimental procedure for their measure: one considers a timie time evolution of systems with slow dynamics. We first
window aroundt,, consisting of a few cyclesso that phase define the time correlation scales and we then argue that, if
and amplitude can be defineahd small enough respectttp  the FDT violation factor is well defined within a time scale,
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a single degree of freedom thermalizes within that time scale 1
at the corresponding effective temperature.

A. Correlation and response scales

Systems having a long-time out-of-equilibrium dynamics
tend to have different behaviors in different time scales. Let
us start by describing them for long-time dynamics in the C(tw)
purely relaxational case. In Appendix D we give a formal
definition of correlation scale, followinfp].

Consider first, as an example, the dynamics of do-
main growth[19] for the Ising model at low but nonzero
temperatures. The autocorrelation functiorC(t,t,,)
=(1/N)Z;s,(t)si(t,,) exhibits two regimes. el

At long timest,t,,, such thatt—t,<t,,, the correlation 1 10 100 1000
function shows a fast decay from(at equal timesto m?,
wherem is the magnetization. This regime describes the fast £, 3. The correlation functio(t,t,,) vs t—t,, for the same
relaxation of the spins within the bulk of each domain. model as in Fig. 2. From bottom to tag=20, 50, 100, 150, and

At long and well-separated times-t,,~t,,), the corre-  200. The correlation decays rapidly from 1@%*~0.73 and then
lation behaves as a function af(t,)/L(t), whereL(t) is  more slowly fromCE to 0. This second decay becomes slower and
some measure of the typical domain size at time slower ast,, increases.

We refer to these two scales as “quasiequilibrium” and
“coarsening” (or “aging”), respectively. After a given time, Edwards-Anderson order parameter and in mode coupling
the correlation rapidly decays to a plateau vaie and the  theory (MCT) as the nonergodicity parameter: it measures
speed with which it falls below that value becomes smalletthe strength of the fast correlatiof€¥*=m? in domain
and smaller as,, grows. growth). Quasiequilibrium and aging regimes are experimen-

This example helps to stress the fact that different scaletally observed in real spin glasses and polymer glasses
are defined as a function of both timgs this caset—t,,  [22,18§.
finite, L(t,)/L(t) finite] and are well separated only in the  Let us now turn to a similar analysis for driven systems in
limit where both times are large. the limit of weak driving energyp —0. In that case, even if

In Fourier space, this separation of scales is achieved bthe system reaches a TTI regime provided we wait long
considering several frequenciesand increasing times,, . enough(the amount of waiting increases when the stirring
Then, if we considew~const for increasingd,,, we probe rateD decreasesit sometimes happens that some correla-
the quasiequilibrium scale, while if we want to probe thetions and responses acquire a nontrivial low-frequency be-
aging or coarsening scale we have to consider smaller antghvior in the limit D—0 [23]. For example, in Fig. 4 we
smallerw, keepingwL (t,,)/L’(t,,)~const. show the same plot as in Fig. 3, i.&€(t—t,) vst—t,,, for

If we now consider two frequencias; and w, and keep  different, but small, stirring rates. We see that there are at

least two time scales: one, for short time differences, where
w1 the correlation decays rapidly from 1 ©* and one, for

w—2~const, (4.1 long time differences, in which it slowly decays fro&f* to

we shall probe, ag,—, the samescale: it will be the qua-
siequilibrium scale if they both remain finite, or the coarsen-
ing (aging one if we keepw, . (t,)/L'(t,)~const.

These considerations can be generalized to other systems
with slow dynamics. In general there may be more than two
relevant scales [9,4,5,20, for example w=const,
wt L?=const,wt,,=const, etc. In any case, the condition for
looking into the same scale via two successions of frequen- €t —t)
cies remains Eq4.1).

In Fig. 3 we show the numerical solution of our test
model, defined in Appendix A. The autocorrelation function
C(t,t,) is plotted vs the time difference-t,, for several
waiting times in log-log scale. These pldishich are stan-

dard in the Monte Carlo simulations of spin glas§2s)), 0.1 T
show(i) that the system is out of equilibrium, since we have 1 o, 1w 1000
an explicit dependence dy,, and(ii) that there are at least “

two time correlation scales. For short time differenteg,, FIG. 4. The correlation functio€(t—t,,) vst—t,, for the same

the decay is fast, the autocorrelation function is TTI and itmodel as in Fig. 1. From bottom to tdp=0.1, 0.075, 0.05, and
falls from 1 toCFA. It then decays further frol@%* to zero,  0.025. The correlation decays rapidly from 1a@6%~0.73 and then
more and more slowly as the waiting time increases. Thenore slowly fromCF* to 0. This second decay becomes slower and
quantity CE” is known in the language of spin glasses as theslower asD decreases.
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zero. The smaller the stirring, the slower the decag dfom 1.2 , [ , ,
CE” to zero.
It is useful to consider, in these cases, frequencies that go T T ' i
to zero as some function d. The condition that two se- S
guences of frequencies,,w, correspond to the same scale 08 F i
now reads
lim 2= const. 4.2) x(ttw) 0.6 1 §
D0 @2
0.4 i
B. Thermalization criterion for a single degree of freedom 02 ‘ -
within a scale
0 1 1 1 1

Let us now consider a system at a given waiting tirpe 0 0.2 0.4 0.6 0.8 1

or stirring rateD. Heat flows tend to zero dg—o or D—0, Clt,tw)

respectively. It is reasonable to assume that, in these limits, FIG. 5. The susceptibility(t,t,,) vs the autocorrelation func-
the effective temperaturesssociated with any given observ- tion C(t.t,) for the purely relaxationalp=2 spherical model
ableO on a given time scale tend to equalize, provided thatequivalent to theO(N), N— ferromagnetic coarsening oh=3].
their limit is finite. We thus have, for example, in the case of The dots represent the analytical solution whgr-<. The total

lim To(wyg,ty)= lim To(wy,ty). (4.3 lim To(w1,D)= lim To(w,,D), (4.5
ty—ee ty—ee D—0 D—0
w,—0 wp—0 w,—0 wy—0

provided that both limits are finite.

