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Summary. We introduce a simple model describ- 
ing the evolution of a population of information- 
carrying macromolecules. We discuss the asymp- 
totic dependence of the variability of the population 
on different parameters, representing the severity or 
the fluctuations of the environment. We show the 
existence of a transition separating a neutralist evo- 
lutionary regime from a trapped one. We investigate 
the dependence of the evolutionary behavior of  the 
population on the correlation properties of the fit- 
ness landscape. 
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1. I n t r o d u c t i o n  

We introduce and discuss in this paper a simple 
model of  evolution at the molecular level. Our aim 
is to clarify the issues involved in some of the recent 
approaches to chemical evolution, and in particular 
to the emergence of  information-carrying macro- 
molecules. The only mechanisms envisaged are mu- 
tation and selection; mutation is taken to be com- 
pletely random, whereas selection operates according 
to the fitness value of the individual. Fitness de- 
pends on the individual alone, who competes, as it 
were, against an immutable environment. "Struggle 
for life" is only indirectly embodied in a fixed pop- 
ulation constraint. The model is investigated by 
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qualitative and analytic arguments and by computer 
simulations. 

The original motivation was to understand the 
long-time behavior of models introduced to explain 
the origin of biological information (Anderson 1983; 
Tsallis and Ferreira 1983; Rokhsar et al. 1986; see  
also Peliti 1989). We find nevertheless that our at- 
tempt can be interpreted within a slightly wider 
scope. Whereas the model is explicitly defined under 
strict simplifying assumptions to make its treatment 
feasible, we believe that most features of  its behavior 
are common to a class of  models that share its fun- 
damental architecture: namely, the existence of  point 
mutations exclusively, and the dependence of  fitness 
on the nature of the single individual. The features 
we believe to be common to all such models are: 

i) the survival, in the long run, of  a single molecular 
quasi-species; this prevents, within the assump- 
tions of the model, the eventual coexistence of 
distinct molecular species; and 

ii) the existence of  either neutralist (Kimura 1983) 
or adaptive regimes, according to the values of 
the parameters entering the definition of the 
model. 

Some other features might also be valuable: the de- 
pendence of the average fitness of the population o n  

a parameter defining the sloppiness (Dyson 1985) 
of the selection mechanism; and the transition from 
a wandering (neutralist) to a trapped evolution re- 
gime, corresponding quite closely to a gelation tran- 
sition in models of disordered systems (Mrzard et 
al. 1987). A key role is played in our approach by 
the concept of the correlation of  a fitness landscape, 
whose importance has been emphasized by Kauff- 
man and Levin (1987) and Kauffman (1988). We 
shall sketch the consequences of a varying fitness 
correlation on the behavior of  the model. 

As we have mentioned, we mainly conceive as 
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evolving entities information-carrying polymers such 
as protopolynucleotides. We assume that some rep- 
lication mechanism of  moderate efficiency exists. 
This justifies the consideration of  not too large "ge- 
nome" sizes. Nevertheless the same questions could 
be asked and the same model could be applied (with 
minor modifications) to other situations. In partic- 
ular, the conclusion that the fluctuation instability 
prevents this class of  models from describing the 
diversity of  life forms applies in general. 

The model is defined in section 2. The properties 
of  the fitness function, and in particular the corre- 
lation concept, are discussed in section 3. Section 4 
contains the results concerning the apparently trivial 
case in which the death probability is independent 
of  the individual. Section 5 contains the results of  
the simple case in which selection is sharp and the 
fitness function is rugged. More general cases, with 
sloppier selection rules and correlated fitness Iand- 
scapes, are considered in section 6. Section 7 con- 
tains a brief discussion. Appendix A contains the 
discussion of  a class of  random functions with tun- 
able correlation. Appendix B contains the deri- 
vation of a simple but important technical result 
needed in section 4. 

plification has already been introduced by the au- 
thors referenced above and by Abbott (1988). We 
define therefore the configuration of  a given indi- 
vidual a (a = 1, 2 . . . . .  M) by a set s ~ of  N binary 
variables: 

s ~ = (s1% . . . .  SN~); 

S z ~ = + l , a = l  . . . . .  M , i =  1 . . . . .  N (2.1) 

We assume that the size N of  the "genome" is fixed. 
This is a very drastic limitation, which we are plan- 
ning to relax in future work. However, it allows us 
to consider a "genome space" defined once and for 
all as the space of  all the 2 u possible genome con- 
figurations. This space has the topology of  an N-di- 
mensional hypercube. It is endowed with a natural 
notion of  distance, i.e., the Hamming distance, dn, 
equal to the number of  entries Sz that are different 
in the two configurations s and s': 

1 N 
dn(s, s') = ~ /~(1 - s~s/) (2.2) 

Equivalently, one may consider the overlap, q(s, s'), 
between the two configurations, defined by 

N 2dn 
1 ~_~szs/= 1 (2.3) 

q(s, s') = ~ i=1 N 

2 .  T h e  M o d e l  

The model we consider has been inspired by those 
introduced by Anderson (1983) and Rokhsar et al. 
(1986). We have striven to reach a maximum of 
simplicity in order to highlight the effects of  mu- 
tation and selection alone in a given fitness land- 
scape. 

First of  all, we have chosen to work with a fixed 
population size M. This is motivated mainly by 
computational simplicity in the simulations. Never- 
theless we do not feel that it imposes too much of  
a restriction on the model. A more realistic con- 
straint would be a fixed resource flux. However, it 
is known that differential equation models of pop- 
ulations evolving under constant flux constraints 
behave essentially like those under constant popu- 
lation size conditions (see, e.g., Kiippers 1983). They 
are in general more difficult to solve. The effect we 
neglect is the possible variation in population size 
due to variation in the average fitness. Although this 
effect is important, the computational complica- 
tions introduced by relaxing the fixed population 
constraint have convinced us to keep it. 

