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a b s t r a c t 

Can prelife proceed without cell division? A recently proposed mechanism suggests that transient com- 

partmentalization could have preceded cell division in prebiotic scenarios. Here, we study transient com- 

partmentalization dynamics in the presence of mutations and noise in replication, as both can be detri- 

mental the survival of compartments. Our study comprises situations where compartments contain un- 

coupled autocatalytic reactions feeding on a common resource, and systems based on RNA molecules 

copied by replicases, following a recent experimental study. 

Using the theory of branching processes, we show analytically that two regimes are possible. In the 

diffusion-limited regime, replication is asynchronous which leads to a large variability in the composi- 

tion of compartments. In contrast, in a replication-limited regime, the growth is synchronous and thus 

the compositional variability is low. Typically, simple autocatalysts are in the former regime, while poly- 

meric replicators can access the latter. 

For deterministic growth dynamics, we introduce mutations that turn functional replicators into para- 

sites. We derive the phase boundary separating coexistence or parasite dominance as a function of rel- 

ative growth, inoculation size and mutation rate. We show that transient compartmentalization allows 

coexistence beyond the classical error threshold, above which the parasite dominates. Our findings invite 

to revisit major prebiotic transitions, notably the transitions towards cooperation, complex polymers and 

cell division. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

Compartments play a central role in many biological processes

f cells, in particular in organelles such as the ER or in the Golgi

pparatus ( Jaiman and Thattai, 2018 ). Cells use compartments to

rganize chemical reactions in space: compartments eliminate the

isk of losing costly catalysts which are essential for biochemical

eactions, they also accelerate chemical reactions, while reducing

he risk of crosstalk due to other side reactions. 

In the early 20th century, Oparin suggested that membrane-less

ompartments, which he called coacervates, could have played a

entral role in the origin of life ( Oparin, 1952 ). Recently, this idea

as resurfaced, after such compartments had been found in or-

anisms, e.g. P-granules in C. Elegans embryos ( Brangwynne et al.,

009 ). These membrane-less compartments represent a particu-
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arly interesting example of active phase separation ( Zwicker et al.,

017 ), and for this reason many groups are trying to synthetize

hem ( Brinke et al., 2018; Nakashima et al., 2018 ). 

After the discovery of the structure of DNA, the coacervates sce-

ario for the origin of life got less popular, and replication scenar-

os became the new paradigm ( Higgs and Lehman, 2015; Dyson,

985 ). In the sixties, Spiegelman showed that RNA could be repli-

ated by an enzyme called Q β RNA replicase, in the presence of

ree nucleotides and salt ( Spiegelman et al., 1965 ). After a series of

erial transfers, he observed the appearance of shorter RNA poly-

ers, which he called parasites. Typically, these parasites are non-

unctional molecules which replicate faster than the RNA poly-

ers introduced at the beginning of the experiment. In 1971, Eigen

onceptualized this observation by proving theoretically that for

 given accuracy of replication and a relative fitness of parasites,

here is a maximal genome length that can be maintained without

rrors ( Eigen, 1971 ). This result led to the following paradox: to

e a functional replicator, a molecule must be long enough. How-

ver, if it is long, it cannot be maintained since it will quickly

https://doi.org/10.1016/j.jtbi.2019.110110
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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Fig. 1. A sketch of a) the stochastic corrector model, b) transient compartmentalization. Both exhibit growth, selection and noisy inoculation of new compartments. 
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be overtaken by parasites. This error threshold can be interpreted

in terms of the information, which needs to be maintained and

passed to the next generation. In this context, there are two dis-

tinct aspects of information : i) digital ( i.e discrete discontinu-

ous) information, stored in the sequence of functional information-

carrying molecules and ii) compositional (continuous) information

contained in the compositions of compartments ( Szathmáry, 2006 ).

Metabolism-first scenarios put an emphasis on the latter while

genetics-first scenarios put an emphasis on the former. Whether

one favors one or the other, this puzzle is considered to be a

key question in the Origins of life ( Maynard Smith and Szathmáry,

1995; Takeuchi and Hogeweg, 2012 ). 

In the eighties, a theoretical solution to this puzzle was pro-

posed, the Stochastic corrector model ( Szathmáry and Deme-

ter, 1987 ) ( Grey et al., 1995 ) (see Fig. 1 ) inspired by ideas of

group selection ( Wilson, 1975 ). In the Stochastic corrector model,

small groups of replicating molecules grow in a deterministic way

in compartments, to a fixed final size called the carrying ca-

pacity. Then, the compartments are divided and their contents

are stochastically partitioned between the two daughter compart-

ments. Thanks to the variability introduced by this stochastic di-

vision, and to selection acting on compartments, a coexistence is

possible between replicators and parasites despite the difference

in their growth rates. The efficiency of this mechanism depends

critically on the noise in the transmission of the parent composi-

tion (stochastic division) to daughter cells, which is controlled by

the carrying capacity. If the carrying capacity is large, there is not

enough variation for group selection to act on. If it is too small, fre-

quent random loss of replicators will lead to extinction ( Grey et al.,

1995 ). 

Transient compartmentalization is schematically depicted in

Fig. 1 . This mechanism was first proposed and experimentally

tested by Matsumura et al. (2016) . This work inspired us to for-

mulate a general framework for transient compartmentalization

( Blokhuis et al., 2018 ). In its initial formulation, it shared some

important features with early versions of the Stochastic corrector:

( Szathmáry and Demeter, 1987 ) there is compositional variability

in the inoculation step in which molecules from a large pool are

used to stochastically seed compartments, then growth is deter-

ministic and selection is performed on a compartment level. An

essential difference however comes from the mixing step, which

does not require cell division. 

Cell division (or more precisely protocell division) does not

happen spontaneously. It requires particular machinery or mech-

anisms, which may not have been there from the start. Vesicles

are typically impermeable to important biomonomers (nucleotides,

amino acids) ( Stillwell, 1976 ), which means polymeric replicators

in compartments require some extra features to become sustain-

able. In contrast to this, in transient compartmentalization, re-
ources are encapsulated at the start of each new cycle. Transient

ompartmentalization can proceed via fluctuations in the environ-

ent due for instance to day-night cycles. It is a much more prim-

tive selection mechanism as compared with the Stochastic correc-

or. This simplicity makes the mechanism plausible and general

nd provides an evolutionary means towards the development of

ore sophisticated selection mechanisms. As such, transient com-

artmentalization may have preceded cell-division. 

In order to demonstrate this point, we introduced a general

lass of multilevel selection based on a transient compartmental-

zation dynamics devoid of compartments division ( Blokhuis et al.,

018 ). It contains a maturation stage, in which the contents of a

ompartment can grow in isolation from compounds present in

ther compartments. At the end of this growth phase, the contents

f compartments are mixed back together. The composition of a

ompartment may enhance its survival rate: E.g. some compounds

ay stabilize a compartment (e.g. a vesicle), chelate degradative

atalysts (e.g. Mg 2+ ions), buffer a desired chemical environment,

mprove the influx of metabolites etc. The reverse can also be true:

ompounds may destabilize a compartment, degrade metabolites,

atalyze harmful side reactions, harness all replication machinery

nd so forth. While this may lead to rich and complex phenom-

na, the effect on survival can often be encoded by a composition-

ependent selection function f ( ̄x ) . By deriving general results for

arge classes of selection functions, we thus describe a large variety

f scenarios. 

