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Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics
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We show that, in nonequilibrium systems with small heat flows, there is a time-scale-dependent effective
temperature that plays the same role as the thermodynamical temperature in that it controls the direction of heat
flows and acts as a criterion for thermalization. We simultaneously treat the case of stationary systems with
weak stirring and of glassy systems that age after cooling and show that they exhibit very similar behavior
provided that time dependences are expressed in terms of the correlations of the system. We substantiate our
claims with examples taken from solvable models with nontrivial low-temperature dynamics, but argue that
they have a much wider range of validity. We suggest experimental checks of these ideas.
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I. INTRODUCTION

No physical system is ever in thermodynamical equil
rium. When we apply thermodynamics or statistical mech
ics, we idealize the situation by assuming that ‘‘fast’’ pr
cesses have taken place, and ‘‘slow’’ ones will not: hen
we define an observation time scale which distinguis
these two kinds of processes@1#. It follows that the same
system can be at equilibrium on one scale, and out of e
librium on another, and, more strikingly, that it can be
equilibrium, but exhibiting different properties, on two scal
at once.

Since the assumption of thermal equilibrium lies at t
heart of statistical mechanics, it is usually hard to make th
considerations without a strong appeal to one’s intuition.
show in the following that they can be made, in fact, qu
precise for a class of systems characterized by very s
energy flows. These systems are out of equilibrium, eit
because they are very gently ‘‘stirred,’’ i.e., work is co
stantly done on them, or because they have undergon
quench from higher temperatures a long time ago.

The most typical example of such a system is a piece
glass that has been in a room at constant temperature
several months. Since the glass itself is not in equilibriu
we have, in principle, no right of talking about ‘‘the temper
ture of the glass,’’ but only about the temperature of t
room. However, we may legitimately ask what temperat
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would indicate a thermometer brought into contact with t
glass and, again, we would be very surprised if it did n
coincide with the room temperature. We would be even m
surprised if, putting two points of the glass in contact w
both ends of a copper wire, a heat flow were establis
through it.

In other words, although we know that equilibrium the
modynamics does not apply for the glass, we implicitly a
sume that some concepts that apply for equilibrium are
relevant for it. This is not because the glass is ‘‘near eq
librium’’ but rather because it has been relaxing for a lo
time, and therefore thermal flows are small.

Many attempts have been done to extend the concep
thermodynamics to nonequilibrium systems—such as s
tems exhibiting spatiotemporal chaos or weak turbule
@2,3#. In this context, Hohenberg and Shraiman@3# have de-
fined an effective ‘‘temperature’’ for stationary nonequilib
rium systems through an expression involving the respon
the correlation, and the temperature of the bath. A clos
related expression appears naturally in the theory of non
tionary systems exhibiting aging@4,5#, such as glasses.

We show here that this expression indeed deserves
name of temperature, because~i! the effective temperature
associated with a time scale is the one measured on the
tem by a thermometer, in contact with the system, wh
reaction time is equal to the time scale,~ii ! it determines the
direction of heat flows within a time scale, and~iii ! it acts as
a criterion for thermalization.

We shall here consider simultaneously two different co
ditions in which a regime with small flows of energy exist

~1! Ordinary thermodynamical systems in contact with
heat bath at temperatureT that are slowly driven~‘‘stirred’’ !
mechanically. The driving force is proportional to a sm
number which we shall denoteD. The observation time
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55 3899ENERGY FLOW, PARTIAL EQUILIBRATION, AND . . .
and the manner of the stirring are such that, for long eno
times, the system enters astationary, time-translational in-
variant~TTI! regime@6#: one-time average quantities are i
dependent of time, two-time quantities depend only up
time differences, etc. Stationarity is a weaker condition th
thermodynamical equilibrium, since it implies loss
memory of the initial condition but not all other propertie
that are linked with the Gibbs-Boltzmann distribution.

~2! Purely relaxational systems that have been prepa
through some cooling procedure ending at timet50 and are
kept in contact with a heat bath at a constant temperatuT
up to a ~long! waiting time tw ~as in the example of the
glass!. tw is also usually called ‘‘annealing time’’ in the glas
literature. In this case physical quantities need not be T
and in interesting cases they will keep a dependence upotw
~and also, in many cases, upon the cooling procedure! for all
later timest5t1tw .

We shall treat in parallel the ‘‘weak stirring’’~D→0! and
the ‘‘old age’’ ~tw→`! limits: both takenafter the thermo-
dynamical limit of infinite number of degrees of freedom. We
show that they lead to the same behavior, from the poin
view of thermalization and effective temperatures, provid
that one expresses time dependences in terms of the co
tions of the system@7#.

As a test of our ideas, we discuss thermalization in
context of the mean-field theory of disordered systems
the low-temperature generalization of the mode coupl
equations, but the nature of our results makes us confi
that they have a much wider range of validity.

In Sec. II, we recall the generalization of the fluctuatio
dissipation relation to the nonequilibrium case. In Sec.
we consider the reading of a thermometer coupled to a
tem: when the system is in equilibrium we show that t
thermometer measures the temperature of the heat b
while when it is out of equilibrium it measures differe
effective temperatures depending on the observation t
scale. These effective temperatures are equal or higher
the one of the bath and are closely related to the FDT vio
tion factor @8–13,4,5# introduced to describe the out-o
equilibrium dynamics of glassy systems. In Sec. IV, we
call how time scales or correlation scales are defined
systems with slow dynamics. We then argue that, if the F
violation factor is well defined within a time scale, a sing
degree of freedom thermalizes within that time scale to
corresponding effective temperature. In Sec. V, we ext
this analysis to several degrees of freedom and show tha
effective temperature determines the direction of heat flo
and can be used as a thermalization criterion. In Sec. VI,
discuss various phenomenological ‘‘fictive temperatur
ideas that have been used for a long time in the theory
structural glasses. Our conclusions are summarized in
VII, where some experimental implications of our work a
suggested.

II. THE FLUCTUATION-DISSIPATION RELATION OUT
OF EQUILIBRIUM

Let us consider a system withN degrees of freedom
(s1 ,...,sN), whose dynamics is described by Langevin eq
tions of the form

ṡi5bi~s!1h i~ t !, ~2.1!
h
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whereh i(t) is the Gaussian thermal noise. Forunstirredsys-
tems, we consider purely relaxational dynamics, where
average velocitybi(s) is proportional to the gradient of th
HamiltonianE(s):

bi~s!52(
j

G i j

]E~s!

]sj
. ~2.2!

The symmetric matrixG is related to the correlation functio
of the noiseh by the Einstein relations

^h i~ t !h j~ t8!&52TG i jd~ t2t8!, ~2.3!

whereT is the temperature of the heat bath. Averages o
the thermal history, i.e., averages over many realizations
the same experiment with different realizations of the h
bath, will be denoted by angular brackets. We assume
course^h i(t)&50, ; i ,t. We have chosen the temperatu
units so that Boltzmann’s constant is equal to 1. The eq
librium distribution is then proportional to the Boltzman
factor exp~2E/T!.

For stirred systems, we add tobi a perturbation propor-
tional toD, that cannot be represented as the gradient o
function ~i.e., is not purely relaxational!, but is otherwise
generic. We then haveW[^( ibi(s)si&.0 at stationarity,
meaning that work is being done on the system@14,15#.

We denote the observables~energy, density, magnetiza
tion, etc.! byO(s). Throughout this work we shall denote b
tw or t8 the earliest time~to be related to the waiting time!, t
the latest time, andt the relative timet2tw . These times are
measured, in the case of the unstirred systems which ex
aging, from the end of the cooling procedure.

Given two observablesO1 andO2, we define their corre-
lations C12(t,tw)[^O1(t)O2(tw)&2^O1(t)&^O2(tw)&, and
their mutual response

R12~ t,tw![
dO1~ t !

dh2~ tw!
, ~2.4!

whereh2 appears in a perturbation of the Hamiltonian of t
form E→E2h2(t)O2 . Obviously, causality implies
R12(t,tw)50 for t,tw . It is also useful to introduce the in
tegrated response~susceptibility!

x12~ t,tw![E
tw

t

dt8R12~ t,t8!. ~2.5!

Let us now make a parametric plot@5# of x(t,tw) vsC(t,tw)
for several increasing values oftw . We thus obtain a limit
curve limtw→`(t,tw)5x(C). In the case of a weakly driven
system, we wait for stationarity and plotx(t2tw) vs
C(t2tw) for several decreasing values of the drivingD. We
thus obtain the curve limD→0x(t2tw ,D)5x(C).

The fluctuation-dissipation theorem~FDT! relates the re-
sponse and correlation function at equilibrium. One has

R12~ t2tw!5
1

T

]C12~ t2tw!