Present-day information-carrying macromole-  
cules are chains of  monomers, each of  which may 
be one of  4 (for nucleic acids) or 20 (for proteins) 
types. Mutation and selection processes may already 
appear when the choice is restricted to just two types 
(standing, e.g., for purine or pyrimidine). This sim- 

We shall sometimes say that two configurations, s 
and s', whose Hamming distance is equal to u, are 
"v mutations away" from each other. 

One should not lose sight of  the shortcomings of  
our choice to have a fixed genome size N. It implies 
that we are in fact focusing on the effects of  point 
mutations, and that we do not consider all processes 
that may lengthen or shorten the genome. These 
processes, which include in particular gene dupli- 
cation, are undoubtedly important in the long run. 
On the other hand, the simulations of  a more com- 
plex model performed by Rokhsar et al. (1986), while 
showing a fast growth of  polymer length N in the 
early stages, appear to imply that this growth be- 
comes much slower at later times. The fast-growing 
phase could be described by a simpler model, like 
the one introduced by Tsallis and Ferreira (1983; 
see also Tsallis 1989). We assume that we are con- 
sidering a time scale in which all polymers contained 
in the population have reached an almost constant 
length. 

We do not explicitly consider the mechanism of  
replication. If  we take, e.g., template replication, the 
net effect of  a two-step cycle is to produce a new 
copy of the original chain, maybe with some rep- 
lication errors (mutations). If  we want to implement 
the fixed population constraint, it is more conve- 
nient to separate the mutation from the replication 
steps. We introduce, therefore, random mutations 
in a population of  fixed size, and we perform error- 



less replication to fill in the gaps generated in the 
selection step. To  cut down the arbitrariness, we 
assume that all muta t ions  are equally likely. Ge- 
norne dependence  will appear  only at the selection 
step. 

Selection involves the evaluat ion o f  a fitness 
function, H(s), defined on genome space. We defer 
to the next  section the discussion of  H(s). We sup- 
pose only that an individual  with higher values o f  
H has a smaller probabil i ty o f  being r emoved  at any 
selection step than those with lower values o f  H. 
We can therefore define a death probability, p(H), 
as a monotonica l ly  decreasing function o f  H, inter- 
polating between 1 and 0 as H increases f rom - o r  
to + or. A form of  this function has been suggested 
by Rokhsar  et al. (1986): 

1 
p(H)  = 1 + e ~(n-a~ (2.4) 

The  coefficient/3 is a sharpness parameter, and Ho 
is a threshold. When/3  -. oo, the death probabil i ty 
is 1 for all configurations s such that H (s) < H0, 
and 0 otherwise; i.e., survival is cut sharply at the 
threshold. When/3 < ~ ,  the cut is more  gentle, or, 
in other  words, selection is sloppier. If/3 = 0, the 
death probabil i ty is always equal to I/2. Higher  values 
o f /7o  correspond to more  exacting environments .  
Smaller values of/3 correspond to the existence o f  
mechanisms that partially disconnect  survival f rom 
fitness (e.g., strongly fluctuating envi ronments  or 
error-correcting developmenta l  programs). 

We are thus led to the definit ion of  the following 
mutat ion-select ion mechanism in three steps: 

i) mutation: a fraction r o f  the N M  units (i, a) 
present in the populat ion is chosen at random,  
and its state is changed: 

si ~ -, -s~ ~ (2.5) 

we shall assume that z is a small number - - i t s  
actual magni tude will be discussed later; 

ii) selection: the fitness funct ion H(s) is evaluated 
for each individual  a as a function o f  the con- 
figuration s" o f  its genome; the individual  is then 
r emoved  from the populat ion ("dies")  with a 
probabil i ty p given by eq. (2.4); 

iii) replication: as a consequence o f  the previous 
step, a number  M' o f  individuals will have died 
(we neglect the small probabil i ty that the whole 
populat ion is annihilated in one go); to keep the 
populat ion size constant,  one chooses M'  t imes 
an individual  among the surviving ones and 
makes a copy o f  it. 

The  succession o f  the steps i-ill is called a gen- 
eration. Adaptat ion only affects step ii. One might  
o f  course envisage more  general scenarios, where 
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not  all muta t ions  are equally likely, or where the 
replication probabil i ty is not  equal for all surviving 
individuals. We think however  that  our  model  re- 
duces arbitrariness to a bare min imum,  still keeping 
sufficient generality to describe a set o f  reasonable 
evolut ion processes. 

3. The Fitness Function 

We now turn to a discussion o f  the fitness function, 
H(s). Quite  independent ly  o f  the nature  o f  the in- 
dividuals that make up our  popu la t ion - -be  they 
polymers  in the prebiotic soup, or genes coding for 
homologous  proteins in a given species--we expect  
that  their  fitness will be the ou tcome o f  a complex 
interact ion with the envi ronment .  It is difficult to 
build up a satisfactory theory that  associates an ex- 
plicit fitness value with any given sequence s. 

I f  we imagine that  our  sequences represent  pro- 
topolynucleotides,  one may  consider several con- 
trasting effects by which the nature o f  a sequence 
may affect its own replication efficiency. I f  two sub- 
sequences are complementa ry  to each other,  for ex- 
ample,  the chain may fold on itself like a hairpin, 
and become therefore less likely to reproduce.  On 
the other  hand,  the same effect m ay  yield a more  
compact  coil, which is presumably more  resistant 
to envi ronmenta l  degrading agents. 