If one looks into a time scale within which the tempera-
ture is almost constant, one can indifferently use a tempera-
_ ture defined in terms of a frequency or a time. In the relax-
lim To(w,tw)=T. (44 ational case one has

ty—®

= const

Similarly, we expect that each fixed frequency sooner or late
thermalizes with the bath:

TO(witW):TO(tth)a (46)

In some important cases the effective temperatures defin ;

by Eqs.(3.13 and(3.15 diverge in the limitt,—o (D—0). Fhovided that
In these cases the effective temperatiigg w,t,,) should 1 aC(t,ty)
diverge for the whole time scale. We shall dwell on this Rttw) =7 ) aTw
problem in Sec. IV C. O htw w

Equations(4.3) and(4.4) are trivially true in a system that - gjmjjar relations hold for the driven case. If, on the contrary,
reaches thermal equilibrium, where all effective temperatureg§ o considers values of frequency or time for which the tem-
eventually reach the temperature of the reservoir. Howevel, o o+ re defined by Eq4.7) is not constant, one cannot

they also describe the situation in which smaller frequencie irectly relate it with the reading of a thermometer coupled
take longer to reach the temperature of the heat bath, in Sugj {1 system.

a way that at any giveiflong) waiting time there are low
enough frequencies that have a temperature substantially dif- _ o .
ferent(in all cases we know, highgfrom that of the bath. In C. Coarsening and the case of infinite effective temperature
particular, Eq(4.4) allows us to answer a question we asked An important physical situation which deserves a special
at the beginning: if a piece of glass has been kept at roordiscussion is that of domain growth. In this case the effective
temperature for several months, a thermometer whose réemperaturéassociated, say, with the total magnetization
sponse time is of order of a few seconds would measure théae “coarsening scale,'wL (t,)/L’(t,,) =const, tends to in-
room temperature, but it would read a higher temperature ifinity as t,—~. The curve y (magnetic susceptibilijy C
its response time is of the order of weeks. (magnetization correlatioriooks like in Fig. 5. This figure

In fact, with the appropriate handling of time scal@  shows the results for a model that is equivalent to@{él)
(see Appendix I Egs.(4.3) and (4.4 make it possible to ferromagnetic coarsening in three dimensions. The integrated
calculate the out-of-equilibrium relaxation of mean-field spinresponsey becomes flat, ag,—, in the aging regime. In
glasses, and also the low-temperature generalization of thather words, the long-term memotgnds to disappear
mode-coupling equations for one single mode. We thus ob- Because experimental measures of aging are in general
tain a solvable example where Ed@4.3) and(4.4) hold. related to the response, this kind of system is sometimes

For the case of stirred systems, the-0 limit plays the referred to as exhibiting aging “in the correlationgtorre-
same role as thg,— limit in relaxational systems provided lations are not TT)l but not in the response. One should
that the time scales are suitably redefined as in(E@). In  stress, however, that the divergence of the effective tempera-
particular, at each fixed value ofw one has ture in the aging time scale can be extremely slow: for ex-
limp_oTo(w,D)=T, and, forw,/w,=const one has ample, in the Fisher-Huse model for spin glas$ed]

—t,~o . In the same situation one has

(4.7)
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1.2 : : : : [25]. Both the analytical and the numerical results exhibit
thermalization within the aging regime.
1 : i In the Sherrington-Kirkpatrick spin-glass model there is a
- full hierarchy of time scales and effective temperatures, a
08k i fact also confirmed numericallj26] and by Monte Carlo
’ simulationg 5]. Another model with infinite many scales and
with a full hierarchy of effective temperatures is that of a
X(t—tw) 06 - 7 particle moving in an infinite-dimensional random medium
\ with long-range correlationg20,25|.
04 r ' ] In Ref. [27], the Monte Carlo simulation of the “realis-
tic” 3D Edwards-Anderson model for a spin glass was used
02 - 7 to obtain they(C) curves, which seem to approach a non-
trivial curve for increasing,, . This suggests the existence of
0 : : : ' . a hierarchy of time-correlation scales.
0 02 O'é(t_twgﬁ 08 The “trap model” for spin-glass dynamid®8] violates

Eq. (4.3) when an unusual choice of a paramédteris made.

FIG. 6. The susceptibility(t—t,,) vs the autocorrelation func- However, it is difficult to interpret the model, with this
tion C(t—t,) for the p=2 spherical asymmetric modglstirred” choice of parameter, as a phenomenological model stemming
O(N), N—oo ferromagnetic coarsening oh=3] for different levels ~ from a reasonable microscopic dynamics.
of asymmetry(stirring): from bottom to topD=0.8, 0.6, 0.4, and
0.2. The dots represent the analytical solution in the limit of zero vy, THERMALIZATION OF DIFFERENT DEGREES
asymmetry. OF FREEDOM WITHIN A TIME SCALE

As we remarked in Sec. lll, dona fidetemperature
hould control heat flow and thermalization. It is the aim of
his section to show that this is indeed the case for the effec-
: : ; tive temperature we have defined. If this were not the case, it
fix h mperatur rows witht,, (while we ar . . ’

ed, the temperatur(w,t,) grows witht,, (while we are would be possible to use our small oscillator to transfer heat

still probing the aging regimeand then starts falling, finally o
reaching the temperature of the bath. If we repeat the experﬁom some degrees of frgedom to othgrs. in other Word_s, by
decorating our copper wire with a suitable frequency filter,

ment with a smallew, the overall behavior is the same, but : ; .
the highest temperature reached will be higher; and so o e would observe heat flowing through it when it touches
! e two ends of the glass.