]tw
, ~2.6a!

x12~ t2tw!5
1

T
@C12~0!2C12~ t2tw!#. ~2.6b!
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If the equilibrium distribution is asymptotically reached f
tw→` ~or D→0 in the case of stirred systems! the FDT
implies that the limit curvex(C) is a straight line of slope
21/T.

However, there is a family of systems for which the lim
iting curvex(C) does notapproach a straight line~see Figs.
1 and 2!. For driven systems this means that the slight
stirring is sufficient to produce a large departure from eq
librium even at stationarity~Fig. 1!, while in the case of a
relaxational system it means that the system is unable
equilibrate within experimental times~Fig. 2!.

Let us denote by2X(C)/T the slope of the curvex(C):

FIG. 1. The susceptibilityx(t2tw) vs the autocorrelation func
tion C(t2tw) for the model of Appendix A once stationarity i
achieved. The parameterD is equal to 0.05, 0.375, 0.025, an
0.0125, respectively, from bottom to top. The dots represent
analytical solution for the limitD→0. One sees that, in this limit
the FDT violation factorX(C) tendscontinuouslyto the dotted
straight lines. The value ofC at the breakpoint isCEA, the Edwards-
Anderson order parameter or the ergodicity breaking paramete
the language of the MCT.

FIG. 2. The susceptibilityx(t,tw) vs the autocorrelation func
tion C(t,tw) for the model of Appendix A atT,Tg ~D is strictly
zero!. The full curves correspond to different total timest, equal,
from bottom to top, to 12.5, 25, 37.5, 50, and 75, respectiv
~tw.t/4 throughout!. The dots represent the analytical solutio
when tw→`. Neitherx(t,tw) nor C(t,tw) achieve stationarity~see
Fig. 3!.
t
i-

to

dx~C!

dC
[2

X~C!

T
. ~2.7!

This corresponds to

R~ t,tw!5
X~C!

T

]C~ t,tw!

]tw
, ~2.8!

where the derivative is taken with respect to the earlier tim
We have thus definedX(C), the FDT violation factor@4,5#,
for nonequilibrium systems with slow dynamics.

When FDT holds, forD→0 ~or t>tw→`, respectively!
we can treat the system as being in equilibrium andX tends
to 1 in the limit. When this does not happen, we may inqu
about the physical meaning ofX(C). In order to answer this
question, let us first recall the relationship there is betwe
the FDT and the equipartition of energy.

III. FREQUENCY-DEPENDENT THERMOMETERS
THAT MEASURE EFFECTIVE TEMPERATURES

We use a harmonic oscillator of frequencyv0 to measure
the ‘‘temperature’’ of a degree of freedomO(s) @O(s) may
be the energy, or some spatial Fourier component of
magnetization#. At the waiting timetw we weakly couple the
oscillator to the system viaO(s), while we keep the system
in contact with a heat bath at temperatureT. We wait for a
short time until the average energy of the oscillator has
bilized. If the system were in equilibrium, by the principle
equipartition of energy we would have^Eosc&5T.

Assuming linear coupling, the Hamiltonian reads

Etotal5E~s!1Eosc1Eint , ~3.1!

where

Eosc5
1

2
ẋ21

1

2
v0
2x2, ~3.2!

Eint52aO~s!x. ~3.3!

The equation of motion of the oscillator reads

ẍ52v0
2x1aO~ t !. ~3.4!

In the presence of the coupling, ifax(t) is sufficiently
small ~an assumption we have to verifya posteriori!, we can
use linear response theory to calculate the action onO of the
oscillator:

O~ t !5Ob~ t !5aE
0

t

dt8RO~ t,t8!x~ t8!, ~3.5!

whereOb(t) is the fluctuating term and where the respon
functionRO is defined by

RO~ t,t8!5
d^O&~ t !
dax~ t8!

. ~3.6!

We assume moreover that the average^Ob(t)& exists~we set
it to zero by a suitable shift ofx! and that the fluctuations o
Ob ~in the absence of coupling! are correlated as

e

in

y
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55 3901ENERGY FLOW, PARTIAL EQUILIBRATION, AND . . .
^Ob~ t !Ob~ tw!&5CO~ t,tw!, ~3.7!

whereCO(t,tw) is a quantity ofO(N).
The equation forx then reads

ẍ52v0
2x1aOb~ t !1a2E

0

t

dt8RO~ t,t8!x~ t8!. ~3.8!

Thus the oscillator takes up energy from the fluctuations
O, and dissipates it through the response of the syst
Equation~3.8! is linear and easy to solve in the limit of sma
a2 by Fourier-Laplace transform. One thus obtains the f
lowing results, whose proof is sketched in Appendix B.

Consider first the case of stirred systems at stationarity
which both the correlation and the response are TTI. T
average potential energy of the oscillator reaches the lim

1

2
v0
2^x2&5

1

2
^Eosc&5

v0CO~v0!

2xO9 ~v0!
, ~3.9!

after a time;tc given by

tc5
2v0

a2x9~v0!
. ~3.10!

We have defined

x9~v![Im E
0

`

dt R~ t !eivt,

C̃~v![Re E
0

`

dt C~ t !eivt. ~3.11!

If we now define the temperatureTO~v! as

TO~v![^Eosc&, ~3.12!

we obtain

TO~v!5
v0C̃O~v0!

xO9 ~v0!
. ~3.13!

This is precisely the temperature defined by Hohenberg
Shraiman@3# for the case of weak turbulence@the spatial
dependence is encoded inO(s)#.

Let us now turn to the case of relaxational dynam
where TTI is violated. Here we have to take into account
time tw at which the measurement is performed, and cons
v 0

21!tc!tw . Then, a similar calculation yields for the en
ergy of the oscillator

1

2
v0
2^x2& tw5

1

2
^Eosc& tw5

v0C̃O~v0 ,tw!

2xO9 ~v0 ,tw!
, ~3.14!

where the averagêx2& tw is taken on a comparatively sho
time stretch aftertw . This definition of the frequency- an
waiting-time-dependent correlationCO(v0 ,tw) and out-of-
phase susceptibilityx09(v0 ,tw) closely follows the actual ex
perimental procedure for their measure: one considers a
window aroundtw consisting of a few cycles~so that phase
and amplitude can be defined! and small enough respect totw
f
.
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d
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so that the measure is ‘‘as local as possible in time.’’ In fa
these two quantities are standard in the experimental in
tigation of aging phenomena in spin glasses@16,18#.

The natural definition of the frequency- and tim
dependent temperature ofO is then

TO~v0 ,tw![
v0C̃O~v0 ,tw!

xO9 ~v0 ,tw!
. ~3.15!

If equilibrium is achieved, then the temperature is indep
dent oftw , of the frequencyv0 and of the observableO, and
coincides with that of the heat bath. The indexO recalls that
the effective temperature may depend on the observable.
frequency-dependent temperature defined by either
~3.13! or ~3.15! is compatible with the Fourier transforme
expression of the FDT violation factor~2.8! provided that it
does not vary too fast withv0. We show later that this is
indeed the case for systems with slow dynamics.

For this definition we have chosen somehow arbitrarily
oscillator as our thermometer. However, we show in App
dix C that the same role can be played by any small
macroscopic thermometer, weakly coupled to the syst
The role of the characteristic frequencyv0 is then played by
the inverse of the typical response time of the thermome

Now TO(v,tw) only deserves to be called a ‘‘temper
ture’’ if it controls the direction of heat flow. A first way to
check whether this is the case is to consider an experime
which we connect the oscillator to an observableO1, and let
it equilibrate at the temperatureTO1

(v,tw). We then discon-
nect it and connect it to another observableO2 and let it
equilibrate at the temperatureTO2

(v,tw). This is not like a
Maxwell demon, since the times of connection and disc
nection are unrelated to the microscopic behavior of the s
tem. The net result is that an amount of energyTO1

(v,tw)

2TO2
(v,tw) has been transferred from the degrees of fr

dom associated withO1 to those associated withO2: there-
fore the flow goes from high to low temperatures. This is
actual realization of the idea of ‘‘touching two points of th
glass with a copper wire’’ described in the Introduction.

This observation also suggests a possible explanatio
the fact that all FDT violation factors that we know of a
smaller than one: ifTO(v,tw) were smaller than the tem
perature of the heat bath, it could be possible, in principle
extract energy from the bath by connecting between it a
our system a small Carnot engine. The argument can
made sharper by considering a stationary situation in
weakly stirred system: but to argue that this situation wo
lead to a violation of the second principle one needs to pr
that the equilibration times of the Carnot engine are sh
enough to make the power it produces larger than the d
pated one.