This class of multilevel selection describes several mechanisms

roposed in scenarios for the origins of life, based on various

ypes of compartments (e.g. lipid vesicles Luisi et al., 1999 , pores

reysing et al., 2015; Baaske et al., 2007 , inorganic compart-

ents Koonin and Martin, 2005 , coacervates Oparin, 1952; Zwicker

t al., 2017 or aerosols Dobson et al., 20 0 0 ) or various protocols

f transient compartmentalization ( Damer and Deamer, 2015; Fu-

ubayashi and Ichihashi, 2018 ). Particularly exciting is the recent

xperiment that demonstrated the mechanism for the first time,

n which small droplets containing RNA in a microfluidic device

 Matsumura et al., 2016 ) were used as compartments. In this ex-

eriment, a catalytic RNA was used as a proxy for a functional

pecies/ functional replicator in competition with a nonactive par-

site. We have used this system as a model to illustrate the theory

f transient compartmentalization ( Blokhuis et al., 2018 ). 

The related issue of cooperation between producers and non-

roducers has been discussed before ( Chuang et al., 2009 ). Spatial

lustering can lead to similar effects as compartmentalization in

avoring the survival of cooperating replicators ( Tupper and Higgs,

017; Kim and Higgs, 2016 ). These ideas were combined in a re-

ent study of a population of individuals growing in a large num-

er of compartmentalized habitats, called demes ( Geyrhofer and

renner, 2018 ). Another recent related study on transient compart-
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entalization quantifies co-encapsulation effects in the context of

irected evolution experiments ( Zadorin and Rondelez, 2017 ). 

In this paper, we go beyond the analysis carried out in our pre-

ious work ( Blokhuis et al., 2018 ) by including the effect of mu-

ations and noise in the growth dynamics of encapsulated popula-

ions. By describing mutations, we can derive asymptotic analytical

esults for the error thresholds in transient compartmentalization.

his allows to make the original claim of the stochastic correc-

or model even stronger: group selection by itself can overcome

he error threshold, even without cell division. Another motiva-

ion of including mutations comes from experiments, since muta-

ions play a role in the RNA droplet experiment ( Matsumura et al.,

016 ) which inspired us. This experiment should be interpreted as

 valuable model system to illustrate group selection and chem-

stry, not as an exact instance of a prebiotic scenario. Our error

hresholds are by no means limited to RNA-world scenarios. 

The motivation of discussing noise in the growth dynamics in

ore detail comes from the realization that replication is inher-

ntly stochastic when a small number of replicators are present in

ompartments, which corresponds to the case of the RNA droplet

xperiment ( Matsumura et al., 2016 ). Naively, one could expect the

eterministic approach ( Blokhuis et al., 2018 ) to fail in this case,

ut our more detailed analysis shows that this does not happen for

olymer replicators. The explanation is that polymer replication in-

olves a succession of a large and well defined number of indepen-

ent rate-limiting steps, and as a result, the noise in the replication

ime becomes very small. In Section 4.1 , we prove this result, and

e also consider the alternative case of a single rate-limiting step

or which replication can become very noisy. This agrees with re-

ent works ( Houchmandzadeh, 2018; Michaels et al., 2018 ), which

howed that giant fluctuations are predicted in the final population

omposition of stochastically growing populations. 

A similar behavior is expected for uncoupled autocatalytic re-

ctions which can be described with a single replication step, and

herefore also present large fluctuations. Such effects should have a

ajor impact on composition-dependent selection. Indeed, it was

hown that a stochastic corrector needs noise to be just large

nough for group selection to be efficient, but small enough to

itigate the risk of yielding non-sustainable daughter compart-

ents ( Grey et al., 1995 ). Giant fluctuations in replication would

trongly promote extinction in such a mechanism. Molecular repli-

ators that wish to afford more advanced modes of selection are

xpected to adapt their growth accordingly. 

These results can be interpreted using the distinction between

igital (sequence) and compositional information introduced ear-

ier. In small-molecule autocatalytic networks and in GARD ( Segré

t al., 1998; Lancet et al., 2018 ), there are no information-carrying

olymers and no template replication, the information is purely

nalogue. In this case, the control over compositional information

s poor, due to the giant fluctuations mentioned above. In con-

rast, when digital information is used thanks to template replica-

ion, an improved control over the compositions is gained, because

uctuations in composition are reduced as shown in our model.

n this case, the loss of the analogue compositional information

n transient compartmentalization is compensated by a preserva-

ion of information in a digital form in the sequence of functional

olecules thanks to selection ( Spiegelman et al., 1965 ). 

In order to emphasize the generality of our approach, we have

xtended in Section 2 our previous model of transient compart-

entalization to the case of replicating molecules, which could be

nvolved in uncoupled autocatalytic reactions. We then go back to

he specific case of competition between ribozymes and parasites

riginally considered in Blokhuis et al. (2018) , but we go beyond

ur previous analysis, by including in Section 3 deterministic mu-

ations, able to convert ribozymes into parasites. The effect of noise

n growth dynamics is then covered in Section 4 , which contains,
n particular, in Section 4.1 a simple model for the replication of

 single template by an enzyme, and in Section 4.4 an analysis of

he growth noise in a population of replicating polymers. The latter

odel is finally used to analyze the effect of noise on the transient

ompartmentalization dynamics introduced in the first section. 

. Transient compartmentalization of uncoupled replicating 

olecules 

.1. Definition of the model 

Let us formulate an extension of the model of

lokhuis et al. (2018) for general replicating molecules in com-

artments exploiting a common resource. We start from a pool

f molecules, which contains a large number of two types of

eplicating molecules, which we call for simplicity A and B. Let the

raction of A molecules in this pool be x . These molecules then

eed a large number of compartments, which is considered to be

nfinite. A given compartment will contain n replicating molecules,

ut of which m will be of A type and the remaining ones of B

ype. Since this number is small in comparison with the number

f molecules of the initial pool, n is a random variable drawn

rom a Poisson distribution of parameter λ, while the number m

ollows a binomial distribution B m 

( n, x ). The resulting probability

istribution for seeded compartments is then 

 λ(n, m, x ) = Poisson (λ, n ) B m 

(n, x ) . (1)

he replicating molecules A and B are involved in separate auto-

atalytic reactions, exploiting a common resource C, yielding the

implified reactions 

 + C � 2A + D , (2) 

 + C � 2B + F , (3) 

here D and F are product molecules. In principle, we can add

ther resources and products, as long as we suppose C to be

imiting. The network may also require catalysts, which for sim-

licity are not specified in this balance equation. Non-replicating

olecules and catalysts are assumed to be present in large num-

ers in the compartments. 