without an upper limit. The situation is similar, but experi- We shall argue that if different degrees of freedeffec-

mentally more subtle, for “stirred” systems for which the tively int ; . i le. then thev th i
effective temperatures diverge &—0. In such cases we Ively Interacton a given ime scaié, then they thermalize on
that scale. A useful—though not universal—criterion for

measure a system that has a giyemal) driving D. If the | T o .
system is such that fdb —0 the effective temperature of all effective interaction” is that their mutual responsthe re-
ponse of one of the degrees of freedom to an oscillating

but the fastest scale tend to infinity, we may never realiz o1 of the diven frequency coniugate to the other dedree of
that this is the case in an experimental situation, as long eedon) is %f the sa?me or)(/:ier aJs ?he'r self-response gn that
we are not able to repeat the experiment with smaller an e scalle ' P

smaller stirring. The argument is essentially the same both for relaxational
We show one such case in Fig. 6, which represents the € argument IS essentially the Same both Tor relaxationa
stems that have evolved for a long time, or in stationary

m rsening problem for m ionar : - 7
same coarsening problem as before, but made stationary by’Srlven systems in the limit of small driving energy. We shall

“stirring” term in the equation of motion proportional tD. s focus on the relaxational case onl
If one had performed an experiment on such a system for Hw u Xatl Y-

fixed D, one would have observed high effective tempera- We emphasize again that the thermallization. O.f different
tures for separated times, and no evidence of thermalizatiorﬁjegrees of freedom is well defined only in the limit of van-

Only by letting D take smaller and smaller values one can'S.hing heat ﬂO\.N’ e, Io_ng_wait_ing times or vanishing stirring
notice that in fact these temperatures tend to infinity. rates, respectively. This is witnessed b_y the appearance of
one (or more well-separated plateaus in the decay of the

two-time correlation functions.

Let us considen modes(labeled bya,b=1,...n). One

In mean-field models one can close the Schwinger-Dysogan write, in general, some Schwinger-Dyson equations for
equations into a set of dynamical equations involving onlytheir correlation<C=(C,,) and responseR=(R,;,):
the correlation and response functions. This allows us to

To(w,t,,) grows like a power of In,.
The fact that the effective temperature in the aging regim
tends to infinity means that if we measure itaamall and

D. Systems with finite effective temperatures

solve them analytically for large times, and also to obtain ~ ¢Can(ttw) _

their full solution, via a numerical integration, starting from a at 2 Haclt) Coplttw) + 2T Rap(tu 1)
pair of initial timest,,=t=0. We thus obtain the curvg C) .

by integrating the response function and plotting it @s _,_2 fWdt”Dac(trt”)Rcb(tw-t”)
Two cases in which there are only two time-correlation c Jo

scales are the test moddl] considered herécf. Appendix

A) and the case of a particle moving in an infinite- +2 Jtdt”E (L) Co(t" ty), (5.13
dimensional random medium with short-range correlations o Jo  TAC T TR owm
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IRp(t,ty) This is the usual equilibrium MCT equati$B0]. The equa-
- —; HacdDRep(t,ty) +0(t—1ty) Sap tion for the responsé5.1b with the same equilibrium as-

sumptions becomes the time derivatidévided byT) of Eq.
(5.13, as it should.

In a case in which the system is unable to reach thermal
equilibrium, like the low-temperature phase of spin glasses,
the solution of Eqs(5.1) will exhibit several time scales. The
question as to how many scales one has to consider in order
As they stand, Eqg5.1) are just a way to hide our difficul- to close the dynamical equations can be answered for each
ties under theX, D carpet. Several approximations exten- model unambiguously by the construction in Ri], suit-
sively used in the literature amount to various approxima-ably generalized to several modes.

t
+2 f dt"Z 5ot t") Rep(t", t).
c Ji,
(5.1b

tions of the kernel€ andD.
In equilibrium, the symmetrieg29] of the original prob-
lem allow us to write

dDap

1
2ab(t_tw) =

T 7, (t—ty), (5.29
1 9C,,
Rab(t_tw):f ot (t_tw)- (52b)
w

If we now make forX and D the approximation that are
ordinary functionginstead of general functionalsf the cor-

Here, for simplicity, we assume that there are only two
relevant time scale@s in the coarsening example of the last
section. We discuss later a model system that acts as an
explicit example of this situation. We propose an ansatz for
the long-time asymptotics, and then verify that it closes the
equationg4]. We assuméand later verify that all two-time
functions can be separated in two regimes.

Finite time differences with respect to the long waiting
time, i.e.,t—t,, finite and positive, antl,—oc. In this regime
TTI and FDT hold.

Aging regime, corresponding to long and widely sepa-
rated times, i.e.f~t,—«. In this regime neither TTI nor
FDT hold.

relations and the responses, we obtain the mode-coupling o finite time differences and a long waiting tirhe we

approximation(MCA)

Dan(C)=Fap(C), Eab(c):;j Fab,cd(C)Rea, (5.3

where there is a model-dependent functiefa) such that

IF 2F
Fan(Q)= Er Fab,ca(@) = ErRET (5.9

If the system equilibrates, one recovers the usual form of

the mode-coupling theoryMCT) that is applied for super-
cooled liquids[30]. It will be instructive to recall how equi-
librium is reached within the framework of E¢5.4). One

recalls the FDT conditiong$5.2); time translational invari-

ance: functions of one time are just constant and functions o
two times depend upon time differences only; reciprocity:

Cap(t—t,)=Cpa(t—t,). Putting this information in Eqgs.
(5.1 and(5.4) one obtains

ICa(t—ty)

at == ; HacCen(t—ty)

1 o o)
+ T 2 [Dac(0)Capltw—tw) = D3Co]

&ch(t” —tw)
at" '

(5.9

1
+T§

t
f dt"D e (t—t")
tW

whereD ;.,C ¢, stand for limits of widely separated times,
ie.,

DZ=limDydt).

t—oo

Cr=1limC,t), (5.6
t

— 00

have
CiPT(t—t,)= lim Cgup(t,ty), (5.7a
twgboo
REDT(t—t,)= lim Rgy(t,ty), (5.7
tw—>w
with
FET
a
Reb (t=tw) =3 = (t=tw), (5.8
CH= lim lim CP2T(t—t,). (5.9

t—ty—® ty—®

The aging regime is defined as the time domain in which
tﬁwe correlations fallmore and more slowlybelowCE}. For
these times we denote