Because the actual fitness funct ion is unknown,  
the best we can do at the present  t ime is to draw it 
at r andom f rom a certain class of  functions, which 
we may try to specify a priori. One hopes that  the 
quali tat ive behavior  o f  the model  will depend only 
on the statistical propert ies o f  the fitness function,  
which are the same for almost  all realizations within 
the given class. 

One impor tan t  requi rement  is that  the fitness 
function should exhibit  a large number  o f  opt ima.  
This point  has been emphasized by Anderson (I 983). 
Only in this way, in fact, can one explain the co- 
existence of  both  stability and diversi ty in infor- 
mation-carrying macromolecules.  This condition can 
be achieved i f  there is a sufficient degree of  frustra- 
tion among the different interactions involved  (Tou- 
louse 1977), i.e., i f  several compet ing interactions 
coexist that cannot  all be satisfied at the same time. 
As we ment ioned  above,  it is likely that actual fitness 
functions do involve such compet ing effects. This  
has led Anderson (1983) to in t roduce as a model  
fitness function the energy function (Hamil tonian)  
o f  r andom ferromagnets  (spin-glasses), where the 
coexistence o f  ferromagnetic  and ant iferromagnetic  
interactions leads to frustration and to the coexis- 
tence o f  a large number  o f  opt ima.  

We have considered a more  general class o f  func- 
tions in order  to analyze the effects o f  a varying 
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degree of  correlation of  the fitness landscape. This 
landscape may be smooth or rough according to the 
higher or lower degree of  correlation existing among 
the random values of  H(s) relative to different con- 
figurations. The landscape correlation measures how 
the fitness values of neighboring sequences s and s' 
are different from each other on average. 

The smoothest landscape has only one optimum, 
and allows one to define at each configuration s a 
direction of steepest ascent, pointing toward that 
optimum. Such is the landscape considered by Dy- 
son (1985). As the degree of  correlation decreases, 
the number of optima increases, and the path length 
connecting any given sequence s to the nearest op- 
t imum decreases. On the other hand, in the same 
limit, the values of  the fitness of  these optima be- 
come smaller and smaller, and become typically of  
the order of  the mean of  H(s). We may expect there- 
fore that the behavior of  evolving systems does de- 
pend on the correlation of  the fitness landscape. 

Kauffman and Levin (1987; see also Kauffman 
1988, 1989) have introduced a class of  fitness func- 
tions with tunable correlations in an evolutionary 
context. A basically equivalent class of  functions 
was introduced in the context of  the theory of  dis- 
ordered systems by Derrida (1980, 1981). We can 
exploit their results to define a number of  possible 
fitness landscapes whose degree of  correlation may 
be changed at will. 

We define in Appendix A a class of  fitness func- 
tions Hr(s), whose correlation decreases as the in- 
teger parameter K increases. These functions are 
analogous to the NK model introduced by Kauffman 
(1988, 1989). For K = 2, one recovers the spin-glass 
fitness function introduced by Anderson (1983). In 
the limit K -~ cr one obtains a completely uncor- 
related (or rugged) fitness landscape, such as that 
discussed by Kauffman and Levin (1987). This func- 
tion is known, in the context of statistical physics, 
as the Random Energy Model (REM) (Derrida 1980, 
1981). 

Although the REM is easiest to think upon, it 
probably is not suitable to describe actual evolu- 
tionary processes. Kauffman and Levin (1987) argue 
that a certain degree of correlation is needed to avoid 
the complexity catastrophe, related to the fact that, 
in a rugged fitness landscape, most local optima have 
fitness values close to the mean. We have therefore 
also considered a rather correlated fitness function 
(first introduced in this context by Anderson 1983), 
namely the "spin-glass" function 

H2(s) = ~ Aus~j (3.1) 
( i j }  

The sum runs over all distinct pairs of  units, and 
the A's are independent, identically distributed ran- 

dom variables for each such pair. This form has the 
advantage of  being well studied (see, e.g., Mrzard 
et al. 1987). Although it is rather correlated, it ex- 
hibits a relatively large number of  local optima (at 
least if N is sufficiently large). 

To summarize, we have considered the following 
two possibilities for H(s): 

i) the REM, completely uncorrelated, in which H(s) 
assumes an independent value for each config- 
uration s. We take it to be uniformly distributed 
between - 1  and 1; 

ii) the "spin-glass" function defined by eq. (3.1). 
We have taken the A's to be equal to _ a  with 
equal probability, with a 2 = N(N - 1)/2. In this 
way, the one-level probability distribution func- 
tion P(E) is approximately a Gaussian of  zero 
mean and with variance equal to one. 

4.  T h e  fl = 0 C a s e  

It is very instructive to start by investigating the 
simple case in which the sharpness parameter/3 ap- 
pearing in eq. (2.4) vanishes. The model then re- 
duces to a special case of  the diffusion-reproduction 
processes investigated by Zhang et al. (1989). We 
may then translate their results in our language. 

If  we let/3 = 0 in eq. (2.4), we obtain that the 
death probability p equals t/2 for each of  the M in- 
dividuals, independently of its configuration s. 
Therefore, at each generation, roughly half of  the 
individuals are removed ("die"). Because the re- 
maining ones are reproduced to fill in the gaps in 
the population, we are in a situation in which, at 
each generation, any individual faces death or re- 
production with equal probability. Moreover, we 
may conceive the effects of  mutations as forcing the 
surviving individuals to perform a random walk on 
the hypercube of possible configurations. 

Let us assume that the M individuals present at 
the beginning occupy random positions on the hy- 
percube. As some of  them die and others are repro- 
duced to take their place, the population organizes 
into families, composed of the descendants of  one 
of  the original individuals. 