IV. EQUILIBRATION WITHIN A TIME SCALE

Before discussing the effective temperature as an eq
bration factor we need to introduce some general feature
the time evolution of systems with slow dynamics. We fi
define the time correlation scales and we then argue tha
the FDT violation factor is well defined within a time scal
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a single degree of freedom thermalizes within that time sc
at the corresponding effective temperature.

A. Correlation and response scales

Systems having a long-time out-of-equilibrium dynam
tend to have different behaviors in different time scales.
us start by describing them for long-time dynamics in t
purely relaxational case. In Appendix D we give a form
definition of correlation scale, following@5#.

Consider first, as an example, the dynamics of
main growth @19# for the Ising model at low but nonzer
temperatures. The autocorrelation functionC(t,tw)
5(1/N)( isi(t)si(tw) exhibits two regimes.

At long times t,tw , such thatt2tw!tw , the correlation
function shows a fast decay from 1~at equal times! to m2,
wherem is the magnetization. This regime describes the f
relaxation of the spins within the bulk of each domain.

At long and well-separated times (t2tw;tw), the corre-
lation behaves as a function ofL(tw)/L(t), whereL(t) is
some measure of the typical domain size at timet.

We refer to these two scales as ‘‘quasiequilibrium’’ a
‘‘coarsening’’ ~or ‘‘aging’’ !, respectively. After a given time
the correlation rapidly decays to a plateau valuem2, and the
speed with which it falls below that value becomes sma
and smaller astw grows.

This example helps to stress the fact that different sc
are defined as a function of both times@in this caset2tw
finite, L(tw)/L(t) finite# and are well separated only in th
limit where both times are large.

In Fourier space, this separation of scales is achieved
considering several frequenciesv and increasing timestw .
Then, if we considerv;const for increasingtw , we probe
the quasiequilibrium scale, while if we want to probe t
aging or coarsening scale we have to consider smaller
smallerv, keepingvL(tw)/L8(tw);const.

If we now consider two frequenciesv1 andv2 and keep

v1

v2
;const, ~4.1!

we shall probe, astw→`, thesamescale: it will be the qua-
siequilibrium scale if they both remain finite, or the coarse
ing ~aging! one if we keepv1,2L(tw)/L8(tw);const.

These considerations can be generalized to other sys
with slow dynamics. In general there may be more than t
relevant scales @9,4,5,20#, for example v5const,
vt w

1/25const,vtw5const, etc. In any case, the condition f
looking into the same scale via two successions of frequ
cies remains Eq.~4.1!.

In Fig. 3 we show the numerical solution of our te
model, defined in Appendix A. The autocorrelation functi
C(t,tw) is plotted vs the time differencet2tw for several
waiting times in log-log scale. These plots~which are stan-
dard in the Monte Carlo simulations of spin glasses@21#!,
show~i! that the system is out of equilibrium, since we ha
an explicit dependence ontw , and~ii ! that there are at leas
two time correlation scales. For short time differencest2tw
the decay is fast, the autocorrelation function is TTI and
falls from 1 toCEA. It then decays further fromCEA to zero,
more and more slowly as the waiting time increases. T
quantityCEA is known in the language of spin glasses as
le
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Edwards-Anderson order parameter and in mode coup
theory ~MCT! as the nonergodicity parameter: it measu
the strength of the fast correlations~CEA5m2 in domain
growth!. Quasiequilibrium and aging regimes are experime
tally observed in real spin glasses and polymer glas
@22,18#.

Let us now turn to a similar analysis for driven systems
the limit of weak driving energyD→0. In that case, even i
the system reaches a TTI regime provided we wait lo
enough~the amount of waiting increases when the stirri
rateD decreases!, it sometimes happens that some corre
tions and responses acquire a nontrivial low-frequency
havior in the limit D→0 @23#. For example, in Fig. 4 we
show the same plot as in Fig. 3, i.e.,C(t2tw) vs t2tw , for
different, but small, stirring rates. We see that there are
least two time scales: one, for short time differences, wh
the correlation decays rapidly from 1 toCEA and one, for
long time differences, in which it slowly decays fromCEA to

FIG. 3. The correlation functionC(t,tw) vs t2tw for the same
model as in Fig. 2. From bottom to toptw520, 50, 100, 150, and
200. The correlation decays rapidly from 1 toCEA;0.73 and then
more slowly fromCEA to 0. This second decay becomes slower a
slower astw increases.

FIG. 4. The correlation functionC(t2tw) vs t2tw for the same
model as in Fig. 1. From bottom to topD50.1, 0.075, 0.05, and
0.025. The correlation decays rapidly from 1 toCEA;0.73 and then
more slowly fromCEA to 0. This second decay becomes slower a
slower asD decreases.
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zero. The smaller the stirring, the slower the decay ofC from
CEA to zero.

It is useful to consider, in these cases, frequencies tha
to zero as some function ofD. The condition that two se
quences of frequenciesv1,v2 correspond to the same sca
now reads

lim
D→0

v1

v2
5const. ~4.2!

B. Thermalization criterion for a single degree of freedom
within a scale

Let us now consider a system at a given waiting timetw
or stirring rateD. Heat flows tend to zero astw→` or D→0,
respectively. It is reasonable to assume that, in these lim
theeffective temperaturesassociated with any given obser
ableO on a given time scale tend to equalize, provided t
their limit is finite. We thus have, for example, in the case
relaxational dynamics, forv1/v25const,

lim
tw→`
v1→0

TO~v1 ,tw!5 lim
tw→`
v2→0

TO~v2 ,tw!. ~4.3!

Similarly, we expect that each fixed frequency sooner or la
thermalizes with the bath:

lim
tw→`

v5const

TO~v,tw!5T. ~4.4!

In some important cases the effective temperatures defi
by Eqs.~3.13! and~3.15! diverge in the limittw→` ~D→0!.
In these cases the effective temperatureTO(v,tw) should
diverge for the whole time scale. We shall dwell on th
problem in Sec. IV C.

Equations~4.3! and~4.4! are trivially true in a system tha
reaches thermal equilibrium, where all effective temperatu
eventually reach the temperature of the reservoir. Howe
they also describe the situation in which smaller frequenc
take longer to reach the temperature of the heat bath, in s
a way that at any given~long! waiting time there are low
enough frequencies that have a temperature substantially
ferent~in all cases we know, higher! from that of the bath. In
particular, Eq.~4.4! allows us to answer a question we ask
at the beginning: if a piece of glass has been kept at ro
temperature for several months, a thermometer whose
sponse time is of order of a few seconds would measure
room temperature, but it would read a higher temperatur
its response time is of the order of weeks.

In fact, with the appropriate handling of time scales@5#
~see Appendix D!, Eqs. ~4.3! and ~4.4! make it possible to
calculate the out-of-equilibrium relaxation of mean-field sp
glasses, and also the low-temperature generalization of
mode-coupling equations for one single mode. We thus
tain a solvable example where Eqs.~4.3! and ~4.4! hold.

For the case of stirred systems, theD→0 limit plays the
same role as thetw→` limit in relaxational systems provide
that the time scales are suitably redefined as in Eq.~4.2!. In
particular, at each fixed value ofv one has
limD→0TO(v,D)5T, and, forv1/v25const one has
go
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lim
D→0
v1→0

TO~v1 ,D !5 lim
D→0
v2→0

TO~v2 ,D !, ~4.5!

provided that both limits are finite.
If one looks into a time scale within which the temper

ture is almost constant, one can indifferently use a temp
ture defined in terms of a frequency or a time. In the rela
ational case one has

TO~v,tw!5TO~ t,tw!, ~4.6!

provided thatt2tw;v21. In the same situation one has

R~ t,tw!5
1

TO~ t,tw!

]C~ t,tw!

]Tw
. ~4.7!

Similar relations hold for the driven case. If, on the contra
one considers values of frequency or time for which the te
perature defined by Eq.~4.7! is not constant, one canno
directly relate it with the reading of a thermometer coupl
to the system.

C. Coarsening and the case of infinite effective temperature

An important physical situation which deserves a spec
discussion is that of domain growth. In this case the effect
temperature~associated, say, with the total magnetization! in
the ‘‘coarsening scale,’’vL(tw)/L8(tw)5const, tends to in-
finity as tw→`. The curvex ~magnetic susceptibility! C
~magnetization correlation! looks like in Fig. 5. This figure
shows the results for a model that is equivalent to theO(N)
ferromagnetic coarsening in three dimensions. The integra
responsex becomes flat, astw→`, in the aging regime. In
other words, the long-term memorytends to disappear.