Cab(t,tw) =Cap(tity),  Rap(t,tw) =Rap(t,t). (5.10

The separation(5.7) induces within the MCA a similar
separation fo andD [cf. Egs.(5.3) and(5.4)], namely, for
close times,

DEPT(t—ty)= lim Dap(t,ty),

tW*} o0

ST (t—t,) = lim 3t ty), (5.1
tWHDO
where FDT holds:
FET
a
2Rt = 5 5 (k). (5.12

Again, we can define
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lim lim DEPT(t—t,)=DEL, (5.13  Wwhere theX,, are constants and tte,,(t) are functions to
t—ty—o ty,—o be determined from the dynamical equations. Note that the
derivative in Eq.(5.19 is taken with respect to the earliest

and mark with the tilde the aging part of the kernels: time.
= _3g Remarkably, it turns out that one can close the equations
Dap(titw) =Dap(ttu) - Zap(titw) =Zap(ttw)- .19 with two different types of ansatz for the long-time aging
In order to close the dynamical equations, we make afehavior. In Appendix E we show how this is done. In terms
ansatz for the aging partS,(t,t,) and R, (t,t,). For a  of the effective temperatures the meaning of these two pos-
problem in which the correlations vary only within two time sibilities is the following.

scales, the natural generalization of the solutiofdihis (1) Thermalized aging regim& he effective temperatures
- - associated with the observabl€s ,0, are equal to each
Can(t, tw) = Capl hap(tw)/hap(t) ], (5.1538  other for frequencies and waiting times in the aging regime:
- they are not necessarily equal to the temperature of the bath.
ﬁab(t,tw)z % f?;ab (1), (5.15h ﬁ;t?]i.gher frequencies, they both coincide with the one of the
w :

Tiw,ty) =Ty w,t,)=T, t,—», Cu>CE quasiequilibrium,
Tiwty) =Ty t)#T, ©—0, t,—o, Cu<CE, aging. (5.16

Not surprisingly, in this case we find th&; and O, are strongly coupledalso in the aging regimein the sense that the
mutual responses

- X 3Cyy
Ryat,ty) = T
w

- X dCy
Ry (t,ty) = T (5.17
w

whereX>0, are of the same order of the self response functions.

(2) Unthermalized aging regimé& he effective temperatures associated with the observéble®, for combinations of
frequencies and waiting times corresponding to the aging regime are neither equal to each other nor to that of the bath, while
for higher frequencies they both coincide with the one of the bath.

Ti(w,ty) =Ty wt,)=T, t,—», Cup>C: quasieq.,

T t)#To(o,t)#T, ©—0, t,—o, C,<CE, aging. (5.18
|
In this case,0; and O, are effectively uncoupledin the A. An explicit model with thermalization
aging regime, in the sense that In order to test in a particular example that these
_ _ asymptotic solutions are not only consistent, but are in fact
_ X19C1p ~ X21 9Cyq reached, we solve numerically the mode coupling equations
Raalt,tw) = = i, Raa(t,tw) = = a, (5.19  with two coupled modes, witk given by
F(q)=afi+K?qb,. (5.2
where
We impose normalization at equal times of the autocorrela-
X1, X1 0. (5.20  tion of both modes:
Cu(t,t)=Cxt,t)=1. (5.22

We have not found any other way of closing the equations
[31,32. We shall show below, in a particular case which can As usual with the mode-coupling equatioh83)—(36)
be numerically solved, that indeed either cébeor case(2) and(29)], one can find a disordered mean field model whose
take place. Let us remark that a solution wKh,=X,,#0,  dynamics is exactly given by these equations. This is the
X11=X5=X#0, andX# Xy, is not compatible with the in- model defined in Appendix A.
terpretation ofX as an inverse temperature. We do not find Figures 7 and 8 show the numerical solution of the exact
such a solution in our test models and believe that it is nosystem of coupled integrodifferential equations whose large-
realizable in general. time asymptotic can be analytically obtained as in Appendix
The considerations of this section can also be made in thE. In Figs. 7 and 8 we plaog(C) for two cases. In Fig. 7 we
limit of small stirring. consider two uncoupled systems that evolve from the initial
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1.2 + .
22
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FIG. 7. The susceptibility4(t,t,,) and xo(t,t,) vs the corre- FIG. 9. The susceptibilitiesy;;(t—ty) vs the correlation func-

sponding autocorrelation functio;(t,t,,) andCy(t,t,) for the  tions C;;(t—t,,) for two slightly driven system$D =0.1), weakly
uncoupled aging systems. The slopes of the curves, i.e., the FDTcoupled. The FDT violation factors;;(C;;) given by the slopes of
violation factors and hence the effective temperatures are differenthese curves are now the same: after a short transient corresponding
This corresponds to thenthermalizectase. to finite times all the curves become parallel. The aging regimes
havethermalized
condition C414(0,0)=C,,(0,0)=1 and
C15(0,0)=C,4(0,0)=0. We see that the systems evolve in-  Consider, for instance, two observabl®egs and O, their
dependently andX,,# X,, while X;,=X,,=0 (unthermal- associated autocorrelation functior;(t,t,), C,u(t,t,),
ized casg In Fig. 8 we consider the same global system buttheir integrated self-responsas;(t,t,,), x»(t,t,) and the
now including a weak coupling between the two individual effective temperaturest,(C;;), T,(C,,). We can plot
systems. Clearly, after a short transient associated to shoft(C,;) vs C;; andT,(C,,) vs C,,. These two plots need
times, all curvesy;;(Cj;) get parallel. The systems aging to not be the same, even if all scales are thermalized. Consider
regime temperatures for the two subsystems have becommow a parametric plot of,4(t,t,,) vs Coi(t,t,,), in the limit
equal(thermalized cage of very larget,,: it defines a functiorC,;=H(C,,) that al-