In fact, after a number of  generations of  the order 
of M, all surviving individuals will belong to the 
same family, with a probability arbitrarily close to 
one. This result can be obtained in the easiest way 
by a simple mean-field argument, although a rig- 
orous derivation should not be unattainable. 

Let Us start from a well-known result of  the theory 
of branched processes, rederived in Appendix B. If  
a population of  variable size contains at time t = 0 
exactly M individuals, and each of them has equal 
probability Xdt of  either dying or producing an off- 
spring during the short time interval dr, then the 



probabil i ty that the popula t ion is extinct at t ime t 
is given by 

Po(t) \1 + xt/ (4.1) 

I f  Xt is sufficiently large, this expression may  be ap- 
proximated  by 

M 
Po(t)-~ 1 - -  (4.2) 

Xt 

Therefore,  after a t ime t* propor t ional  to M/X, po(t) 
will exceed any given confidence threshold. The 
constant of  propor t ional i ty  may  be very large in 
some cases. In our  search for truly asymptot ic  be- 
havior, we will however  consider  this constant  to 
be a num be r  o f  order  one. We shall see later some 
situations in which this assumption is not  warrant-  
ed. 

Let  us go back to our  original situation, with a 
fixed populat ion size M and death probabil i ty p = 
1/2. Let  us assume that at any given t ime there are F 
families (i.e., groups o f  individuals having one o f  
the original individuals as a c o m m o n  ancestor). On 
the average, each such family will have M / F  mem-  
bers. Because o f  the above result, each such family 
will a lmost  certainly disappear  i f  we wait a num b er  
of  generations proport ional  to the size of  the family, 
i.e., to M/F.  Therefore,  over  a t ime interval  At, the 
number  F o f  families decreases by  AF, where 

yielding 

M 
F ~ - -  (4.4) 

t 

This argument is very rough, a probably misses some 
logarithmic factors. Nevertheless it is warranted to 
draw the conclusion that  F will be equal to 1 after 
a number  o f  generations proport ional  to M (and 
inversely proport ional  to the death probability).  Let  
us denote  by T this number  o f  generations. Let us 
remark that fluctuations in family size make, if  any- 
thing, the process faster, because smaller families 
are more  likely to disappear.  

This f luctuation instability is in our  opinion an 
essential feature o f  the class o f  models  we are con- 
sidering, in which the only interactions among in- 
dividuals are ei ther reproduct ion or compet i t ion  for 
c o m m o n  resources. In fact, the only features needed 
to derive this result are a death probabil i ty that  
never  vanishes, and a bounded population size (what 
makes the death and reproduction probabilities equal 
on average). However ,  the t ime needed to obtain a 

517 

one-family populat ion increases when the average 
death probabil i ty decreases. 

Let us now consider the popula t ion a very  long 
t ime after the beginning. It is all made  up o f  one 
family; indeed, by reckoning back o f  the order  o f  M 
generations, we can identify the c o m m o n  ancestor  
o f  the whole populat ion.  Therefore  each individual  
a will have accumulated at most  r N T  mutat ions  
since it branched off  the c o m m o n  ancestor. We as- 
sume that  this number  is much  smaller than the size 
N o f  the genome. Given  two individuals,  a and/3,  
their  mutual  overlap q"e is defined by 

q"a = q(s% s ~) (4.5) 

In the populat ion we are discussing, this overlap is 
bounded  by 

1 >-q~ >- 1 - 2 r T  (4.6) 

We may  visualize the popula t ion as forming a small 
cloud in some region o f g e n o m e  space. Such a struc- 
ture is called a quasi-species (Eigen and Schuster 
1979). However ,  the region occupied by the popu-  
lation varies as t ime goes on. We m ay  identify the 
center o f  the cloud (which we are t empted  to call 
the wild type) by s w = (s~W), where 

si w = = 2~s," (4.7) 
M .  

and the sum runs over  all members  o f  the popula-  
tion. The wild type mutates  as fast as a single in- 
dividual.  Indeed, it is reasonable to expect  that the 
wild type configuration is close to that o f  the com- 
mon  ancestor,  T generations back. When  t ime t in- 
creases by At, the c o m m o n  ancestor  will have  under-  
gone rNAt  mutat ions.  This will be the new location 
o f  the center o f  the populat ion.  

This argument  may  be made  more  quant i ta t ive 
as follows. The  average number  o f  mutat ions  under-  
gone by the wild type over  one generation is given 
by 

D = l lAsWI2 = I~i (AsiW)2 

where As w = (As , . )  and 

AsiW = SiW(t + 1) -- siW(t) 

1 " + -- ~ s f ( t ) ]  = ~ s i ( t  1) 

(4.8) 

(4.9) 

Let  us neglect the small n u m b e r  o f  muta t ions  taking 
place in the one generation we are looking at. Then  
the var ia t ion As TM is essentially due to the replace- 
ment  o f  " d e a d "  individuals by copies o f  the "sur-  
v iving"  ones. We have, therefore 
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Fig. 1. H i s togram (20 bins) o f  the  mu t ua l  over laps  q at # = 0. Popula t ion  size M = 200, genome  size N = 20. Mu ta t i on  rate r = 
0.25%. These  da ta  remain  the  s ame  in all s imula t ions  reported here. After  t = 500 generat ions  the  popula t ion  is fo rmed  by three 
subpopula t ions .  There  is only one subpopula t ion  at t = 1000, a l though a new one is spli t t ing out.  