Because experimental measures of aging are in gen
related to the response, this kind of system is sometim
referred to as exhibiting aging ‘‘in the correlations’’~corre-
lations are not TTI! but not in the response. One shou
stress, however, that the divergence of the effective temp
ture in the aging time scale can be extremely slow: for
ample, in the Fisher-Huse model for spin glasses@24#

FIG. 5. The susceptibilityx(t,tw) vs the autocorrelation func
tion C(t,tw) for the purely relaxationalp52 spherical model
@equivalent to theO(N), N→` ferromagnetic coarsening ind53#.
The dots represent the analytical solution whentw→`. The total
time t is equal to 20, 50, 100, and 200~tw.t/4 throughout!.
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TO(v,tw) grows like a power of lntw .
The fact that the effective temperature in the aging reg

tends to infinity means that if we measure it atv small and
fixed, the temperatureT(v,tw) grows with tw ~while we are
still probing the aging regime! and then starts falling, finally
reaching the temperature of the bath. If we repeat the exp
ment with a smallerv, the overall behavior is the same, b
the highest temperature reached will be higher; and so
without an upper limit. The situation is similar, but expe
mentally more subtle, for ‘‘stirred’’ systems for which th
effective temperatures diverge asD→0. In such cases we
measure a system that has a given~small! driving D. If the
system is such that forD→0 the effective temperature of a
but the fastest scale tend to infinity, we may never rea
that this is the case in an experimental situation, as long
we are not able to repeat the experiment with smaller
smaller stirring.

We show one such case in Fig. 6, which represents
same coarsening problem as before, but made stationary
‘‘stirring’’ term in the equation of motion proportional toD.
If one had performed an experiment on such a system f
fixed D, one would have observed high effective tempe
tures for separated times, and no evidence of thermaliza
Only by lettingD take smaller and smaller values one c
notice that in fact these temperatures tend to infinity.

D. Systems with finite effective temperatures

In mean-field models one can close the Schwinger-Dy
equations into a set of dynamical equations involving o
the correlation and response functions. This allows us
solve them analytically for large times, and also to obt
their full solution, via a numerical integration, starting from
pair of initial timestw5t50. We thus obtain the curvex(C)
by integrating the response function and plotting it vsC.
Two cases in which there are only two time-correlati
scales are the test model@4# considered here~cf. Appendix
A! and the case of a particle moving in an infinit
dimensional random medium with short-range correlatio

FIG. 6. The susceptibilityx(t2tw) vs the autocorrelation func
tion C(t2tw) for the p52 spherical asymmetric model@‘‘stirred’’
O(N), N→` ferromagnetic coarsening ind53# for different levels
of asymmetry~stirring!: from bottom to topD50.8, 0.6, 0.4, and
0.2. The dots represent the analytical solution in the limit of z
asymmetry.
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@25#. Both the analytical and the numerical results exhi
thermalization within the aging regime.

In the Sherrington-Kirkpatrick spin-glass model there is
full hierarchy of time scales and effective temperatures
fact also confirmed numerically@26# and by Monte Carlo
simulations@5#. Another model with infinite many scales an
with a full hierarchy of effective temperatures is that of
particle moving in an infinite-dimensional random mediu
with long-range correlations@20,25#.

In Ref. @27#, the Monte Carlo simulation of the ‘‘realis
tic’’ 3D Edwards-Anderson model for a spin glass was us
to obtain thex(C) curves, which seem to approach a no
trivial curve for increasingtw . This suggests the existence
a hierarchy of time-correlation scales.

The ‘‘trap model’’ for spin-glass dynamics@28# violates
Eq. ~4.3! when an unusual choice of a parameter~a! is made.
However, it is difficult to interpret the model, with thi
choice of parameter, as a phenomenological model stemm
from a reasonable microscopic dynamics.

V. THERMALIZATION OF DIFFERENT DEGREES
OF FREEDOM WITHIN A TIME SCALE

As we remarked in Sec. III, abona fide temperature
should control heat flow and thermalization. It is the aim
this section to show that this is indeed the case for the ef
tive temperature we have defined. If this were not the cas
would be possible to use our small oscillator to transfer h
from some degrees of freedom to others: in other words,
decorating our copper wire with a suitable frequency filt
we would observe heat flowing through it when it touch
the two ends of the glass.

We shall argue that if different degrees of freedomeffec-
tively interacton a given time scale, then they thermalize
that scale. A useful—though not universal—criterion f
‘‘effective interaction’’ is that their mutual response~the re-
sponse of one of the degrees of freedom to an oscilla
field of the given frequency conjugate to the other degree
freedom! is of the same order as their self-response on t
time scale.

The argument is essentially the same both for relaxatio
systems that have evolved for a long time, or in station
driven systems in the limit of small driving energy. We sh
thus focus on the relaxational case only.

We emphasize again that the thermalization of differ
degrees of freedom is well defined only in the limit of va
ishing heat flow, i.e., long waiting times or vanishing stirrin
rates, respectively. This is witnessed by the appearanc
one ~or more! well-separated plateaus in the decay of t
two-time correlation functions.

Let us considern modes~labeled bya,b51,...,n!. One
can write, in general, some Schwinger-Dyson equations
their correlationsC5(Cab) and responsesR5(Rab):

]Cab~ t,tw!

]t
52(

c
mac~ t !Ccb~ t,tw!12TRab~ tw ,t !

1(
c
E
0

tw
dt9Dac~ t,t9!Rcb~ tw ,t9!

1(
c
E
0

t

dt9Sac~ t,t9!Ccb~ t9,tw!, ~5.1a!

o
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]Rab~ t,tw!

]t
52(

c
mac~ t !Rcb~ t,tw!1d~ t2tw!dab

1(
c
E
tw

t

dt9Sac~ t,t9!Rcb~ t9,tw!.

~5.1b!

As they stand, Eqs.~5.1! are just a way to hide our difficul
ties under theS, D carpet. Several approximations exte
sively used in the literature amount to various approxim
tions of the kernelsS andD.

In equilibrium, the symmetries@29# of the original prob-
lem allow us to write

Sab~ t2tw!5
1

T

]Dab

]tw
~ t2tw!, ~5.2a!

Rab~ t2tw!5
1

T

]Cab

]tw
~ t2tw!. ~5.2b!

If we now make forS and D the approximation that are
ordinary functions~instead of general functionals! of the cor-
relations and the responses, we obtain the mode-coup
approximation~MCA!

Dab~C!5Fab~C!, Sab~C!5(
c,d

Fab,cd~C!Rcd , ~5.3!

where there is a model-dependent functionF~q! such that

Fab~q!5
]F

]qab
, Fab,cd~q!5

]2F

]qab]qcd
. ~5.4!

If the system equilibrates, one recovers the usual form
the mode-coupling theory~MCT! that is applied for super
cooled liquids@30#. It will be instructive to recall how equi-
librium is reached within the framework of Eq.~5.4!. One
recalls the FDT conditions~5.2!; time translational invari-
ance: functions of one time are just constant and function
two times depend upon time differences only; reciproc
Cab(t2tw)5Cba(t2tw). Putting this information in Eqs
~5.1! and ~5.4! one obtains

]Cab~ t2tw!

]t
52(

c
macCcb~ t2tw!

1
1

T (
c

@Dac~0!Ccb~ tw2tw!2Dac
` Ccb

` #

1
1

T (
c
E
tw

t

dt9Dac~ t2t9!
]Ccb~ t92tw!

]t9
,

~5.5!

whereD ac
` ,Ccb

` stand for limits of widely separated time
i.e.,

Cac
` [ lim

t→`

Cac~ t !, Dac
` [ lim

t→`

Dac~ t !. ~5.6!
-

ng

f

of
:

This is the usual equilibrium MCT equation@30#. The equa-
tion for the response~5.1b! with the same equilibrium as
sumptions becomes the time derivative~divided byT! of Eq.
~5.1a!, as it should.

In a case in which the system is unable to reach ther
equilibrium, like the low-temperature phase of spin glass
the solution of Eqs.~5.1! will exhibit several time scales. The
question as to how many scales one has to consider in o
to close the dynamical equations can be answered for e
model unambiguously by the construction in Ref.@5#, suit-
ably generalized to several modes.

Here, for simplicity, we assume that there are only tw
relevant time scales~as in the coarsening example of the la
section!. We discuss later a model system that acts as
explicit example of this situation. We propose an ansatz
the long-time asymptotics, and then verify that it closes
equations@4#. We assume~and later verify! that all two-time
functions can be separated in two regimes.

Finite time differences with respect to the long waitin
time, i.e.,t2tw finite and positive, andtw→`. In this regime
TTI and FDT hold.