After seeding, the numbers of A molecules, m , and of B

olecules, y , grow exponentially and independently so that 

¯
 = me αT , (4) 

¯
 = (n − m ) e γ T , (5)

ith T the time which marks the end of the exponential growth

hase, m̄ the number of A molecules and ȳ the number of B

olecules at time T . The autocatalytic reactions of Eq. (2) must

ventually saturate at some point either because the reaction will

un out of fuel molecules or because the waste product molecules

 and F poison the reaction. For simplicity, let us assume that the

rowth phase ends when N = m̄ + ȳ , where N is the same constant

or all compartments. Now, the final composition at this end time

 is mainly controlled by the ratio � = e (γ −α) T . Here, we do not

escribe the saturation which could be done more precisely using

he notion of carrying capacity ( Houchmandzadeh, 2018 ). In that

ase, the growth would be described by logistic equations and the

arrying capacity would be equal to N . Note that N can be many

imes larger than n , due to the absence of a division step (which

ould impose N ≈ 2 n ). This means that a smaller fraction (at least

 / N ) of compartments is enough to carry the functional molecules

o the next generation. For a dividing cell, on average at least half

f its daughter compartments must survive to avoid extinction of

he population. 
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Fig. 2. Original phase diagram of the mutation free model, taken from Ref 

Blokhuis et al. (2018) . The various phases are pure ribozyme (R), bistable (B), co- 

existence (C), pure parasite (P). 
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The fraction of A molecules at the end of growth phase can be

well approximated as 

x̄ (n, m ) = 

m̄ 

N 

= 

m 

n � − (� − 1) m 

. (6)

If B grows faster, we have γ > α, and thus � > 1, which is the

regime considered in Ref. Blokhuis et al. (2018) . In Section 3 , we

also consider regimes in which γ < α. 

We now implement selection at the compartment level. Selec-

tion can in general be described by a selection function 0 ≥ f ( ̄x ) ≥
1 , which is the fraction of compartments with composition x̄ that

pass the selection step. In our work, we have assumed that the

selection function only depends on the final composition x̄ of the

compartment. A natural choice for f is a monotonically increasing

function of x̄ . As an example, we will use the sigmoidal function 

f ( ̄x ) = 0 . 5 

(
1 + tanh 

(
x̄ − x th 

x w 

))
, (7)

where x th and x w 

are dimensionless parameters, which describe re-

spectively a threshold in the composition and the steepness of the

function. 

The compartments which have passed the selection step are

then pooled together, forming a new pool of molecules from which

future compartments can be seeded. The fraction of A molecules,

x ′ of this new ensemble is the average of x̄ among the selected

compartments 

x ′ = 

〈 ̄x f ( ̄x ) 〉 
〈 f ( ̄x 〉 ) , (8)

which is equivalent to 

x ′ (λ, x ) = 

∑ 

n,m 

x̄ (n, m ) f ( ̄x (n, m )) P λ(n, x, m ) ∑ 

n,m 

f ( ̄x (n, m )) P λ(n, x, m ) 
. (9)

The transient compartmentalization cycle is then repeated, starting

with the seeding of new compartments from that pool of compo-

sition x ′ . 
Upon repetition of this protocol, the pool composition typically

converges to a fixed point x ∗, which is a solution of 

x = x ′ (λ, x ) . (10)

Since the variable x undergoes a discrete mapping, the fixed point

x ∗ is stable (resp. unstable) if the derivative of x ′ ( x ) at x = x ∗ is

larger (resp. smaller) than one ( Strogatz, 1994 ). Therefore, the sta-

bility of the fixed point x ∗ changes when 

dx ′ 
dx 

∣∣∣∣
x = x ∗

= 1 . (11)

2.2. Application to ribozyme-parasite dynamics 

The above model has been introduced in

Ref. Blokhuis et al. (2018) to describe replication of RNA ri-

bozymes (resp. parasites) in compartments, which play the role

of the A molecules (resp. B molecules). In this case, in addition

to the replicating molecules, a large amount of Q β replication en-

zymes n Q β and activated nucleotides n u (serving as C molecules)

is supplied in each compartment with the same concentration

in each compartment. At the end of this growth phase, we have

n Qβ ≈ N = m̄ + ȳ , at which point further growth is limited by

the number of replication enzymes. After time T , the growth

will be linear instead of exponential, but in any case, the system

composition defined here by the relative fraction of ribozymes,

will not change. The exact time T could depend on m, n , but since

in practice N � m, n this dependence has a small effect on the

results of the model as we have checked in the Suppl. Mat. of Ref.

Blokhuis et al. (2018) . In Ref Matsumura et al. (2016) , a measure-

ment of the synthesis of a dye molecule by photodetection was
sed to promote or reject compartments. This selection served as

 proxy for more general survival scenarios, acting on the level of

he compartment, due to catalytically active RNA. In the following,

e consider the specific case of the ribozyme-parasite dynamics

f Ref. Matsumura et al. (2016) ; Blokhuis et al. (2018) . 

.3. Main dynamical regimes 

Although finding a fixed point x ∗ is generally difficult, our

ibozyme-parasite model contains two simple fixed points: x = 0

nd x = 1 . By evaluating the stability of these two fixed points,

our regimes can be distinguished, which are shown in the phase

iagram in Fig. 2 . If x = 1 is stable and x = 0 unstable, ribozymes

re stabilized, and parasites are purged. If x = 0 is stable and x = 1

nstable, parasites deterministically invade the pool and purge ri-

ozymes. If both x = 0 and x = 1 are unstable, trajectories from ei-

her side are attracted to a stable third fixed point 0 < x ∗ < 1,

eading to stable coexistence between parasites and ribozymes. Fi-

ally, if x = 0 and x = 1 are stable, their basins of attraction are

eparated by a third fixed point 0 < x ∗ < 1, which is unstable, and

n this case we have a bistable regime in which the initial compo-

ition determines the fate of the system. 

These conclusions can only be drawn provided there are no

ther fixed points besides ( x = 0 , x = 1 , x = x ∗). Extra fixed points

ome in pairs (one stable, one unstable) and matter only if they

re situated within (0,1), in which case a stable coexistence and a

istable phase would be added to the behavior inferred from the

ther fixed points. For simple monotonically increasing selection

unctions, we find that extra fixed points are a rare occurrence.

evertheless, a case where this occurs has been discussed in the

uppl. Mat. of Ref. Blokhuis et al. (2018) . 