1 
As  w = ~ ~ (s"' - s ~) (4.1 O) 

where the sum runs over  all " d e a d "  individuals,  and 
we assume that the individual  a is replaced by a 
copy of  individual o~'. We can estimate the difference 
s ~ - s"' by recalling that  a and og both  belong to the 
populat ion at t ime t, and have therefore branched 
off the c o m m o n  ancestor Tgenera t ions  back. There-  
fore they may differ at most  by 2 z N T  mutations.  
The  difference s" - s"' is therefore a vector  with at 
most  2 z N T  nonzero  entries, each such entry being 
equal to __+ 2. For  each entry o f  As w we obtain there- 
fore the sum of  ( M / 2 ) 2 z N T  terms with a r andom 
sign, hence a contr ibut ion o f  the order  o f  r N ~ .  
Recalling that  T is proport ional  to M we see that 
the factors M cancel in eq. (4.10), and that in fact 
D is proport ional  to zN, just  as for a single individ-  
ual. 

To  summarize,  when ~ = 0 the populat ion or- 
ganizes as a single quasi-species, with a compara-  
tively small dispersion around a "wild type,"  which 
keeps on mutat ing at a frequency independent  o f  
the populat ion size. To  highlight this behavior  one 
may describe the composi t ion o f  the populat ion at 
any given t ime t by means o f  the overlap matr i x  q~a: 
o~, ~ --- 1, 2 . . . . .  M, where q~a is defined in eq. (4.5). 
The entries g~a will always belong to the interval  
[ - 1 ,  1 ]. We report  in Fig. 1 the histogram o f  q for 
a populat ion evolving at ~ = 0 at a varying number  
o f  generations. A single quasi-species produces a 
histogram with a single peak located near q = 1. In 
presence o f  two quasi-species one sees a secondary 
peak, located close to the average overlap between 
the two subpopulations.  The  number  of  peaks in- 
creases rapidly as the number  of  quasi-species in- 
creases. In practice, it is hard to identify more  than 
three quasi-species. One sees that,  al though after 
500 generations (for a populat ion size o f  200) three 

relatively close, but  different, quasi-species are pres- 
ent, all but  one have disappeared after 1000 gen- 
erations. The  process is however  a dynamic  one, as 
is witnessed by the small shoulder  at q = 0.75, which 
corresponds to a small subpopulat ion that is differ- 
entiating. 

5. The/~ ~ ~ Case 

The  other  simple l imit  is B -. oo. As we discussed 
in section 2, this implies that all individuals whose 
fitness is smaller than the threshold die; the others 
survive and are reproduced.  It is mos t  simple to 
start by considering a rugged fitness function (i.e., 
the REM). This case has been the subject o f  a pre- 
l iminary investigation by the us (Amitrano et al. 
1988). We report  here a more  detailed discussion. 

It is useful to visualize the genome configurations 
whose fitness is lower than Ho as " fo rb idden"  sites 
on the hypercube. They  are randomly  interspersed 
among the "a l lowed"  sites, whose fitness exceeds 
Ho. The fraction x of  allowed sites is a function o f  
the threshold H0: 

x = dEP(E)  (5.1) 
o 

where P(E) is the single-level distribution defined 
in eq. (A.3). Let  us focus on one allowed site. Only 
a fraction x o f  its N neighbors (i.e., o f  the configu- 
rations that are a single muta t ion  away from the site 
we are looking at) will be allowed on average. As a 
consequence, at any given muta t ion  step, any in- 
dividual will have a probabil i ty equal to rN(1 - x)  
to step on a forbidden s i t e - -and  to be el iminated at 
the next  step. This  has the consequence that even 
fit individuals have a nonvanishing probabil i ty o f  
dying at each generation. This implies that the con- 
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Fig. 2. Histogram ofq for the REM model at/3 = 20 and Ho = 0.25. Notice the longer time scale. The quasi-species is more widely 
distributed, and one may notice a small peak at q = 0 corresponding to a small splitting subpopulation. 

clusions reached in the previous  section also hold 
for this case. The populat ion will therefore be made  
of  a single quasi-species i f  one waits long enough. 

The main  difference f rom the previous case lies 
in the fact that the c o m m o n  ancestor  o f  all surviving 
individuals at any given t ime must  have wandered 
only on allowed sites. I f  the fraction x o f  allowed 
sites is close to 1, this will only slightly reduce the 
muta t ion  speed o f  the wild type. However ,  as the 
env i ronment  becomes more  exacting, and x de- 
creases, the muta t ion  speed will become smaller and 
smaller. It is possible to argue that, i f  the threshold 
H0 exceeds a critical value H o  this speed will es- 
sentially vanish in the long run. The  critical value 
He is related to the critical value o f x  for percolat ion 
on the hypercube (Campbell  et al. 1987). 

For  the sake o f  argument,  let us assume that the 
only sites accessible f rom any given configuration 
in one-muta t ion  steps are its nearest  neighbors (i.e., 
the N sites that  are one muta t ion  away f rom the 
given one). Two allowed configurations will be ac- 
cessible f rom each other  i f  they are nearest neigh- 
bors, or i f  it is possible to draw a path f rom one to 
the other  that  touches only allowed configurations, 
always jumping  f rom nearest neighbor to nearest 
neighbor. Mutually accessible configurations ar- 
range into clusters. The  statistics o f  clusters on a 
hypercube,  as a function o f  the fraction x o f  allowed 
sites, have been recently investigated by Campbell  
et al. (1987). For  large values o f  x most  o f  the al- 
lowed sites belong to the largest cluster. When x 
drops below a percolation threshold, x*, all clusters 
become comparat ively  small, and the fraction o f  
allowed sites belonging to the largest cluster be- 
comes practically zero. Similarly, when x is large, 
the largest cluster contains configurations arbitrarily 
different f rom one another;  as x drops below x*, all 
configurations in any given cluster become closer 
and closer to one another.  This effect may  be mea- 
sured by the average overlap, ~/, o f  the largest cluster. 
It is defined by 