Aging regime, corresponding to long and widely sep
rated times, i.e.,t;tw→`. In this regime neither TTI nor
FDT hold.

For finite time differences and a long waiting timetw we
have

Cab
FDT~ t2tw![ lim

tw→`

Cab~ t,tw!, ~5.7a!

Rab
FDT~ t2tw![ lim

tw→`

Rab~ t,tw!, ~5.7b!

with

Rab
FDT~ t2tw!5

1

T

]Cab
FDT

]tw
~ t2tw!, ~5.8!

Cab
EA[ lim

t2tw→`

lim
tw→`

Cab
FDT~ t2tw!. ~5.9!

The aging regime is defined as the time domain in wh
the correlations fall~more and more slowly! belowCab

EA . For
these times we denote

Cab~ t,tw!5C̃ab~ t,tw!, Rab~ t,tw!5R̃ab~ t,tw!. ~5.10!

The separation~5.7! induces within the MCA a similar
separation forS andD @cf. Eqs.~5.3! and~5.4!#, namely, for
close times,

Dab
FDT~ t2tw!5 lim

tw→`

Dab~ t,tw!,

Sab
FDT~ t2tw!5 lim

tw→`

Sab~ t,tw!, ~5.11!

where FDT holds:

Sab
FDT~ t2tw!5

1

T

]Dab
FDT

]tw
~ t2tw!. ~5.12!

Again, we can define
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lim
t2tw→`

lim
tw→`

Dab
FDT~ t2tw![Dab

EA , ~5.13!

and mark with the tilde the aging part of the kernels:

Dab~ t,tw!5D̃ab~ t,tw!, Sab~ t,tw!5S̃ab~ t,tw!. ~5.14!

In order to close the dynamical equations, we make
ansatz for the aging partsC̃ab(t,tw) and R̃ab(t,tw). For a
problem in which the correlations vary only within two tim
scales, the natural generalization of the solution in@4# is

C̃ab~ t,tw!5C̃ab@hab~ tw!/hab~ t !#, ~5.15a!

R̃ab~ t,tw!5
Xa

T

]C̃ab

]tw
~ t,tw!, ~5.15b!
n
an

nd
no

th
n

where theXab are constants and thehab(t) are functions to
be determined from the dynamical equations. Note that
derivative in Eq.~5.15! is taken with respect to the earlie
time.

Remarkably, it turns out that one can close the equati
with two different types of ansatz for the long-time agin
behavior. In Appendix E we show how this is done. In term
of the effective temperatures the meaning of these two p
sibilities is the following.

(1) Thermalized aging regime. The effective temperature
associated with the observablesO1 ,O2 are equal to each
other for frequencies and waiting times in the aging regim
they are not necessarily equal to the temperature of the b
At higher frequencies, they both coincide with the one of t
bath:
th, while
T1~v,tw!5T2~v,tw!5T, tw→`, Cab.Cab
EA , quasiequilibrium,

T1~v,tw!5T2~v,tw!ÞT, v→0, tw→`, Cab,Cab
EA , aging. ~5.16!

Not surprisingly, in this case we find thatO1 andO2 are strongly coupled~also in the aging regime! in the sense that the
mutual responses

R̃12~ t,tw!5
X

T

]C̃12

]tw
, R̃21~ t,tw!5

X

T

]C̃21

]tw
, ~5.17!

whereX.0, are of the same order of the self response functions.
(2) Unthermalized aging regime. The effective temperatures associated with the observablesO1 ,O2 for combinations of

frequencies and waiting times corresponding to the aging regime are neither equal to each other nor to that of the ba
for higher frequencies they both coincide with the one of the bath.

T1~v,tw!5T2~v,tw!5T, tw→`, Cab.Cab
EA , quasieq.,

T1~v,tw!ÞT2~v,tw!ÞT, v→0, tw→`, Cab,Cab
EA , aging. ~5.18!
se
act
ons

la-

se
the

act
ge-
dix

tial
In this case,O1 and O2 are effectively uncoupled~in the
aging regime!, in the sense that

R̃12~ t,tw!5
X12

T

]C̃12

]tw
, R̃21~ t,tw!5

X21

T

]C̃21

]tw
, ~5.19!

where

X12,X21→0. ~5.20!

We have not found any other way of closing the equatio
@31,32#. We shall show below, in a particular case which c
be numerically solved, that indeed either case~1! or case~2!
take place. Let us remark that a solution withX125X21Þ0,
X115X225XÞ0, andXÞX12 is not compatible with the in-
terpretation ofX as an inverse temperature. We do not fi
such a solution in our test models and believe that it is
realizable in general.

The considerations of this section can also be made in
limit of small stirring.
s

t

e

A. An explicit model with thermalization

In order to test in a particular example that the
asymptotic solutions are not only consistent, but are in f
reached, we solve numerically the mode coupling equati
with two coupled modes, withF given by

F~q!5q11
p 1K2q22

p . ~5.21!

We impose normalization at equal times of the autocorre
tion of both modes:

C11~ t,t !5C22~ t,t !51. ~5.22!

As usual with the mode-coupling equations@~33!–~36!
and~29!#, one can find a disordered mean field model who
dynamics is exactly given by these equations. This is
model defined in Appendix A.

Figures 7 and 8 show the numerical solution of the ex
system of coupled integrodifferential equations whose lar
time asymptotic can be analytically obtained as in Appen
E. In Figs. 7 and 8 we plotx(C) for two cases. In Fig. 7 we
consider two uncoupled systems that evolve from the ini
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condition C11(0,0)5C22(0,0)51 and
C12(0,0)5C21(0,0)50. We see that the systems evolve i
dependently andX11ÞX22 while X125X2150 ~unthermal-
ized case!. In Fig. 8 we consider the same global system
now including a weak coupling between the two individu
systems. Clearly, after a short transient associated to s
times, all curvesx i j (Ci j ) get parallel. The systems aging
regime temperatures for the two subsystems have bec
equal~thermalized case!.

It is interesting to note that, in this example, Onsage
reciprocity relations hold:R125R21, C125C21. However,
one can imagine situations in which they do not hold se
rately, but where howeverX125X21.

For comparison, we show in Fig. 9 the corresponding p
for two weakly coupled systems in the limit of small stirrin

B. Many scales

Let us briefly discuss what would happen in the prese
of many scales, each one with its own temperature.

FIG. 7. The susceptibilityx11(t,tw) andx22(t,tw) vs the corre-
sponding autocorrelation functionsC11(t,tw) andC22(t,tw) for the
uncoupled, aging systems. The slopes of the curves, i.e., the F
violation factors and hence the effective temperatures are diffe
This corresponds to theunthermalizedcase.

FIG. 8. The susceptibilitiesx i j (t,tw) vs the correlation functions
Ci j (t,tw) for the two aging systems of Fig. 2, this timeweakly
coupled. The FDT violation factorsXi j (Ci j ) are almost parallel:
thermalization is almost complete.
t
l
ort

e

s

-

t

e

Consider, for instance, two observablesO1 andO2, their
associated autocorrelation functionsC11(t,tw), C22(t,tw),
their integrated self-responsesx11(t,tw), x22(t,tw) and the
effective temperaturesT1(C11), T2(C22). We can plot
T1(C11) vs C11 andT2(C22) vs C22. These two plots need
not be the same, even if all scales are thermalized. Cons
now a parametric plot ofC11(t,tw) vsC22(t,tw), in the limit
of very largetw : it defines a functionC115H~C22! that al-
lows one to calculateC11 for large t,tw , givenC22(t,tw).

The condition for thermalization in every time scale
then that the curveT2(C22) coincides with the curve
T1„H~C22!…, both considered as functions ofC22:

T1„H~C22!…5T2~C22!. ~5.23!

The deviation ofT1„H~C22!… from T2(C22) is a measure of
the degree in which the two observables are not thermaliz

Actually, Eq. ~5.23! was obtained as an ansatz for th
dynamics of a manifold in a random medium within the Ha
tree approximation@37#, where the role of different observ
ables is played by the displacements at different spa
wavelengths:

Ck~ t,t8!5Hk~Ck50!,

Tk„Hk~Ck50!…5Tk50~Ck50!. ~5.24!

In this case, the modes at differentk thermalize at the same
effective temperature, although their mutual responses v
ish, as implied by translational symmetry in mean.

VI. COMPARISON WITH OTHER EFFECTIVE
TEMPERATURES

The idea of ‘‘fictive temperatures’’@38# Tf in glasses goes
back to the 1940s and it has developed since@39–41#. Here
we recall it briefly, for the sake of comparison with the e
fective temperature that we have discussed.

When cooling a liquid the time needed to establish eq
librium grows and, eventually, the structural change can

T
nt.