.4. Comparison to experiments 

In addition to predicting the phase diagram associated with the

ong-time compositions reached by this transient compartmental-

zation dynamics, our theoretical model makes also predictions re-

arding the evolution of the ribozyme fraction as function of the

ound number, i.e. the number of completed cycles of compart-

entalization. The model correctly reproduces that this fraction

uickly goes to zero as function of the round number in bulk,

ess quickly with compartmentalization and no selection and even

ess quickly in the case of compartmentalization with selection. In

he latter case, a finite fraction can be maintained for an infinite
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Table 1 

Lengths and doubling times for the parasites and ribozyme 

observed in Matsumura et al. (2016) , together with their rel- 

ative aggressivity measured by their relative growth rate r , 

and the corresponding values of �. 

Type Length (nt) 2 T d ( s ) Relative r �

Ribozyme 362 25.0 1.00 1 

Parasite 1 245 20.7 1.21 13 

Parasite 2 223 17.1 1.46 107 

Parasite 3 129 14.6 1.71 473 
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Fig. 3. Phase diagram of the model with mutation in the case of prolific parasites. 

The selection function is given in Eq. (7) . Phases are colored for δ = −0 . 05 , other 

separatrices are plotted for various mutation strengths δ. The possible phases are 

coexistence (C), pure parasite (P). 
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umber of rounds provided λ is sufficiently small, corresponding

o the coexistence region of the phase diagram. 

In order to compare precisely the predictions of the model

o the experiments of Ref. Matsumura et al. (2016) , it is

mportant to know the value of key parameters such as

. Table 1 reports the experimental parameters measured in

ef. Matsumura et al. (2016) for the ribozyme and three different

arasites. The nucleotide length, its doubling time ( T d ), its relative

eplication rate ( r ) from which we infer � in the final column. The

oubling time T d for the ribozyme is related to the growth rate α
y T d = ln (2) /α, and similarly the doubling times of the parasites

s T d = ln (2) /γ . 

In the experiment, a typical compartment contains λ RNA

olecules that can be ribozymes or parasites, 2.6 · 10 6 molecules

f Q β replicase, and 1.0 · 10 10 molecules of each NTP. Replica-

ion takes place by complexation of RNA with Q β replicase, which

ses NTPs to make a complementary copy. This copy is then it-

elf replicated to reproduce the original. There is a large amount

f nucleotides, so that exponential growth of the target RNA pro-

eeds until N ≈ n Q β . This large quantity of enzymes also means

hat in practice, the noise due to fluctuations in the number of

nzymes should be very small. Starting from a single molecule, it

akes n D = log 2 n Qβ = 21 . 4 doubling times to reach this regime. In

 parasite-ribozyme mixture, we can estimate � using the relative

 : 

= 

2 

n D 

2 

n D /r 
= 2 

n D (1 − 1 
r ) . (12) 

. A modified model with deterministic mutations 

In the deterministic model, we assume that a fraction μ of

eplicated ribozyme strands mutate into parasites. Thus, the equa-

ions describing the evolution of m and y in the growth phase as-

umes the form 

˙ 
 = αm − μm = (α − μ) m (13) 

˙ y = γ y + μm, 

hich yields for the first equation 

¯
 = me (α−μ) T , (14) 

here m̄ is again the number of ribozymes at the end of the

rowth phase and m the value at the initial time. Now substituting

q. (14) into the equation for y , one finds 

¯
 = 

(
n − m + μm 

e (α−γ −μ) T − 1 

α − μ − γ

)
e γ T . (15)

he ratio between the number of daughters of one parasite

olecule and the number of daughters of a ribozyme molecule

s now renormalized by the rate μ: �̄ = e (γ + μ−α) T = e μT �, where

is the relative growth of parasites introduced previously in the

utation-free model. 

The fraction of ribozymes at the end of the exponential phase

s now given by 

¯
 (n, m ) = 

m̄ 

N 

= 

m 

n ̄� − ( ̄� − 1)(1 + δ) m 

, (16)
here δ = μ/ (α − μ − γ ) . We call δ the mutation ratio, which is a

imensionless measure of mutation versus relative growth (com-

etition). When δ → 0, we recover the mutation-free model, if

 δ| � 0 mutations become dominant. 

Selected compartments are then pooled together, and the new

verage fraction of ribozymes becomes x ′ (x, λ, δ, �̄) . Note that for

onzero mutation rate ( μ > 0), x ′ = 1 ceases to be a fixed point in

his deterministic approach, since parasites will always appear at

ufficiently long times. Therefore, the pure ribozyme (R) phase is

o longer present in the phase diagram of Fig. 3 . 

The fixed point x ′ = 0 however is still present. If this fixed point

s stable, we have a pure parasite phase. If it is unstable, there is

table coexistence at a fixed composition. If more fixed points ap-

ear, multiple stable compositions are in principle be possible. 

.1. The prolific parasites regime ( ̄� ≥ 1 ) 

Prolific parasites have a better bulk reproductive success than

ibozymes, when �̄ ≥ 1 , which is equivalent to α ≤ μ + γ and

< 0. In a mutation-free model, this would imply necessarily a

aster growth of parasites ( α < γ ), but in the present case, we

ould also allow for slower parasites as compared to ribozymes (i.e.

> γ ), provided parasites are aided by a sufficiently high muta-

ion rate μ. 

The phase diagram is evaluated by testing the stability of the

xed point x ′ = 0 . We find an asymptote behaving like 1/ λ for large

, and plateaus for small λ. The ends of these plateaus locate in

he limit δ → 0 at the position of the vertical line separating the

ibozyme and bistable phase in the original phase diagram. 

Let us first derive the right asymptote in the λ � 1 limit. In

his limit, we evaluate x ′ by considering compartments of size λ

 

′ = 

λx ̄x f ( ̄x ) 

(1 − x ) f (0) + λx f ( ̄x ) 
. (17) 

he fixed point stability condition d x ′ /d x 
∣∣

x =0 
= 1 leads to 

dx ′ 
dx 

∣∣∣∣
x =0 

= 

λx̄ f ( ̄x ) 

f (0) 
. (18) 

pon substituting Eq. (16) evaluated at m = 1 , n = λ and approxi-

ating f ( ̄x ) ≈ f (0) + f ′ (0) ̄x , (for λ � 1 , ̄x � 1 ) we find a quadratic

quation for �̄, whose only physical solution ( ̄� ≥ 1 ) is 

¯ = 

λ − 2 δ − 2 + 

√ 

λ
(
4 

f ′ (0) 
f (0) 

+ λ
)

2(λ − δ − 1) 
. (19) 
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Since we consider monotonically increasing selection functions,

f ′ (0) > 0. For λ � −δ, we find 

�̄ = 1 + 

f ′ (0) 

f (0)(λ − δ − 1) 
≈ 1 + 

f ′ (0) 

f (0) λ
, (20)

which is the same expression as the one found in the mutation-

free phase diagram ( Blokhuis et al., 2018 ). This explains why there

is a single asymptote as μ is varied in the λ � 1 limit. 