1 ~ q ( s ,  So) (5.2) 
O =  n s 

The sum runs over  all n configurations s belonging 
to the largest cluster, with an arbitrari ly chosen con- 
figuration So as the reference point. The  behavior  o f  
O is approximate ly  given by 

0, i f  x > xc* 
= Xc* --X 

i f  x < Xc* (5.3) 
Xc* ' 

where the threshold xc* is slightly different f rom x*, 
but  rapidly approaches it as N increases. A good 
est imate o f  x~* for large N is given by Gaun t  et al. 
(1976): 

x c . ~ x .  1 + 3 15 83 
z ~zZ + ~z3 + ~--~ + . . .  (5.4) 

where z -- N - 1. This est imate is obta ined by con- 
sidering percolat ion on a Cayley tree with N branch-  
es at each node.  

Because the popula t ion is restricted to wandering 
only on a connected cluster, the evolut ion o f  its 
genome configuration will bear  traces o f  the exten- 
sion o f  the cluster. A good measure o f  this proper ty  
would be the self-overlap o f  the wild type with itself 
over  a varying number  o f  generations T: 

1 W W~ 
Q(T) = ~v~Si-7 (t)si (t + 7") (5.5) 

This quant i ty  will in general fluctuate as t varies; 
however,  as T -* ~ ,  it will approach values o f  the 
order  o f  #. I f  x > x*, because 0 = 0, we shall have 
Q(T) -* 0 as T -~ oo; i.e., the populat ion loses m em-  
ory o f  its initial genome configuration. Otherwise, 
Q(T) will vacillate a round the average ~ as the pop- 
ulation wanders on the allowed cluster. 
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Fig. 3. Histogram o f  q for the REM model  for/3 = 20 and H0 = 0.95. The quasi-species is very sharply distributed. Subpopulat ions 
occasionally develop, as one may notice from the small shoulder for t = 15,000. 
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We have taken for granted in this argument  that  
the quasi-species wanders on the largest cluster. This  
is warranted by the overwhelming extension o f  this 
cluster when x > x*; on the other  hand, i f  x < x*, 
most  sites belong to clusters with similar values o f  
0 and the result still holds with high probability. 

Figure 2 shows the overlap evolut ion for a low 
value o f  the threshold Ho, corresponding to a frac- 
tion, x = 37.5%, of  accepted sites. One sees a com- 
paratively widely spread quasi-species that  occa- 
sionally develops into separate subpopulations,  as 
witnessed by a peak in the histogram at q = 0. By 
comparison,  Fig. 3 shows a typical configuration for 
H0 = 0.95, corresponding to x = 2.5%. Here again, 
shoulders occasionally develop, as one sees to be 
the case for t = 15,000. Notice the much longer t ime 
scale with respect to the fi = 0 case. 

It is interesting to remark  that at/3 = oo there is 
no direct "selective advantage"  for higher values o f  
the fitness, once they are above threshold. This is 
strictly true only i f  the fitness landscape is not  cor- 
related. When /3 is not  strictly infinite, however,  
there is a small selective advantage due to the ex- 
ponential  " ta i l"  in the death probability.  A similar 
effect holds for correlated fitness landscapes, as it is 
less likely that a configuration with a higher fitness 
value be surrounded by forbidden configurations. 

This entails a weak trend toward adaptat ion.  How-  
ever, this t rend will have  visible consequences only 
after a number  o f  generations inversely proport ional  
to the differential in the death probability.  I f  this 
t ime is so long that meanwhile  all members  o f  the 
populat ion will have undergone some mutat ions,  
there will be no net selective effect. In this situation, 
the evolut ion is neutralist in the sense that  the av- 
erage va lue , / t ,  o f  the fitness does not  increase with 
time. We report  in Fig. 4 the average values o f  the 
fitness/-) for a populat ion o f  size M = 200 evolving 
at B = 20, Ho = 0.25 in the REM. After 1000 gen- 
erations, /1 reaches a value o f  0.8 and keeps fluc- 
tuating around it. This  value o f  H slightly exceeds 
the median o f  the allowed values o f  H because o f  
finite/3 effects. Indeed, as/3 decreases, the selective 
advantage ment ioned  above increases, and /~ in- 
creases as a consequence.  Figures 5 and 6 contain 
the results of  a simulation with/3 = 5. The increased 
tolerance turns out to yield a substantially larger 
asymptot ic  value of/-). This  corroborates  the guess 
that adaptat ion requires a tolerant  selection mech-  
anism. 

It is interesting to remark  that adapting mecha- 
nisms emerge also at/3 = oo in correlated landscapes. 
In this situation, in fact, configurations that have 
high fitness values are more  likely surrounded by 
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Average fitness/7/for the spin-glass model for ~ = 20 and Ho = 1. One notices that typical values of H are much larger than 
the threshold. 

other fit configurations; therefore, the effective death 
probability, which depends on the probabili ty that 
a mutat ion leads to an unfit configuration, is cor- 
respondingly smaller. This effect is stronger when 
the fitness landscape is more  correlated. Figure 7 
reports the results o f  a simulation performed on the 
spin-glass model  with ~ = 20 and with a threshold 
value Ho = 1. One should remember  that, in this 
case, the one-level probabili ty distribution is ap- 
proximately a Gaussian distribution o f  zero mean 
and variance equal to one. Typical values o f  H are 

therefore o f  order one, whereas the simulations show 
much higher values o f / q  even at such high values 
o f~ .  