FIG. 9. The susceptibilitiesx i j (t2tw) vs the correlation func-
tions Ci j (t2tw) for two slightly driven systems~D50.1!, weakly
coupled. The FDT violation factorsXi j (Ci j ) given by the slopes of
these curves are now the same: after a short transient correspo
to finite times all the curves become parallel. The aging regim
havethermalized.



o
e
ac

th
e
al
s
er
e
ia

o
he
n

ed
th
x

b

y

-

of
la
on
ra

ar
th
s
pe
th

d
ld

e
pe
lo
a

be

est

a

the
re
st
sly

of
m

er-
ely
ton-

ave
r-
ver,
ap-
ill

ef-
was

ve
e-
ken
io-

ath

bil-
in
ave

ey
nse
-

tive
g an

the

els
ef-

3908 55CUGLIANDOLO, KURCHAN, AND PELITI
keep pace with the rate of cooling: the system falls out
equilibrium and enters the glass transition region. It is th
said that ‘‘the structure is frozen’’ at a temperature char
terized by a fictive temperatureTf . The fictive temperature
defined in terms of different quantities of interest, e.g.,
enthalpy, the thermal expansion coefficient, etc., do not n
essarily coincide. Furthermore, it has been experiment
observed that glasses with the same fictive temperature
rived at through different preparation paths may have diff
ent molecular structures. The fictive temperature is henc
phenomenological convenience and should not be assoc
with a definite molecular structure@41#.

The fictive temperature is a function of the temperature
the bathT. At high temperature, when the sample is in t
liquid phase,Tf5T. When the liquid enters the transitio
rangeTf departs fromT andTf.T; and, finally, deep below
the transition range, where the relaxation is fully stopp
Tf→Tg . The detailed bath-temperature dependence of
fictive temperature in the region of interest is usually e
pressed by@40,41#

Ṫf52
Tf2T

t~Tf ,2T!
, ~6.1!

where the characteristic timet(Tf ,T) depends both upon
Tf(t) and upon the thermal history of the sample given
T(t). At equilibriumTf5T andṪf50. This nonlinear differ-
ential equation determinesTf(t) once onechoosest(Tf ,T).
A commonly used expression is the Narayanaswam
Moynihan equation

t~Tf ,T!5t0expFxAT 1
~12x!A

Tf
G , ~6.2!

wheret0, A andxP@0,1# are some constants. All the infor
mation about the dynamics of the system enters intoTf
through these constants.

In order to obtain the time relaxation of the quantity
interest, the picture is completed by proposing a given re
ation function, like the stretched exponential, the Davids
Cole function, etc., and by introducing the fictive tempe
ture through the characteristic timet(Tf ,T). See@41# for an
extensive discussion about the applications ofTf to the de-
scription of experimental data.

One may wonder whether is a relation between thisfictive
temperature of glass phenomenology and theeffectivetem-
perature we have been discussing in this paper.

First of all, one notes that the fictive temperatures
defined through the relaxation of the observables, unlike
one we consider here which are defined rather in term
fluctuations and responses. Both temperatures may de
upon the observable and upon the thermal history of
sample.

The dependence of the effective temperature define
Eq. ~3! uponT depends on the model. In all cases FDT ho
in the high-temperature phase andTO(v,tw)5T, the effec-
tive temperature is equal to the bath temperature. When
tering the low-temperature phase, the temperature de
dence of the effective temperature observed at fixed
frequency depends on the model. In certain simple me
field ~or low-temperature mode-coupling! models whose dy-
f
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namics following a quench into the glass phase can
solved, one can computeTO(v,tw) explicitly. Three differ-
ent behaviors are found.

~1! In the simple model we have been using as a t
example in the previous sections@4#, TO(v,tw) starts from
TO(v,tw)5Tg atT5Tg and slightlyincreaseswhen the bath
temperature decreases belowTg . One would instead expect
fictive temperature to remain stuck toTg in a ~mean-field!
model in which the glass transition is sharp.

~2! There are other mean-field models such as
Sherrington-Kirkpatrick spin-glass model in which there a
infinitely many different effective temperatures. The lowe
aging-regime temperature appears discontinuou
[TO(v,tw).Tg] as one crossesTg and can be shown@5# to
decreasewith decreasing temperature. Another example
this kind is the model of a particle moving in a rando
potential with long-range correlations@20,25#.

~3! In all cases we know of domain growth models@19#
one obtains X(C)→0 for tw→`, in the whole low-
temperature phase. HenceTO(v,tw)→` in the aging~coars-
ening! regime for all heat bath temperatures below the ord
ing transition. This behavior also holds for certain extrem
simple disordered systems such as the spherical Sherring
Kirkpatrick spin glass@42#, the toy domain growth model we
used in this paper.

It is important to remark that these simple examples h
the ~sometimes unrealistic! feature that nothing depends pe
manently upon the cooling procedure. One expects, howe
that more refined models that go beyond the mean-field
proximation will capture a cooling rate dependence that w
also become manifest in the effective temperature.

Another attempt to identify and relate a microscopic
fective temperature to the fictive temperature of glasses
put forward by Baschnagel, Binder, and Wittmann@43# in
the context of a lattice model for polymer melts. They ha
pointed out that in this model the usual FDT relation b
tween the specific heat with the energy fluctuations is bro
at low temperatures and have tried to identify the FDT v
lation factor with an expression they propose for aninternal
temperature. The internal temperature defined in@43# has,
however, the unpleasant property of not reducing to the b
temperature in the high temperature phase.

In @44# Franz and Ritort have also discussed the possi
ity of relating the FDT ratio with an effective temperature,
the particular case of the Backgammonn model. They h
compared the value ofX(t,tw) for finite timest,tw with the
temperature arising from an adiabatic approximation th
used to solve the model. The result is negative, in the se
that T/X(t,tw) does not coincide with the ‘‘adiabatic tem
perature.’’

These examples suggest that the phenomenological fic
temperatures act essentially as parameters for describin
out-of-equilibrium ‘‘equation of state’’ while the effective
temperature we have discussed plays a role closer to
thermodynamical one.

VII. DISCUSSION, EXPERIMENTAL PERSPECTIVES,
AND CONCLUSIONS

Although our discussion has been biased by the mod
we can solve at present, we feel that the concept of the
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fective temperature that we discussed should be relevan
many systemswith small energy flows. Indeed, the key ob-
servation we make is that this temperature actually cont
thermalization and heat flows within a time scale. Therefo
the effective temperature can be a starting point for the
vestigation of the thermology and, hopefully, the thermod
namics of out-of-equilibrium systems with small ener
flows.

In order to use this idea as a guiding concept for
planning of experiments, one has to take some care: o
ously, waiting times can be large but not infinite in expe
ments, and stirring rates can be small but not infinitesim
Moreover, the models that we have explicitly discussed
not exhibit dependence on the cooling history of the sam
Now, one would expect in general the effective temperat
to depend ont,tw and, e.g., on the cooling rate. One can ho
to catch this aspect in more refined models.

One should also pay attention to the equilibration tim
The effective temperature measured by a small oscillato
related to the FDT violation factor provided that the equ
bration timetc @Eq. ~3.10!# remains much smaller thantw . It
sometimes happens that an observableO which should ther-
malize at an effective temperatureTO(v,tw) exhibits so
small fluctuations at this frequency that this time becom
unbearably long. This is the case, for instance, of highk
modes in the aging time scale for a manifold in a rand
potential. Therefore, although allk modes nominally ther-
malize at the same effective temperature, only low enougk
modes can be effectively used to measure it. How lowk
must be will depend on the time scale one is looking at.

Several numerical and real experiments in structu
glasses can be envisaged. For example, one can com
density fluctuations and compressibility in different leng
scales in order to check if they are equilibrated within a ti
scale. Since the low-temperature extension of the M
makes definite predictions on the value of the first nontriv
effective temperature appearing as one crosses the trans
~see Sec. VI!, this provides a concrete ground for an expe
mental testing of MCT.