The plateaus extend to very low values of λ. We can find their

location by considering only compartments of size n = 1 . In that

case, the final compositions can be x̄ (1 , 0) = 0 or 

x̄ (1 , 1) = 

1 

1 + δ − δ�̄
. (21)

We then have for the composition recursion 

x ′ = 

x ̄x f ( ̄x ) 

(1 − x ) f (0) + x f ( ̄x ) 
. (22)

Evaluating the derivative of x ′ ( x ), we find 

x̄ f ( ̄x ) 

f (0) 
= 1 . (23)

Substituting (21) , we find that the location of plateaus obeys the

implicit equation 

�̄ = 1 + 

f (0) − f ( ̄x ) 

f (0) δ
. (24)

3.2. The prolific ribozymes regime ( ̄� ≤ 1 ) 

We now consider the opposite case where parasites are less

prolific than ribozymes. This means α ≥ μ + γ and is equiva-

lent to �̄ ≤ 1 , δ > 0 . This implies that α > γ (less aggressive

parasites) and is reminiscent of a quasipecies scenario in which

a fit ribozyme successfully outcompetes its parasites in bulk

( Eigen, 1971 ). Since this can already happen in the absence of se-

lection, we consider here the case where there is no selection, i.e.

f ( ̄x ) = 1 . 

To analyze this regime, we again assess the fixed point stability

of x ′ = 0 . We locate numerically the separatrix as shown in Fig. 4 .

We obtain separatrices that for �̄ → 0 tend to a fixed value of λ. 

Let us start by observing that when �̄ → 0 , there are only

two final compartment compositions for nonempty compartments:

x̄ (n, 0) = 0 or x̄ (n, m ) = 1 / (1 + δ) for m > 0. We can now distin-

guish between three initial compartment compositions: (i) only

parasites, (ii) no parasites, no ribozymes, and (iii) containing at

least one ribozyme. Their associated seeding probabilities are: 

p para = 

∞ ∑ 

n =1 

(1 − x ) n λn 

n ! 
e −λ = (e λ(1 −x ) − 1) e −λ
Fig. 4. Phase diagram in absence of selection function for prolific ribozymes ( ̄� ≤
1 ). Phases are colored for δ = 0 . 05 , separatrices are plotted for various mutation 

strengths δ. C: coexistence, P: pure parasite. 
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p zero = e −λ

p ribo = 1 − p para − p zero = 1 − e −λx (25)

n that case, we can write the composition recursion equation as 

 

′ = 

1 

1 + δ

p ribo 

p para + p ribo 

, (26)

he condition d x ′ /d x 
∣∣

x =0 
= 1 yields the expression 

= (1 + δ)(1 − e −λ) , (27)

or the asymptote. For λ � 1, we obtain using (27) 

= 

2 δ

1 + δ
, (28)

hich agrees very well with Fig. 4 . 

Notice that here the coexistence phase is located to the right

f the asymptotes, and the parasite phase to the left, whereas

n Fig. 3 it is the other way around. An intuitive way to under-

tand this is to consider the limit λ → 0. In this limit, nonempty

ompartments start with either a parasite or a ribozyme. The for-

er will grow to a fully parasitic compartment, whereas the latter

ill contain ribozymes plus some parasites acquired by mutations.

herefore, at low λ, the ribozyme’s capacity to outgrow parasites

competition) cannot be exploited, leading to ribozyme extinction.

t is only when ribozymes and parasites are seeded together that

he differential growth rate becomes important, which becomes in-

reasingly likely for higher λ. The phase boundaries in Fig. 4 mark

he point where enough compartments engage in competition to

llow for ribozyme survival. The mutation strength δ compares

utation rate to competition. When δ → 0, there is enough com-

etition to ensure coexistence for all λ. 

.3. Error catastrophe 

An error catastrophe corresponds to a situation where the ac-

umulation of replication errors eventually causes the disappear-

nce of ribozymes. Since there are only a parasite (P) and a coexis-

ence phase (C) in the model with mutations, the error catastrophe

eans that the coexistence region shrinks at the benefit of the par-

site phase as the mutation rate increases. One sees this effect in

ig. 3 , which corresponds to the prolific parasites regime ( ̄� ≥ 1 )

iscussed above. In this figure, we see a larger coexistence region

n the small λ region, because there the compartmentalization is

fficient to purge parasites. As the mutation rate increases how-

ver, this region shrinks because the compartmentalization fails to

urge the more numerous parasites. 

In Fig. 5 , a particular example is provided where α and γ are

xed, such that �̄ is fixed, and μ is varied. Since competition is

xed, we have μ∝ δ. The resulting steady-state value x = x ∗ then

ecreases monotonically with μ, and reaches x = 0 when crossing

he phase boundary in Fig. 6 . For small values of λ, this bound-

ry corresponds to the plateau region, for larger values, this corre-

ponds to the 1/ λ asymptote. As can be seen in Fig. 5 , coexistence

s stable for much higher values of the mutation rate μ when the

ompartment size λ is small. This means that compartmentaliza-

ion with selection leads to a relaxed error threshold with respect

o the bulk. 

The error catastrophe was also studied in the absence of selec-

ion and was shown to be in the prolific ribozymes regime ( ̄� ≤ 1 ).

n Fig. 7 , an example of this case is shown, and there too, we see

hat the steady-state value of the ribozyme fraction x ∗ decreases

s μ is increased, until it reaches the phase boundary in Fig. 8 . In

ontrast to Fig. 5 , where the error threshold decreases as the size

f compartments increases, the trend is just the opposite in Fig. 7 ,

hich is expected since the role of ribozymes and parasites are

xchanged here as compared to the prolific parasites regime. 
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Fig. 5. Steady state composition x ∗ as function of μ, α = 0 . 99 , γ = 1 . 0 . Critical rates 

μ∗ corresponds to separation between P and C phases in Fig. 6 . 

Fig. 6. Phase diagram, drawn for f α = 0 . 99 , γ = 1 . 0 . Separatrices are drawn for μ

values close to μ∗ in Fig. 5 , corresponding to an error catastrophe. 
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Fig. 7. Steady state composition x ∗ as function of μ, α = 1 . 0 , γ = 0 . 95 , in absence 

of selection ( f = 1 . 0 ). Critical rates μ∗ corresponds to separation between P and C 

phases in Fig. 8 . 

Fig. 8. Phase diagram in absence of selection function ( f = 1 . 0 ), drawn for α = 

1 . 0 , γ = 0 . 95 . Separatrices are drawn for μ values close to μ∗ in Fig. 7 . 
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In the prolific parasites regime, �̄ ≤ 1 with selection, it is inter-

sting to recast the error threshold as a constraint on the length of

 polymer to be copied accurately, as done in the original formula-

ion of the error threshold ( Eigen, 1971 ). Let us introduce the error

ate per nucleotide, ε. Then, for a sequence of length L , we have

− μ = α(1 − ε) L . Since ε � 1, it follows from this that μ = αεL .

hen α � γ , we have ln �̄ = αεLT . Using Eq. (24) , we find that

he condition to copy the polymer accurately is 

 ≤ ln (s ) 

εαT 
, (29) 

here s = f ( ̄x ) / f (0) and αT /ln 2 is the number of generations.

his criterion has a form similar to the original error threshold

 Eigen, 1971 ), namely 

 ≤ ln (s ′ ) 
ε

, (30) 

here s ′ = α/γ represents the selective superiority of the ri-

ozyme. In our model, the equivalent of s ′ is s which characterizes

he compartment selection. 