6. F i n i t e  fl 

As we have just mentioned,  the effects of  a finite 
value o f  ~ are similar to those o f  a correlated land- 
scape. This is slightly surprising, because one might  
argue that finite values o f  B blur the boundary  be- 
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tween allowed and forbidden configurations, where-  
as increasing correlat ion would tend to make  this 
boundary  sharper.  In  fact, the two effects go in the 
same direction, which is to smoo th  the boundary  
and  to improve  adaptat ion.  Finite values of/5 blur  
the boundary  in the region (whose width is o f  order  

/5-J in te rms  o f  H)  where p (H)  var ies  rapidly with 
H, but  the location o f  this bounda ry  becomes  cor- 
respondingly smoother ,  at least i f  the landscape is 
not  fully uncorrelated.  

Therefore,  as soon as/5 < oo, we expect  the pop-  
ulat ion spread to decrease and the adapta t ion  (as 
measured  by  the value of/7/) to increase, and this 
in a more  marked  way as the correlat ion o f  H in- 
creases. We repor t  in Figs. 8 and  9 the h is togram o f  
q for the spin-glass model ,  with a fixed value o f  the 
threshold (Ho = 1) and  with varying values  of/5. I t  
is r emarkab le  that,  even  for /5  as small  as 3, the 
dispersion o f  the subpopula t ion  is quite large, as 
shown by the b road  peak  in the h is togram a round  
q = 0.5. The  corresponding plot of/~r is shown in 
Fig. 10. The  adapt ive  t rend does  not  appea r  to 
saturate even after 2000 generations.  In  other  cases 
one m a y  observe  the persistence o f  separated sub- 
popula t ions  for a large n u m b e r  o f  generations,  thus 
vindicat ing (at least partially) the initial mo t iva t i on  
o f  Anderson  for introducing the spin-glass fitness 
function. One such instance is represented in Fig. 
1 1. The  two popula t ions  occupy opposi te  regions o f  



configuration space (i.e., one is close to the "'reverse 
image" o f  the other: s '  = - s ) .  Therefore they do 
not really correspond to different quasi-species. One 
may however  envisage different s i tua t ions-- in  par- 
ticular with larger values o f  N - - i n  which different 
quasi-species may coexist for very long times. These 
situations are metastable, although the number  o f  
generations needed to obtain a single surviving quasi- 
species is approximately  inversely proport ional  to 
the death frequency, and may become very long for 
highly correlated landscapes. 

These features make a detailed investigation o f  
the general case (varying correlation, finite #) very 
challenging. 

7. Discussion 
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landscape more  corrugated, by increasing the num-  
ber o f  selected traits. An empirical measure o f  land- 
scape roughness could be the fluctuation in the num-  
ber o f  concomitant ly  variable bases (see, e.g., Fitch 
and Markowitz  1970). This is probably not  com- 
pletely unattainable in experiments o f  selection in 
vitro. 

We hope that our  investigation will encourage 
some researchers to pay increased attention to anal- 
ogous abstract evolut ion models,  which may  be use- 
ful in defining more  sharply the questions that evo- 
lutionary theory is required to answer. 

Note added. Dr. S. Leibler has kindly drawn our attention to 
the recent review paper by M. Eigen, J. McCaskill, and P. Schus- 
ter, Molecular quasi-species, J Phys Chem 92:6881--6891 (1988), 
where very similar ideas are explored in the context of a deter- 
ministic model. 

The main  conclusions reached here are the follow- 
ing: 

i) The fluctuation instability prevents the eventual 
stabilization o f  coexisting, well-defined molec- 
ular quasi-species in all models in which the 
interaction between different individuals is re- 
duced to the compet i t ion for c o m m o n  re- 
sources; it follows that a candidate for chemical  
evolution needs the introduct ion o f  some in- 
teraction mechanism at its very definition. 

ii) Models o f  this kind may exhibit either neutralist 
or adaptive behaviors depending on the nature 
o f  the fitness landscape and on the values o f  the 
relevant parameters. In any case, the transit ion 
between neutralist and adaptive regimes is not 
sharp (at least for the relatively moderate  ge- 
nome lengths we have considered). 

iii) It is impor tant  to probe the correlation o f  the 
fitness landscape in which a given system is 
evolving. Models in which the selective advan-  
tage is proport ional  to the number  o f  correctly 
placed bases in the genome have a very highly 
correlated landscape and lead to a rather trivial 
evolut ionary behavior.  The same probably ap- 
plies when the selective probe corresponds to a 
small number  of  independent  phenotypic  traits. 
Complexi ty  o f  the interaction between individ- 
ual and envi ronment  corresponds to less cor- 
related landscapes. 

One might  consider the possibility o f  probing 
landscapes with different correlations by varying the 
selection mechanisms in experiments o f  evolution 
in vitro like those of  Orgel (19 7 9), Replicat ion speed 
in Q~-polymerase-Qf l -RNA systems probably cor- 
responds to a highly correlated landscape, in which 
only the detailed R N A  configuration near the rec- 
ognition site (and the chain length) is probed. Re- 
sistance to replication inhibition should make the 
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Appendix A 

We define in this appendix a class of fitness functions, denoted 
by Hr(s), whose degree of correlation depends on the integer 
parameter K. 