We close by considering the following~slightly Gedan-
ken! spin-glass experiment of Fig. 10: Currents are induc
in the coil by the magnetization noise of the spin gla
which is in contact with a heat bath. Apart from the intera
tion with the sample, theL-C circuit of coil and capacitor is
without losses. This is exactly a realization of the oscilla

FIG. 10. An effective temperature measurement for a magn
system. The coil is wound around the sample, which is in con
with the bath. The coil and capacitor have zero resistance.
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as a thermometer of Sec. II. From what we know from t
time scales of real spin glasses@16,18#, if the time after the
quench is of the order of 10 min, and the period of theL-C
circuit is of the order of the second, we are probing~at least
partially! the aging regime: the temperature~defined as the
average energy of the capacitor! should be different from the
bath temperature. We believe that it would be interesting
return to the magnetization noise experiments@17# with the
purpose of measuring the effective temperature: this wo
give us, for instance, useful insights into the nature of
spin-glass transition.
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APPENDIX A: THE TEST MODEL

Throughout this paper we have used as a test mod
spherical disordered model withp-spin interactions. The
model has been introduced in its purely relaxational vers
by Crisanti and Sommers@45# as a simple spin-glass mode
with several advantages, in particular, that exact dynam
equations can be written for it in the thermodynamic lim
As shown by Franz and Hertz@36#, these dynamical equa
tions are also those obtained from the MCA to the Am
Roginsky model@34#. When considered in full generality
the two-time dynamical equations correspond to the l
temperature extension@36,29# of the simplest mode coupling
theory for the supercooled liquid phase proposed
Leutheusser@46# and Bengtzelius, Gotze, and Sjo¨lander
@47,30#. A thorough discussion of the physical principles u
derlying mode-coupling theory is found in@48#, Chap. 9. It
has been also recently shown by Chandraet al. that this
model is related to a mean-field approach to Josephson j
tion arrays@49#.

We consider a system ofN variabless5(s1 ...,sN), sub-
ject to forcesF i

J given by

Fi
J~s!5 (

$1 ,...,j p21%
Ji
j 1••• j p21sj 1•••sj p21

, ~A1!

where the couplings are random Gaussian variables. For
ferent sets of indices$ i , j 1,...,j p21% theJ’s are uncorrelated,
while for permutations of the same set of indices they
correlated so that

Fi
J~s8!F j

J~s!5d i j f 1~q!1sisj8 f 2~q!/N, ~A2!

whereq5~s•s8!/N. In the purely relaxational case, one h
f 2(q)5 f 18(q). We take heref 2(q)5(12D) f 18(q), where

ic
ct
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f 1(q)5pqp21/2. The couplingsJi
j 1••• j p21 are symmetric un-

der the permutationi↔ j k in the purely relaxational case~D
50!. On the other hand, ifJi

j j 2••• j p21 andJj
i j 2••• j p21 are un-

correlated, one hasD51.
The dynamics is of the Langevin type:

ṡi52Fi
J~s!2m~ t !si1hi~ t !1h i~ t !, ~A3!

whereh is a white noise of variance 2T, m(t) is a Lagrange
multiplier enforcing the spherical constraintS i51

N s i
251, and

hi(t) is an external field~usually set to zero!, needed to
define the response functions.

In Figs. 1 and 2 we plot thex(C) curves for the asym-
metrical and symmetricalp53 model, respectively. In Figs
3 and 4 we plot the autocorrelation decays for the symme
cal and asymmetrical versions, respectively. Figures 5 an
show thex(C) curves for thep52 version that is analogou
to theO(N) model inD53 whenN→`.

In order to check thermalization in this particular examp
we consider the evolution of two such systems with spins
ands, and uncorrelated realizations of disorderJ andJ8 and
thermal noiseh andh8, respectively. They are coupled v
the term proportional tom12 andm21 in the Langevin equa-
tions

]si
]t

52Fi
J~s!2m11~ t !si2m12s i1hi1h i , ~A4a!

]s i

]t
52KFi

J8~s!2m22~ t !s i2m21si1hi81h i8 . ~A4b!

We setm125m21, so that the coupling does not contribute
the stirring. The coefficientsmi i are the Lagrange multiplier
for each system. The factorK is introduced to break the
symmetry between the subsystems. The correlations

C11~ t,tw!5
1

N (
i51

N

^si~ t !si~ tw!&,

C22~ t,tw!5
1

N (
i51

N

^s i~ t !s i~ tw!&,

C12~ t,tw!5
1

N (
i51

N

^si~ t !s i~ tw!&,

C21~ t,tw!5
1

N (
i51

N

^si~ t !s i~ tw!& ~A5!

and responses

R11~ t,tw!5
1

N (
i51

N

d^si~ t !&/dhi
s~ tw!,

R22~ t,tw!5
1

N (
i51

N

d^s i~ t !&/dhi
s~ tw!,
i-
6

R12~ t,tw!5
1

N (
i51

N

d^si~ t !&/dhi
s~ tw!,

R21~ t,tw!5
1

N (
i51

N

d^si~ t !&/dhi
s~ tw! ~A6!

precisely satisfy Eqs.~5.1a!–~5.4! with F given by Eq.
~5.21!.

The results for the effective temperatures obtained fr
the numerical integration of the exact evolution equations
these systems are shown in Figs. 7 and 8. See the main
for the discussion.

APPENDIX B: ENERGY OF THE OSCILLATOR

In this appendix we solve Eq.~3.8!, we compute
1
2v0

2^x2(t)&, the average potential energy of the oscillat
We thus prove Eq.~3.14! and its form Eq.~3.13! valid for
the stationary case.

Let us define

x~v,t !exp~ ivt ![E
0

t

dt8R~ t,t8!exp~ ivt8!, ~B1a!

C~v,t !exp~ ivt ![E
0

t

dt8C~ t,t8!exp~ ivt8!. ~B1b!

If v21!t, we can assume thatx~v,t! andC(v,t) are func-
tions that vary slowly witht, thus defining a Fourier compo
nent that is ‘‘local’’ in time t.

In general

^x2~ t !&5a2E
0

t

dt8E
0

t

dt9G~ t,t8!G~ t,t9!C~ t8,t9!, ~B2!

whereG(t,t8) is the Green’s function for the oscillator plu
the term representing the response of the system andG(t,t8)
is the system’s auto-correlation function. Using the definiti
in Eq. ~B1a! one can show that the damped oscillato
Green’s function reads

G~v,t !5
1

2v21v0
22a2x9~v,t !

, ~B3!

G~ t,t9!5expS 2
t2t8

tc~ t !
D sin@v0~ t2t8!#u~ t2t8!. ~B4!

We have here replacedx~t,v! by x9~t,v! using the fact that
a2N!1. The characteristic timetc(t) of the damped oscilla-
tor is given by

tc~ t !5
2v0

a2x9~v0t !
. ~B5!

We can now study Eq.~B2! by using the above expres
sions forG(t,t8). After a simple change of variables, usin
causality and the fact thatG(t,t8) decays exponentially as
function of time differences, Eq.~B2! can be rewritten as
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^x2~ t !&5a2E
2`

` dv

2p E
2`

`

dtE
2`

`

dt8G~ t,t2t!G~ t,t2t8!C~v,t2t!exp@ iv~t2t8!#. ~B6!

The fast exponential decay of the Green’s function allows us to replaceC(v,t2t) by C(v,t). Thus,

^x2~ t !&5a2 È` dv

2p
G~v,t !G~2v,t !C~v,t !

5a2 È` dv

2p

C~v,t !

x9~v,t !2x9~2v,t ! F 1

v0
22v22a2Nx9~2v,t !

2
1

v0
22v22a2Nx9~v,t !G . ~B7!
e
ne
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This integral can be calculated by the method of residu
We can close the circuit on the upper complex half pla
Sincex9~v,t! is analytic in the upper half plane, the on
singularities are the zeroes of the denominators. Assum
thata2x9 is small, they lie in the vicinity ofv56v0. In fact
one can check that only two poles penetrate inside the cir
of integration. We obtain therefore

^x2~ t !&5
2C̃~v0 ,t !

v0x9~v0 ,t !
. ~B8!

This is the general result for the temperature. The part
lar result~3.13! that holds for the stationary case is recover
from Eq. ~B8! by letting C̃(t,v) andx9~t,v! be independen
of t. Thus, Eq.~B8! reduces to Eq.~3.13!.

APPENDIX C: SMALL BUT MACROSCOPIC
THERMOMETERS

In this appendix we show that the thermometric consid
ations made in Sec. III do not crucially depend on the cho
of an oscillator as a thermometer. We use here a small
macroscopic thermometer defined by the variablesyi ,
i51,...,n, and we couple it only to the observableO(s) of
the system through a degree of freedomx(y).

Our measurement procedure is as follows: we first th
malize the thermometer with an auxiliary bath at temperat
T* . We then disconnect it from the bath and we connect i
the system throughO. If there is no flow of energy betwee
thermometer and system, then we conclude that the m
sured temperature isT* .

The energy of the thermometer plus its coupling with t
system is

H5E~y!2aO~s!x~y!. ~C1!

The net power gain of the thermometer is thenQ̇(t), given
by

Q̇5a^Ȯx&5a] t8^x~ t !O~ t8!&u t8→t2. ~C2!