. Noise in growth 

For deterministic growth, given by Eqs. (4) and (5) , fluctuations

n the growth rates, denoted α for A molecules and γ for the B

olecules, have been neglected. In order to estimate the magni-

ude and effect of fluctuations in the growth rates, we introduce
n the next section a model for noisy replication. In particular, we

onsider a replication enzyme that stochastically binds to a strand,

ollowed by the stochastic incorporation of L monomers. The model

an either have i) a single rate-limiting step or ii) L rate-limiting

teps. Case i) corresponds to simple autocatalytic reactions, or the

ate-limiting binding of a replication enzyme. Case ii) corresponds

o the rate-limiting polymerization of a polymer of length L , via a

ultistep replication process. For L = 1 , all these descriptions be-

ome equivalent. 

Importantly, this model assumes that the replicase, once bound,

tays active until completion of the copy of the template. The pos-

ibility that the replicase falls off the template before completion

f the copy is neglected. Similarly, any effects associated with the

nteraction of multiple replicases on the same template are ne-

lected. In fact, when the replicase falls off of its template, the

opying process is aborted and the shorter chain which has been

roduced in this way becomes a parasite. We can therefore de-

cribe such a process as a mutation using the framework of the

revious section. To separate the effects due to mutations and

oise clearly, we disregard from now on the possibility of muta-

ions, and we focus in the following on the description of the noise

ssociated with replication. Such a noise can stabilize the ribozyme

hase at the expense of coexistence, and the coexistence phase at

he expense of the parasite phase. The noise of replication becomes

ery small when the rate-limiting step is nucleotide incorporation,



8 A. Blokhuis, P. Nghe and L. Peliti et al. / Journal of Theoretical Biology 487 (2020) 110110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Waiting time variability σ t / 〈 t 〉 for various polymer lengths L , as a function 

of the ratio of typical times for replication and complex formation. 
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in which case one can use a deterministic approach. In case of a

single rate limiting step, we obtain giant fluctuations. 

4.1. A minimal model for the replication process 

The replication of a polymer strand A by a replicase E can be

considered to proceed through two stages. In the first stage, a

strand A binds to a replicase E, to form a complex X 0 

A + E 

κC −→ X 0 , (31)

with the rate κC . 

Subsequently, activated nucleotides X are incorporated in a

stepwise fashion to the complementary strand. A complex of E and

A with a complementary strand of length n will be denoted by X n ,

and the strand grows until the final length L is achieved, such that

X n + X 

κ−→ X n+1 , 0 ≤ n ≤ L − 2 (32)

X L −1 + X 

κ−→ 2A , (33)

where for simplicity we have assumed the same rate κ for both

reactions. Let us denote by t the total time to yield 2 A from A,

which is the sum of the time associated with the step of complex

formation, t C and with the step of L nucleotide incorporations t L .

We thus have 

 = t C + t L , (34)

with t L = 

∑ L 
i =0 t i and t i the time for adding one monomer, which

we assumed is distributed according to 

f (t i ) = κe −κt i . (35)

For simplicity, we choose a single value κ for all monomer addi-

tions. The time for the formation of the complex, t C is similarly

distributed according to 

f (t C ) = κC e 
−κC t C , (36)

where κC = 1 / 〈 t C 〉 . 
Let us denote the moment generating function of t C by M C ( s )

and similarly for t L by M L ( s ) with : 

M C (s ) = 

∫ ∞ 

0 

dt C exp (−st C ) f (t C ) 

= 

κC 

s + κC 

, (37)

M L (s ) = 

∫ ∞ 

0 

dt L exp (−st L ) f (t L ) 

= 

L ∏ 

i =1 

[ ∫ ∞ 

0 

dt i exp (−st i ) f (t i ) 
] 

= 

(
κ

s + κ

)L 

. (38)

From M L one obtains the distribution of replication time f ( t L ) by

performing an inverse Laplace transform: 

f (t L ) = L 

−1 [ M L (s ) ] = 

κL t L −1 
L 

e −κt L 


(L ) 
, (39)

where L 

−1 represents the inverse Laplace transform. This equa-

tion shows that the replication time distribution of one strand of

length L follows a Gamma distribution ( Floyd et al., 2010 ). For

L = 1 , Eq. (39) becomes a simple exponential distribution, which

is a memoryless distribution. This distribution describes any pro-

cess with a single rate-limiting step, such as simple autocatalysis

or the binding of the replicase. 
For L > 1, this distribution has memory and the growth in

he number of RNA strands can no longer be described as a sim-

le Markov process. Note that the Gamma distribution is peaked

round the mean value of t L , namely L / κ for L � 1. In this limit,

he replication time has very small fluctuations. This feature has

ecently been exploited to construct a single-molecule clock, in

hich the dissociation of a molecular complex occurs after a well-

ontrolled replication time ( Johnson-Buck and Shih, 2017 ). 

.2. Coefficient of variation of the replication time 

Let us now study the coefficient of variation of the full time

 . For the simple replication model, this includes the diffusion of

he replicase and the replication step. The generating function of t

s clearly M(s ) = M D (s ) M L (s ) . Thus, the cumulant-generating func-

ion defined as K(s ) = ln M(s ) , yields the two moments of the dis-

ribution of t , namely the mean 〈 t 〉 and the variance σ 2 
t . We have

 t〉 = 〈 t C 〉 + 〈 t L 〉 = 

1 

κC 

+ 

L 

κ
, (40)

2 
t = σ 2 

C + σ 2 
L = 

1 

κ2 
C 

+ 

L 

κ2 
. (41)

hus the coefficient of variation of the replication time, namely

t / 〈 t 〉 is given by 

σt 

〈 t〉 = 

√ 

1 
κ2 

C 

+ 

L 
κ2 

1 
κC 

+ 

L 
κ

. (42)

ig. 9 shows this quantity as function of the length L and of the

atio of the rates ( κC / κ). 

There are two regimes: on one hand, when L / κ � 1/ κC , the

ime taken by the replication step dominates over the time for

he replicase to diffuse to its target. If in addition σ 2 
L 

� σ 2 
C 

, the

oefficient of variation of the time t scales as 1 / 
√ 

L and therefore

ecomes very small for long strands. This power-law regime is in-

eed visible as plateaus in Fig. 9 and we will refer to this as the

eplication-limited regime. 