It is interesting to note that, in this example, Onsager’slows one to calculat€,; for larget,t,,, givenC,(t,t,,).
reciprocity relations hold:R;,=R,;, C;,=C,;. However, The condition for thermalization in every time scale is
one can imagine situations in which they do not hold sepathen that the curveT,(C,,) coincides with the curve
rately, but where howeveX,= X,;. T1(H(C,y), both considered as functions 6%,:

For comparison, we show in Fig. 9 the corresponding plot
for two weakly coupled systems in the limit of small stirring. T1(H(C22))=T2(Cp). (5.23

The deviation ofT,(H(C,,) from T,(C,,) is a measure of
_ the degree in which the two observables are not thermalized.
Let us briefly discuss what would happen in the presence Actually, Eq. (5.23 was obtained as an ansatz for the

B. Many scales

of many scales, each one with its own temperature. dynamics of a manifold in a random medium within the Har-
tree approximatio37], where the role of different observ-
14 R T S ables is played by the displacements at different spatial
wavelengths:
12 .
I S Ci(t,t’) =Hy(Ci—o),
0s | ] Ti(Hi(Ck=0))=Ti=0(Cy=0)- (5.29
x(tt) 06 L i In this case, the modes at differdnthermalize at the same
: effective temperature, although their mutual responses van-
04 L i ish, as implied by translational symmetry in mean.
0.2+ u VI. COMPARISON WITH OTHER EFFECTIVE
0 | TEMPERATURES
01 02 03 04 05 06 07 08 09 1 The idea of “fictive temperatures[’38] T; in glasses goes

ol t) back to the 1940s and it has developed sif8%®-41]. Here

FIG. 8. The susceptibilitieg;; (t,t,,) vs the correlation functions W€ !’ecall it briefly, for the sake of comparison with the ef-
Cij(t,ty) for the two aging systems of Fig. 2, this tinveeakly ~ fective temperature that we have discussed. _ _
coupled. The FDT violation factorX;;(C;;) are almost parallel: When cooling a liquid the time needed to establish equi-
thermalization is almost complete. librium grows and, eventually, the structural change cannot
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keep pace with the rate of cooling: the system falls out ofnamics following a quench into the glass phase can be
equilibrium and enters the glass transition region. It is thersolved, one can compufEy(w,t,) explicitly. Three differ-
said that “the structure is frozen” at a temperature characent behaviors are found.
terized by a fictive temperaturg; . The fictive temperature (1) In the simple model we have been using as a test
defined in terms of different quantities of interest, e.g., theexample in the previous sectiofé], To(w,t,,) starts from
enthalpy, the thermal expansion coefficient, etc., do not necfo(w,t,) =T, atT=T, and slightlyincreasesvhen the bath
essarily coincide. Furthermore, it has been experimentallfemperature decreases beldy. One would instead expect a
observed that glasses with the same fictive temperatures dietive temperature to remain stuck ¥ in a (mean-field
rived at through different preparation paths may have differmodel in which the glass transition is sharp.
ent molecular structures. The fictive temperature is hence a (2) There are other mean-field models such as the
phenomenological convenience and should not be associat&herrington-Kirkpatrick spin-glass model in which there are
with a definite molecular structufd1i]. infinitely many different effective temperatures. The lowest
The fictive temperature is a function of the temperature ofaging-regime  temperature  appears  discontinuously
the bathT. At high temperature, when the sample is in the[To(w,t,)>T4] as one crossegy and can be showfb] to
liquid phase,T;=T. When the liquid enters the transition decreasewith decreasing temperature. Another example of
rangeT; departs fronil andT;>T, and, finally, deep below this kind is the model of a particle moving in a random
the transition range, where the relaxation is fully stoppedpotential with long-range correlatiofig0,25|.
Ti—Ty. The detailed bath-temperature dependence of the (3) In all cases we know of domain growth mod¢i®]
fictive temperature in the region of interest is usually ex-one obtains X(C)—0 for t,—, in the whole low-

pressed by40,41]] temperature phase. Hentg(w,t,,)—= in the aging(coars-
ening regime for all heat bath temperatures below the order-
: T =T ing transition. This behavior also holds for certain extremely
Ti=- m (6.1 simple disordered systems such as the spherical Sherrington-

Kirkpatrick spin glas$42], the toy domain growth model we
where the characteristic timg(T;,T) depends both upon used in this paper.
Tf(t) and upon the thermal h|st0ry of the Samp|e given by Itis important to remark that these Simple examples have
T(t). At equilibrium T;=T andT;=0. This nonlinear differ- the (sometimes unrealistideature that nothing depends per-
ential equation determinég(t) once onechoosesT;,T). manently upon the cooling procedure. One expects, however,

A Commomy used expression is the Narayanaswamythat more refined models that go beyond the mean-field ap-
Moynihan equation proximation will capture a cooling rate dependence that will

also become manifest in the effective temperature.
Another attempt to identify and relate a microscopic ef-
, (6.2 fective temperature to the fictive temperature of glasses was
put forward by Baschnagel, Binder, and Wittma#8] in
the context of a lattice model for polymer melts. They have
pointed out that in this model the usual FDT relation be-
through these constants. tween the specific heat with the e_nergy_fluctl_Jations is brol_<en
at low temperatures and have tried to identify the FDT vio-

In order to obtain the time relaxation of the gquantity ofI tion fact th ion th forimt@mal
interest, the picture is completed by proposing a given relax.21on factor with-an expression théy propose lforiaerna
temperature The internal temperature defined [i43] has,

ation function, like the stretched exponential, the Davidson—h th | A v of not reducing o the bath
Cole function, etc., and by introducing the fictive tempera-t owevert, e'urgﬁ eﬁ'sar?tproperi/o nc;] reducing to the ba
ture through the characteristic tim€T;,T). See[41] for an emperature in the fugh temperature phase.

extensive discussion about the applicationd ptto the de- it Inf [4I4]t'F ra?ﬁ aESTth(?[_rt hat\;]e alsoffd|st(_:u3fed the E[)OSS'.b'I'
scription of experimental data. ity of relating the ratio with an effective temperature, in