We look for the condition that ensures stationarity for t
thermometer. The thermometer is characterized by
temperature-dependent correlationCx(t,t8)5^x(t)x(t8)&
and its associated responseRx(t,t8). Using linear response
one has
s.
.

g

it

-
d

r-
e
ut

r-
e
o

a-

a

O~ t !5Ob~ t !1aE
0

t

dt8RO~ t,t8!x~ t8!, ~C3a!

x~ t !5xb~ t !1aE
0

t

dt8Rx~ t,t8!O~ t8!. ~C3b!

To leading order ina, ^Ox& is given by

^Ox&5aE
0

t

dt9@Rx~ t,t9!CO~ t9,t8!1RO~ t8,t9!Cx~ t,t9!#.

~C4!

Assuming now thatT* is such that the thermometer can b
considered to be almost in equilibrium~note that the cou-
pling a is small and that we have chosen a thermometer
is not itself a glass!, we obtain

Q̇5a2E
0

t

dt8Rx~ t2t8!S ]CO~ t,t8!

]t8
2T*RO~ t,t8! D . ~C5!

The condition for having no flow is then that the avera
of the parenthesis in the integral is zero. The weight funct
for this average isRx(t2t8) which contains the characteris
tic time of the thermometer.

APPENDIX D: DEFINITION
OF TIME CORRELATION SCALES

In this appendix we review briefly the definition of corre
lation ‘‘time scale’’ introduced in@5# for a correlation func-
tion that depends nontrivially upon two times.

Given a correlation functionC(t,tw), which we assume
normalizable in the large-time limitC(t,t)→C`.0, we
consider three increasing timest1,t2,t3 , and the limit in
which they all go to infinity, but in a way to keep
C(t3 ,t2)5a andC(t2 ,t1)5b const. We thus define the limi

lim
t1 ,t2 ,t3→`

C~ t3 ,t2!5a,C~ t2 ,t1!5b

C~ t3 ,t1![ f ~a,b!. ~D1!

The mere existence of the limit ‘‘triangle relation’’f has
extremely strong consequences: considering four times
can easily show thatf is associative

f „a, f ~b,c!…5 f „f ~a,b!,c…. ~D2!
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The form of an associative function on the reals is very
stricted, and a classification of all possible forms can
made@5#.

It is sometimes convenient to work with the ‘‘inverse’’f̄
of f defined as

f ~a,b!5c⇒ f̄ ~a,c!5b. ~D3!

We can now define a correlation scale in the followi
way: given two values of the correlation at large tim
C(t,tw)5C1 andC(t,tw8 )5C2, t.tw8 .tw andC1,C2, they are
in a different correlation scale if

f̄ ~C2,C1!5C1, ~D4!

and are in the same scale otherwise. In other words, the
it takes the system to achieveC2 is negligible with respect to
the time it takes to achieveC1.

APPENDIX E: SOLUTION OF THE TWO-
COUPLED-MODE EQUATION

Using the separation~5.7!–~5.14! and the mode-coupling
approximation~5.3! and~5.4! we obtain a similar separatio
for Dab andSab :
in
o

ile
-
e

e

Dab
FDT~ t2tw!5Fab„C

FDT~ t2tw!…, ~E1a!

Sab
FDT~ t2tw!5(

c,d
Fab,cd„C

FDT~ t2tw!…Rcd
FDT~ t2tw!,

~E1b!

whereCFDT stands for the setCab
FDT(t2tw). One similarly

obtains, in the aging regime,

D̃ab~ t,tw!5Fab„C̃~ t,tw!…, ~E2a!

S̃ab~ t,tw!5(
c,d

Fab,cd„C̃~ t,tw!…R̃cd~ t,tw!. ~E2b!

We can now write two coupled sets of equations, valid in
quasiequilibrium regime and in the aging regime, resp
tively. For t2tw finite, and large timest.tw , we have
]Cab
FDT~ t2tw!

]t
52(

c
Fmac

` 1
Dac
FDT~0!

T GCcb
FDT~ t2tw!2

1

T (
c
Dac
EACcb

EA1Mab
` 1

1

T (
c
E
tw

t

dt9Dac
FDT~ t2t9!

]Ccb
FDT~ t92tw!

]tw
,

~E3!

wherem ac
` [limt→`mac(t) and

Mab
` [(

c
lim
t→`

E
0

t

dt9@D̃ac~ t,t9!R̃cb~ t,t9!1S̃ac~ t,t9!C̃cb~ t,t9!#. ~E4!

In the aging regime, fort.tw we have

]C̃ab~ t,tw!

]t
52(

c
Fmac~ t !1

Dac
FDT~0!2Dac

EA

T GC̃cb~ t,tw!1(
c
D̃ac~ t,tw!

Ccb
FDT~0!2Ccb

EA

T
1(

c
E
0

tw
dt9D̃ac~ t,t9!R̃cb~ tw ,t9!

1(
c
E
0

t

dt9S̃ac~ t,t9!C̃cb~ t9,tw!, ~E5a!

]R̃ab~ t,tw!

]t
52(

c
Fmac~ t !1

Dac
FDT~0!2Dac

EA

T GR̃cb~ t,tw!1(
c
E
tw

t

dt9S̃ac~ t,t9!R̃cb~ t9,tw!1(
c

S̃ac~ t,tw!
Ccb
FDT~0!2Ccb

EA

T
.

~E5b!
Equation~E4!, for givenM ab
` , is very similar to the high-

temperature mode-coupling equations@30#, and can be
solved in the same way. An asymptotic solution for the ag
regime can be obtained by using the generalization to m
than one mode of the ansatz in@4#, Eq.~5.15!. The derivative
terms in Eqs.~E5! can be then dropped provided thatX11Þ0
andX22Þ0, a fact to be verifieda posteriori. We shall find in
this way two different solutions for Eqs.~E5!.

In the unthermalized caseX11 andX22 are different from
zero, and possibly different from each other, wh
g
re

X125X2150. It is then easy to see that Eqs.~E5! become
effectively uncoupledin this regime, and can be solved@4# as
two separated one-mode equations, with the ansatz

C̃aa~ t,tw!5C̃aa„haa~ tw!/haa~ t !…, ~E6a!

R̃aa~ t,tw!5
Xaa

T

]C̃aa

]tw
~ t,tw!, ~E6b!

C̃12~ t,tw!5C̃21~ t,tw!50. ~E6c!
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In the thermalized case, one assumes

X115X225X125X215XÞ0, ~E7a!

h115h225h125h215h. ~E7b!

Making the change of variables

l[
h~ tw!

h~ t !
, l8[

h~ t9!

h~ t !
, ~E8!

one finds that only the dependence onl survives in the equa
tions, and that they reduce to a set of four~instead of eight!
consistent equations for the correlations~see@4,25# for a sys-
tematic approach!.

In this way, both for the thermalized and the untherm
ized case one can obtainXab , Mab , andGab

EA . One then has
to check thatX11Þ0 andX22Þ0. If this is not the case the
equations become identities, and one cannot anymore ne
the derivative term. One has therefore to use a more refi
long-time limit. These values have to be substituted in
~E4!, in order to complete the solution in both regimes.

Let us remark here that the problem of selecting the fu
tions hab remains open. This is an asymptotic matchi
problem in a non-local equation, and does not appear to
easily solvable.

We have thus found the long-time limit of the correlatio
and responses. If there is more than one asymptotic solu
~even moduloh!, we do not know for the time being whic
asymptotic form is selected by the unique solution of
evolution equations, without resorting to explicit numeric
integration.
,
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In short we have the following.
~1! Unthermalized aging regime:

X12→0, X21→0, X11ÞX22. ~E9!

We have, therefore,

R̃11~ t,tw!5
X11

T

]C̃11

]tw
, R̃22~ t,tw!5

X22

T

]C̃22

]tw
, ~E10!

and

S̃11~ t,tw!5
X11

T

]D̃11

]tw
, S̃22~ t,tw!5

X22

T

]D̃22

]tw
. ~E11!

~2! Thermalized aging regime:

X115X125X215X22[X, ~E12!

S̃ab~ t,tw!5
X

T

]D̃ab

]tw
, ;a,b, ~E13!

where the aging time scales ‘‘lock in,’’ i.e., there is thesame
functionh(t) for all a, b, such that

C̃ab~ t,tw!5C̃ab„h~ tw!/h~ t !…. ~E14!

This property can also be stated by saying that ast,tw→` a

plot of C̃11(t,tw) vs C̃22(t,tw) yields a single smooth curve
i.e., that there is a functionH(C) such that

C̃11~ t,tw!5H~C̃22!~ t,tw!. ~E15!
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