Let us denote by N the set of indices { 1, 2 , . . . ,  N). For any 
integer K, K -< N, let us define the random function Hr(s) by 

H~(s) = ~ A,,.....,AS,...S,K (A.I) 
{ i l , , . . , lK}  

where the sum runs over all subsets I o f  N composed o fexact ]y  
Kelements, and where, for each such subset I. At is an indepen- 
dent random variable. We shall assume for simplicity that all 
A1's are identically distributed, and that the probability distri- 
bution p(A) of the A's is even: i.e., for any I c N one has 

p(-A, )  = P(A3 (A.2) 

Let us define the one-level probability distribution function P(E) 
as the probability density that any given configuration s has a 
fitness H equal to E: 

P(E) = (6[E - H(s)]) (A.3) 

where fi is Dirac's delta function and the average is taken with 
respect to the probability distribution of the A's. In order to 
compute the statistical properties of this class of function, it is 
convenient to introduce the corresponding characteristic function 
G(k), i.e., the Fourier transform of P(E): 

G(k) = f dEP(E)e 'ke (A.4) 

Characteristic functions have the convenient property that 
the characteristic function of the sum of two independent random 
variables is equal to the product of the corresponding character- 
istic functions. 

By exploiting this fact, it is easy to show that 

O(k) = I I  r~k) (A.5) 
! 
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where the product runs over all sets I of K indices, and F~(k) is 
the characteristic function of  A1: 

rl(k) = f dAtp(A~) e ~u' (A.6) 

To derive eq. (A.5), we have exploited eq. (A.2) and the fact that 

r, = I-Is,  = +1 (A.7) 
id 

Because the A's are identically distributed, it follows from eq. 
(A.5) that 

in G(k) = In r(k) (A.8) 

Because it is well known that in G(k) is the generating function 
of the cumulants of HK, eq. (A.8) may be read as a relation 
between the cumulants of  Hx and those of A~: 

N 
(Hd"(s))c = ( ; )  (A,m)~ (A.9) 

In particular, ifp(A~) is a Gaussian distribution of zero mean and 
of variance given by 

j2 
(Aft) = - -  (A. 10) 

we obtain 

(Hx:(s)) = ~ (A.11) 

independent of both N and K, while all other cumulants vanish. 
Therefore, in this case, Hx(s) is distributed according to a Gaus- 
sian distribution of zero mean and variance d -2. 

A measure of the correlation between values of H(s) for dif- 
ferent configurations is given by 

C(s, s') = (H(s)n(s ' ))  (A. 12) 

where s and s' are two different configurations. Because (H(s)) 
vanishes for any configuration s, we expect that C(s, s') vanishes 
when the corresponding values of H(s) are independent. A simple 
calculation shows that, if  K ~ N, one has 

N K 
(Hx(s)Hx(s')) = (A,2)-~..[q(s, s')] x (A. 13) 

where q(s, s') is the overlap of the two configurations, defined by 
eq. (2.3). In particular, for a Gaussian p(A~), with the variance 
given by eq. (A.10), one has 

(H~s)Hx(s)) = J2[q(s, s')] x (A. 14) 

Equation (A.13) shows that if  the overlap between two given 
configurations decreases, i.e., if they become more and more 
different, the correlation C(s, s') decreases at the same time; this 
takes place faster and faster as the value of K increases. In the 
limit K ~ oo (which should of course follow a suitably defined 
limit N ~ oo) the correlation vanishes whenever the overlap 
between the two configurations is less than one, i.e., whenever 
they are different for the state of any finite fraction of their units. 

We have thus defined a class of fitness functions Hx(s) whose 
correlation decreases as the value of K increases. These functions 
are analogous to the NK model introduced by Kauffman (1988, 
1989). The quantity K may be interpreted (as suggested by Kauff- 
man and Levin 1987) as the number  of genome units that  col- 
lectively determine a phenotypic trait that falls independently 
under the edge of selection. The limit K - c~ corresponds to the 
rugged fitness landscape of Kauffman and Levin (1987) and to 
the Random Energy Model (REM) of Derrida (1980, 198 I; see 
also Ruene 1987). For this model, the value H(s) of the fitness 

function is an independent random variable for each of the 2 u 
configurations s. 

A p p e n d i x  B 

We calculate here the extinction probability for a population of 
initial size equal to M, in which each individual has equal prob- 
ability Xdt of either dying or producing an offspring during any 
short t ime interval dt. Let us denote by p,(t) the probability that 
the population size is equal to n at the t ime instant t. The stated 
condition is equivalent to the following differential equation for 
p,(t): 

dp,(t) 
dt = h[(n + l)p,+,(t) + (n - 1)p,_,(t) - 2np,(t)] (B.I) 

The initial condition corresponds to 

p.(O) = $.M (S.2) 

We define the generating function F(z, t) by 

r(z, t) = ~ z,p,(t) (B.3) 
n - o  

Because ofeq.  (B.2), we have 

r(z. 0) = z i (B.4) 

On the other hand, eq. (B. 1) implies that  I'(z, t) satisfies the partial 
differential equation 

aP h ( z -  1)20~ -r (B.5) 
dt oz 

This equation may be easily solved by the method of character- 
istics. Let ~(t; z) be the solution of  the ordinary differential equa- 
t ion 

d~ 
a t  = x(~" - 1) 2 (B.6) 

which satisfies the initial condition 

~0; z) = z (B.7) 

Explicit calculation yields the following expression for ~(t; z): 

z - (z - 1)M 
~t; z) (B.8) 

1 - (z - 1)M 

The solution of eq. (B.5) reads 

I'(z, t) = l'(~(t; z), t = 0) (B.9) 

The probability po(t) that the population is extinct at time t is 
given by 

po(t) = F(z = 0, t) (B.10) 

The above calculation yields po(t) = I'(~(t; 0), 0), where 

M 
~(t; 0) = (B.1 l) 

1 + X t  

Letting eq. (B.11) into eq. (B.4) we obtain 

( tT po(t) = \ ~ ]  (B. 12) 
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