One may wonder whether is a relation between fiotve the particular case of the Backgammonn model. They have

temperature of glass phenomenology and ¢ffectivetem- ::omparetd the \{a.lue ?{(t’tw) for df.'nt';[et.t'meSt’tW .W'trt]. theth
perature we have been discussing in this paper. emperature arising from an adiabatic approximation they

First of all, one notes that the fictive temperatures arel'Ised to solve the model. T_he_resu'F is negativ_e, in _the sense
defined through the relaxation of the observables, unlike thénat 'tI'/X(:t',tW) does not coincide with the "adiabatic tem-
one we consider here which are defined rather in terms df€rature.

fluctuations and responses. Both temperatures may depend Thesci exampltes suggt]_eTIt that the phe{]om?no(ljoglca}lbflctlve
upon the observable and upon the thermal history of thdemperatures ac e“ssen ally as para’r'ne €rs for gescribing an
sample. out-of-equilibrium *“equation of state” while the effective

The dependence of the effective temperature defined it mpergture we lhave discussed plays a role closer to the
Eq. (3) uponT depends on the model. In all cases FDT holds ermodynamical one.
in the high-temperature phase afg(w,t,)=T, the effec-
tive temperature is equal to the bath temperature. When en- DISCUSSION, EXPERIMENTAL PERSPECTIVES,
tering the low-temperature phase, the temperature depen-

. . AND CONCLUSIONS

dence of the effective temperature observed at fixed low
frequency depends on the model. In certain simple mean- Although our discussion has been biased by the models
field (or low-temperature mode-couplingiodels whose dy- we can solve at present, we feel that the concept of the ef-

XA (1-x)A
(T, T)= 19X ?-l-—_l_f

where 7y, A andxe[0,1] are some constants. All the infor-
mation about the dynamics of the system enters ifjo
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as a thermometer of Sec. Il. From what we know from the
time scales of real spin glassgi6,18, if the time after the
guench is of the order of 10 min, and the period of th€

(/,__ circuit is of the order of the second, we are prob{agleast

(/"—D - partially) the aging regime: the temperatui@efined as the
|_——) l average energy of the cap_ac)tshoulq be dn‘ferer)t from 'ghe

( _ bath temperature. We believe that it would be interesting to

return to the magnetization noise experimdritg] with the
purpose of measuring the effective temperature: this would
give us, for instance, useful insights into the nature of the
( spin-glass transition.
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One should also pay attention to the equilibration timeswith several advantages, in particular, that exact dynamical
The effective temperature measured by a small oscillator iequations can be written for it in the thermodynamic limit.
related to the FDT violation factor provided that the equili- As shown by Franz and Her{86], these dynamical equa-
bration timet, [Eq. (3.10] remains much smaller thag. It tions are also those obtained from the MCA to the Amit-
sometimes happens that an observablahich should ther- Roginsky model[34]. When considered in full generality,
malize at an effective temperatufB,(w,t,) exhibits so the two-time dynamical equations correspond to the low
small fluctuations at this frequency that this time becomegemperature extensidi6,29 of the simplest mode coupling
unbearably long. This is the case, for instance, of High theory for the supercooled liquid phase proposed by
modes in the aging time scale for a manifold in a randomLeutheusser{46] and Bengtzelius, Gotze, and &jnder
potential. Therefore, although &l modes nominally ther- [47,30. A thorough discussion of the physical principles un-
malize at the same effective temperature, only low endugh derlying mode-coupling theory is found [A8], Chap. 9. It
modes can be effectively used to measure it. How low has been also recently shown by Chanetaal. that this
must be will depend on the time scale one is looking at. model is related to a mean-field approach to Josephson junc-

Several numerical and real experiments in structurafion arrays[49].
glasses can be envisaged. For example, one can compareWe consider a system ™ variabless=(s; ...,Sy), sub-
density fluctuations and compressibility in different lengthject to fOTCESFiJ given by
scales in order to check if they are equilibrated within a time
scale. Since the low-temperature extension of the MCT Fl= > ng"'l'p—lsj s
makes definite predictions on the value of the first nontrivial U1rndp-1} v

effective temperature appearing as one crosses the tran:sitior}.I . . . .
, ) . Where the couplings are random Gaussian variables. For dif-
(see Sec. V| this provides a concrete ground for an experi-

mental tesfing of MCT. whie for permutations of 1% aame.set of indices they are
We close by considering the followinglightly Gedan- P y

ken spin-glass experiment of Fig. 10: Currents are induceffzorremEEOI so that

in the coil by the magnetization noise of the spin glass, mz 8iif1(q)+s;sifo(q)/N (A2)
which is in contact with a heat bath. Apart from the interac- ' J N " ’

tion with the sample, the-C circuit of coil and capacitor is whereq=(s-s')/N. In the purely relaxational case, one has
without losses. This is exactly a realization of the oscillatorf,(q)=f;(q). We take heref,(q)=(1—-D)f;(q), where

APPENDIX A: THE TEST MODEL

Y
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f1(q)=pgP~ /2. The couplings)* "'»~* are symmetric un-
der the permutation— j, in the purely relaxational cag®
=0). On the other hand, m“2 Jp-1 andJ"2 Ip-1 are un-
correlated, one habB =1.
The dynamics is of the Langevin type:
= —F)(9— u(t)s;+hi(t)+ (1), (A3)
where 7 is a white noise of varianceT? w(t) is a Lagrange
multiplier enforcing the spherical constrait ;s?=1, and
h;(t) is an external fieldlusually set to zenp needed to
define the response functions.
In Figs. 1 and 2 we plot thg(C) curves for the asym-
metrical and symmetricgd=3 model, respectively. In Figs.

3 and 4 we plot the autocorrelation decays for the symmetri-

CUGLIANDOLO, KURCHAN, AND PELITI

1 N
Ruattw) = g 24 A(si(0)/ 8N (tw),

1 N
Raatitw) = 2, &si(D)/aNfi(ty) (A6)

precisely satisfy Eqs(5.19—(5.4 with F given by Eq.
(5.21).