On the other hand, when 1/ κC � L / κ , the time to form a com-

lex between the replicase and its template dominates over the

eplication time. This regime has a large coefficient of variation

ince σ t � 〈 t 〉 as also seen in Fig. 9 . In this regime, the repli-

ation time is governed by the simple exponential distribution of

q. (36) . A simple autocatalytic reaction is governed by such a dis-

ribution, which is also equivalent to a replication-limited situation

ith L = 1 . We will refer to this behavior as the diffusion-limited

egime. 
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Fig. 10. Phylogenetic trees, generations representation. a) diffusion-limited regime. b) replication limited regime. The simulation ends when the population size has reached 

128. The horizontal axis corresponds to the generation number. 
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Fig. 11. Coefficient of variation of the population size N as function of the initial 

population size n . The results have been averaged over 20 0 0 runs. The solid lines 

represent the theoretical prediction: 1 / 
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.3. Phylogenetic noise due to asynchronous growth 

In Fig. 10 , phylogenetic trees are drawn for diffusion-limited

nd replication-limited growth. In both cases, growth starts from

 single parent strand and descendants are depicted as function of

heir generation. 

In this representation, the differences in the two growth

egimes become very clear. In the replication-limited regime, gen-

rations are synchronized: lineages spread over the same numbers

f generations. This happens because noise in replication time is

mall with respect to the typical replication time: σ t / 〈 t 〉 � 1 (see

q. (42) ). Replication slowly desynchronizes by the accumulation

f noise over multiple generations. For two independent strains,

enerations become desynchronized after about 
√ 

L generations. 

In contrast, in the diffusion-limited regime, fluctuations are of

he order of the replication time: σt / 〈 t〉 = 1 . In this memoryless

ase, each species is equally likely to perform the next replication

vent, yielding a desynchronized growth behavior with large gaps

n the phylogenetic tree. 

These figures have been obtained by simulating the growth of

 replicating mixture starting from a single strand. The simula-

ion follows k RNA-enzyme complexes, and for each the variable

 k measures the length of the growing complementary strand. For

very nucleotide incorporation event, a strand i is chosen with

robability 1/ k , after which its number of nucleotides is updated

rom n i to n i + 1 . When n i + 1 = L, we set n i = 0 , we update k to

 + 1 , and then we introduce an extra strand variable n k +1 for the

ew strand. Both the replication-limited regime and the diffusion-

imited regime can be modeled using this simulation. In the lat-

er case, we choose L = 1 , which corresponds to exponentially dis-

ributed replication times as in Eq. (36) . This also describes the

ase of simple autocatalysis. 

.4. Noise in population size due to growth 

In Section 4.2 , we have analyzed the noise associated with the

eplication of a single strand. Ultimately, we wish to quantify the

ompositional variation of the final population. In order to do so,

e turn to the theory of branching processes with variable life-

imes taken randomly from a fixed distribution ( Karlin and Tay-

or, 1975 ). As explained in Appendix A , this framework describes

heoretically a population that grows exponentially starting from

 single individual. In our molecular system, this single individual

lays the role of the single molecule present in the initial condition

efore the replication starts; while the distribution of the lifetimes

s the replication time distribution f ( t L ) obtained in Eq. (39) . 

For t L � L / κ , we find that the average population (starting from

 single individual) μ(1) scales as μ(1) (t) = μ∗e αt , with a growth
ate α � κ ln (2)/ L . The coefficient of variation of the population

ize σ (1) / μ(1) is 

σ (1) 

μ(1) 
≈

√ 

2 ln (2) √ 

L 
. (43) 

he renewal theory on which these results are based, can be gen-

ralized to the case that there are n individuals in the initial condi-

ion as shown in Appendix B . The full solution is found by treating

he n initial molecules as n independent subpopulations, which all

tart at size 1 and follow the branching process described above

nd in Appendix A . In that case, each subpopulation now has a

ean μ(1) = μ(n ) /n and a standard deviation σ (1) ≈ μ(1) / 
√ 

L . This

hen allows to write 

(n ) ≈ √ 

n σ (1) = 

μ(1) 

√ 

nL 
. (44) 

e show in Fig. 11 that the corresponding coefficient of variation,
( n ) / μ( n ) , agrees well with simulations of the branching process.

he 20 0 0 simulation runs were stopped after a time t ∗ such that

 N ( t ∗) 〉 � 50 0 0. 

.5. Giant fluctuations in logistic growth of competing species 

The problem of two species competing for the same re-

ources has been studied in the literature and offers a comple-

entary perspective on the role of noise in a growing popula-

ion, which has been studied in the previous section. Let us con-

ider two such species, which typically start with a few individ-

als and then grow according to logistic noise. As shown in Ref.



10 A. Blokhuis, P. Nghe and L. Peliti et al. / Journal of Theoretical Biology 487 (2020) 110110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

e  

t  

a  

t  

�  

a

σ  

w  

f

 

c  

t  

n  

i  

g  

t

 

m  

(  

t  

a  

I  

t  

m

 

v  

m  

t  

s  

e  

a

 

l  

d  

b  

s  

t  

r  

d  

o  

w  

c  

d

4

 

i  

y  

s  

t  

a  

a

x  
Houchmandzadeh (2018) , when the carrying capacity is reached,

the number of each species is subject to giant fluctuations (the co-

efficient of variation is of the order of unity) when the two species

have similar growth rates, leading to considerable compositional

variability. In the terminology introduced in previous section, this

model applies to the diffusion-limited regime ( L → 1, simple auto-

catalysis), where a Markov description of the population dynamics

is applicable. 

Keeping the notations of the first section, we denote by n the

initial number of molecules, which splits into m ribozymes (or A

autocatalysts) and y parasites (or B autocatalysts), and by N the

final number of molecules in the compartment. In the neutral case

( α = γ ), the moments of the number of ribozymes m̄ are found to

be ( Houchmandzadeh, 2018 ) : 

〈 ̄m 〉 = N 

m 

n 

, (45)

σm̄ 

= 

√ 

my 

n 

2 

N(N − n ) 

n + 1 

, (46)

with again y = n − m . Since N remains fixed, σx̄ = σm̄ 

/N. This

means that 

σx̄ ≈
1 

n 

√ 

my 

n 

(47)

for N � n , which means that the variability in the final compo-

sition x̄ depends primarily on the number of individuals in the

initial condition. Let us denote s = α/γ − 1 � 1 , with s � 1 and

ρ = ln (N/n ) . In Ref. Houchmandzadeh (2018) , it was shown that 

σm̄ 

〈 ̄m 〉 = 

√ 

y 

m (n + 1) 

(
1 − ρsn (m + 1) 

(n + 1)(n + 2) 

)
(48)

In general, the dynamics of the composition has a large variability

for: (i) small compartments ( n ~ O (1)), (ii) mixed compartments

( m, y > 0), and for m ≈ y , (iii) comparable growth rates ( s → 0). 

Such a coefficient of variation is asymptotically constant on long

times and the constant only depends on the initial number of

molecules. A similar scaling for the coefficient of variation holds

in a number of other physical situations, such as for the fluctua-

tions in the number of protein filament formed in small volumes

( Michaels et al., 2018 ). 