The results for the effective temperatures obtained from
the numerical integration of the exact evolution equations of
these systems are shown in Figs. 7 and 8. See the main text
for the discussion.

APPENDIX B: ENERGY OF THE OSCILLATOR

cal and asymmetrical versions, respectively. Figures 5 and 6

show they(C) curves for thep=2 version that is analogous

to the O(N) model inD=3 whenN—-co,

In this appendix we solve EQq(3.8), we compute
3wg(x?(t)), the average potential energy of the oscillator.

In order to check thermalization in this particular exampleWe thus prove Eq(3.14 and its form Eq.(3.13 valid for
we consider the evolution of two such systems with sgins the stationary case.

anda, and uncorrelated realizations of disordeandJ’ and
thermal noisen and 7',
the term proportional tg;, and w,; in the Langevin equa-
tions

aS;

- Fe-

11(t)Si— pipoi+hi+ 7, (Ada)

(70'i 3
—=—KF (o)~ pot) oy - (A4b)

it MoiSithi+ 7.

We setu,,=pu,q, SO that the coupling does not contribute to
the stirring. The coefficientg;; are the Lagrange multipliers

for each system. The factdf is introduced to break the
symmetry between the subsystems. The correlations

1 N
Cu(tity) == ;1 (si(V)si(tw)),

1 N
Cadt,tw) =5 2, (oi(D0i(tw),

N

1
Cadtitw) =5 2, (Si(Di(tw),

(A5)

Colt,ty)= E<umﬂm»

and responses

Ru(ttw) = 2 8(si(0)/ ohi(t),
1 N
Reatitw) = 2, &)/ ohf(ty),

respectively. They are coupled via

Let us define

X(w,t)exp(iwt)zftdt'R(t,t')exqiwt'), (B1a
0

C(w,t)exp(iwt)zftdt’C(t,t’)exp(iwt’). (B1lb)
0

If o 1<t, we can assume tha{w,t) andC(w,t) are func-
tions that vary slowly witht, thus defining a Fourier compo-
nent that is “local” in timet.

In general

(x3(t))= aZJtdt' ftdt”G(t,t’)G(t,t”)C(t’ 1), (B2)
0 0

whereG(t,t") is the Green’s function for the oscillator plus
the term representing the response of the systenG{hd’)

is the system'’s auto-correlation function. Using the definition
in Eq. (B1a one can show that the damped oscillator's
Green'’s function reads

1
— wl+ wg—az)("(w,t) '

G(w,t)= (B3)

!

t(t) siMwg(t—t")]0(t—t").

(B4)

G(t,t”)=ex;{

We have here replacedt,w) by x'(t,w) using the fact that
a?N<1. The characteristic time,(t) of the damped oscilla-
tor is given by

2(1)0

22 (wol) (B5)

te(t)=

We can now study EqB2) by using the above expres-
sions forG(t,t’). After a simple change of variables, using
causality and the fact th&(t,t’) decays exponentially as a
function of time differences, EqB2) can be rewritten as
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(xz(t)>=a2J: g—: f:dTJ:dT'G(t,t— 7 G(t,t—7")C(w,t— r)exgiw(r—7)]. (B6)

The fast exponential decay of the Green’s function allows us to re@éeast — 7) by C(w,t). Thus,

oo

(xz(t)>=azf g—i G(w,1)G(—w,t)C(w,t)

[

1 1
wg—wz—asz"(—w,t)_ wg—wz—azN)("(w,t)

. (B7)

5 (= dw C(w,t)
fm ZX"(w,t)—X"(—w,t)

This integral can be calculated by the method of residues. t

We can close the circuit on the upper complex half plane. O(t):Ob(t)+aJ dt'Ro(t,t")x(t"), (C3a
Since Y'(w,t) is analytic in the upper half plane, the only 0

singulzarities are the zeroes of the denominators. Assuming .

thata“y” is small, they lie in the vicinity oto=-__'-w9. In fact_ _ x(t)=xb(t)+af dt'R,(t,t)O(t'). (C3b)
one can check that only two poles penetrate inside the circuit 0

of integration. We obtain therefore

To leading order ira, (OXx) is given by

2C(wo,t)
2 = —-—m
(x(1)) wox (09 D)’

(B8) t
<OX> = aJ'Odt”[RX(t,t”)Co(t”,t,) + Ro(t/ ,t")CX(t,t")].

This is the general result for the temperature. The particu- (C4)
lar result(3.13 that holds for the stationary case is recovered

from Eq. (B8) by letting C(t,») and y(t,») be independent ASSuming now thal™ is such that the thermometer can be
of t. Thus, Eq.(B8) reduces to Eq(3.13. considered to be almost in equilibriutnote that the cou-

pling a is small and that we have chosen a thermometer that

is not itself a glasis we obtain
APPENDIX C: SMALL BUT MACROSCOPIC

THERMOMETERS ) ,
In this appendix we show that the thermometric consider—Q a f
ations made in Sec. Ill do not crucially depend on the choice

of an oscillator as a thermometer. We use here a small but The condition for having no flow is then that the average
macroscopic thermometer defined by the variableg,  of the parenthesis in the integral is zero. The weight function
i=1,...n, and we couple it only to the observalils) of  for this average iR, (t—t’) which contains the characteris-
the system through a degree of freedr(y). tic time of the thermometer.

Our measurement procedure is as follows: we first ther-
malize the thermometer with an auxiliary bath at temperature
T*. We then disconnect it from the bath and we connect it to
the system througb. If there is no flow of energy between
thermometer and system, then we conclude that the mea- In this appendix we review briefly the definition of corre-

(aco(t,t')

t
dt'R(t—t")| —

0

—T*Rp(t,t") . (CH

APPENDIX D: DEFINITION
OF TIME CORRELATION SCALES

sured temperature iE*. lation “time scale” introduced ir{5] for a correlation func-
The energy of the thermometer plus its coupling with thetion that depends nontrivially upon two times.
system is Given a correlation functiorc(t,t,,), which we assume
normalizable in the large-time limiC(t,t)—»C_,>0, we
H=E(y)—aO(s)x(y). (C1)  consider three increasing timeés<t,<tsz, and the limit in

which they all go to infinity, but in a way to keep
b
y lim Cltst)=F(ab). (D1

tl ,t2,t34>30

Q=a(0x)=ady (x()O(t"))]y .- (C2 Cltz tp)=a,Cty t)=b

We look for the condition that ensures stationarity for the The mere existence of the limit “triangle relatiorf’ has
thermometer. The thermometer is characterized by a&xtremely strong consequences: considering four times one
temperature-dependent correlatiof,(t,t")=(x(t)x(t"))  can easily show that is associative

and its associated responBg(t,t’). Using linear response

one has f(a,f(b,c))="1(f(a,b),c). (D2)
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The form of an associative function on the reals is very re- DZbDT(t_tw): Fan(CFPT(t—ty,)), (Ela
stricted, and a classification of all possible forms can be
made[5]. _
It is sometimes convenient to work with the “inversd”
of f defined as 2o (t=tw) =2 FapeaCPT(=t)IRE (1= tw),
C,
f(a,b)=c=f(a,c)=h. (D3) (E1lb

We can now define a correlation scale in the following
way: given two values of the correlation at large timesyhere CFPT stands for the se€ DT(t—t,). One similarly
C(t,t,)=C*andC(t,t,,) =C?, t>t;>t, andC'<C? they are  gptains, in the aging regime,
in a different correlation scale |f

2 A1\ _ ol . .
HEEI=C (B4 Ban(ttu) = FaC(t, ), (E2a
and are in the same scale otherwise. In other words, the time
it takes the system to achie@ is negligible with respect to
the time it takes to achievé* ~ . ~

San(titw) = 2 Fabed C(t tw)Rea(t ). (E2D
APPENDIX E: SOLUTION OF THE TWO- ’
COUPLED-MODE EQUATION

Using the separatiotb.7)—(5.14 and the mode-coupling We can now write two coupled sets of equations, valid in the
approximation(5.3) and(5.4) we obtain a similar separation quasiequilibrium regime and in the aging regime, respec-

for D,, and2,p: tively. Fort—t,, finite, and large time$>t,,, we have
|
dC%p (t—tw) ., DI (O] eor (T RN aCEOT(t" 1)
ot __2 Mact T b (t_tw)_?; Dacccb+Mab+?§ thdt Da (t—t )T.
(E3)
where u.=lim;_ . u.(t) and
MZp=2 lim f At'[Dac(t,t")Ren(t, ") + Zac(t,t") Cop(t,1")]. (E4)
t—ow

In the aging regime, fot>t,, we have

= D PT(0 cT(0
aCat;(tt’tw_):—E [MaC(t) 0 ) Caplttn) + S Bacltity) 200 ) +Z f V00D et Rep(tu 1)
c c c 0
+g fotdt”iac(t,t”)Ecb(t”,tW), (E53
R DFPT(0)— _ _ _ CFPT(0)— CEA
aRat:;tt,tw) _ _z |:Iu,ac(t) ( ) Cb(t'tw)_l_z jt dt/,zac(tyt”)Rcb(t”!tw)+E Eac(t,tw) b ( -I? cb
c c Jty c

(E5b)

Equation(E4), for given M 3, is very similar to the high- X;,=X,,;=0. It is then easy to see that Eq&5) become

temperature mode-coupling equatiof30], and can be effectively uncoupledh this regime and can be solveld] as

solved in the same way. An asymptotic solution for the agingwo separated one-mode equations, with the ansatz

regime can be obtained by using the generalization to more _ -

than one mode of the ansatz[il, Eq.(5.15. The derivative Caa(t,tw) = Caalhaa(tu)/haq(1), (E63

terms in Eqs(E5) can be then dropped provided that; #0 ~

andX,,#0, a fact to be verifiea posteriori We shall find in R (t,t,) = =22 Xaa

this way two different solutions for Eq$EDS). aalrw T o7t
In the unthermalized cas€;; and X,, are different from _ _

zero, and possibly different from each other, while Cot,ty) =Cyy(t,t,,)=0. (E60

w), (E6b
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In the thermalized case, one assumes In short we have the following.
(1) Unthermalized aging regime:
X117 X2= X12= X21= X#0, (E79
X12—0, X21—0, X137 Xa. (E9
h13=hs=hy,=hy=h. (E7b

We have, therefore,
Making the change of variables

N I () - Rulttl =7 50 Raltty) = 2= (E10
h(t) h(t)
and

one finds that only the dependence)osurvives in the equa- _
tions, and that they reduce to a set of fdinstead of eight 1Dy~ x22 19D22
consistent equations for the correlatiqaee[4,25] for a sys- Sty = T T, oot ty) = T a, (E1D
tematic approach

In this way, both for the thermalized and the unthermal- (2) Thermalized aging regime:
ized case one can obta¥y,, M,,, andGEf, . One then has
to check thatX;;#0 andX,,#0. If this is not the case the X11= X10=X1= X=X, (E12
equations become identities, and one cannot anymore neglect _
the derivative term. One has therefore to use a more refined X aDab
long-time limit. These values have to be substituted in Eq. Sap(tt) =7 T o, TP (E13

(E4), in order to complete the solution in both regimes.
Let us remark here that the problem of selecting the funcwhere the aging time scales “lock in,” i.e., there is th@me
tions h,, remains open. This is an asymptotic matchingfunction h(t) for all a, b, such that
problem in a non-local equation, and does not appear to be _ _
easily solvable. Cap(t,ty)=Cap(h(t,)/h(1)). (E19
We have thus found the long-time limit of the correlations
and responses. If there is more than one asymptotic solutiohhis property can also be stated by saying that, gs—~> a
(even modulch), we do not know for the time being which plot of Cll(t t,) Vs 022(t t,) vields a single smooth curve:
asymptotic form is selected by the unique solution of thei.e., that there is a functiof(C) such that
evolution equations, without resorting to explicit numerical

integration. Ell(t,tw)=H(Ezz)(t,tW). (E15
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