4.6. Noise for co-encapsulated growing populations 

Let us now apply the results of the Section 4.4 to analyze the

effect of the growth noise on our transient compartmentalization

dynamics. Let us assume that the length of the ribozymes is L α and

that of the parasites L γ . For experimental values of these parame-

ters we refer the reader to Table 1 . In Section 2 , we have defined

m, y to be the initial number of ribozymes and parasites and m̄ , ̄y

to be the final mean number of ribozymes and parasites at the end

of the growth phase in a given compartment. Using Eqs. (43) and

(44) , we obtain 

σm̄ 

〈 ̄m 〉 � 

1 √ 

L αm 

, 

σȳ 

〈 ̄y 〉 � 

1 √ 

L γ y 
. (49)

Since the ribozyme fraction x̄ at the end of the exponential phase

is given by x̄ (n, m ) = m̄ /N and N � n Q β , the standard deviation of

the final composition x̄ (n, m ) takes the following form : 

σx̄ = 

√ (
∂ ̄x 

∂ m̄ 

)2 

σ 2 
m̄ 

+ 

(
∂ ̄x 

∂ ̄y 

)2 

σ 2 
ȳ 
, 
� 

√ (
ȳ 

N 

2 

)2 
m̄ 

2 

mL α
+ 

(
−m̄ 

N 

2 

)2 
ȳ 2 

yL γ
, (50)

� x̄ (1 − x̄ ) 

√ (
1 

mL α
+ 

1 

yL γ

)
, 

here we have used Eq. (44) with μm̄ 

= m̄ , μȳ = ȳ , which shows

xcellent agreement with numerical simulations Fig. 12 . The fac-

or x̄ (1 − x̄ ) is largest for x̄ = 1 / 2 and vanishes for pure parasite

nd pure ribozyme compartments, which means that composi-

ional variability due to stochastic growth can be neglected when

� 1 or � � 1. Note that if we choose α = γ (and thus x̄ = m/n ),

nd L α = L γ = 1 , Eq. (50) becomes 

x̄ � 

1 

n 

√ 

my 

n 

(51)

hich is consistent with Eq. (47) which was found using a different

ormalism ( Houchmandzadeh, 2018 ). 

Eqs. (48) and (50) point to an interesting trade-off : the syn-

hronization of growth rates comes at the cost of greater composi-

ional variability. To have a stable coexistence, growth rates should

ot diverge too much. However, this also implies giant fluctuations

n final composition. In the presence of strong selection, noise in

rowth will generate many non-sustainable compositions, lowering

he overall survival of compartments ( Grey et al., 1995 ). 

This reduction in survival is expected to be particularly detri-

ental if a compartment splits into two daughter compartments

 Grey et al., 1995 ). To prevent extinction, at least half of the daugh-

ers should, on average, survive. This puts a constraint on more

dvanced selection mechanisms, such as the Stochastic corrector.

n transient compartmentalization, only a much smaller fraction of

he order of λ/ N compartments need to survive. The RNA experi-

ents are indeed in this regime since N ≈ O (10 6 ) , λ = O (1) ). 

By having multiple rate-limiting steps ( L > 1), compositional

ariability due to noise in growth is reduced. In this sense, poly-

erization on a template as considered here is inherently func-

ional: the noise suppression it permits can increase the average

urvival rate of compartments. Noise suppression also increases

volvability, by giving the system access to more efficient mech-

nisms of heritability. 

Using the parameters of Table 1 and (43) , we can quantify the

evel of noise in the number of ribozymes or parasites in the RNA

roplet experiment ( Matsumura et al., 2016 ). We find from this ta-

le that the ribozyme size was L = 362 , and that the experiment

hould be in the replication-limited regime because the diffusion

ime scale should be approximately over 2 · 10 4 times smaller than

eplication times of the order of 10s. The compositional variation

ue to noise in growth should be maximal when we start with

ne ribozyme and one parasite of equal length, and with α = γ ,

hich on average gives x̄ = 1 / 2 . Even then, the variation in final

omposition x̄ is very small, since: σx̄ ≈ 0 . 02 . In such a case, our

eterministic approach used in Blokhuis et al. (2018) is applicable. 

.7. Phase diagram in the presence of weak noise 

The growth equations given by Eqs. (4) and (5) are determin-

stic in nature, which means that a given initial condition ( n, m )

ields a unique final composition x̄ (n, m ) . In contrast to that in a

tochastic approach, a given n and m lead to many different trajec-

ories, which means that x̄ (n, m ) is a random variable with a prob-

bility distribution p( ̄x (n, m )) . Consequently, the ribozyme fraction

fter one round is 

 

′ = 

∑ 

n,m 

∫ 1 
0 d ̄x ̄x (n, m ) p( ̄x (n, m )) f ( ̄x ) P λ(n, x, m ) ∑ 

n,m 

∫ 1 
d ̄x p( ̄x (n, m )) f ( ̄x ) P λ(n, x, m ) 

. (52)
0 



A. Blokhuis, P. Nghe and L. Peliti et al. / Journal of Theoretical Biology 487 (2020) 110110 11 

Fig. 12. Standard deviation of the ribozyme fraction, σx̄ , as predicted from simula- 

tions (symbols), and compared with predictions from Eq. (50) (solid lines). For each 

initial composition ( m, n ), 10,0 0 0 simulations were performed until a time t ∗ such 

that 〈 N ( t ∗) 〉 � 50 0 0 and by choosing α/γ = L γ /L α . 

Fig. 13. Phase diagram for ribozyme-parasite scenario in presence of noise given by 

Eq. (50) , for L α = L γ = 3 . 
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his expression is computationally demanding to evaluate for

� 1, but it can be simplified significantly in the weak noise limit.

In order to construct a phase diagram in this limit, we simplify

q. (52) , by considering p( ̄x (n, m )) ≈ N ( ̄x , σx̄ ) , where N denotes a

ormal distribution with mean x̄ and standard deviation defined by

q. (50) . From Eq. (50) we expect the effect of noise to be largest

hen λ, L and � are close to 1 (if � � 1 , ̄x → 0 ). In Fig. 13 , the

riginal phase diagram from Ref. Blokhuis et al. (2018) is shown

ogether with the modified phase boundaries (dotted lines) due to

he presence of Gaussian noise using Eq. (52) for the case that L α =
 γ = 3 . 

Given that the amplitude of this type of noise should rapidly

iminish for larger L , and that L ~ O (100) in the experiment, we

xpect our ribozyme-parasite scenario to be well-described by a

eterministic dynamics. We also see that the noise stabilizes the

ure ribozyme phase (R) with respect to the coexistence phase (C)

ecause in the presence of noise, the R region has grown at the ex-

ense of the C region. Similarly, the noise stabilizes the coexistence

egion (C) against the parasite region (P). 

. Conclusion 

In this paper, we have introduced two important extensions of

ur framework for transient compartmentalization ( Blokhuis et al.,

018 ), by including the effect of noise in growth and deterministic

utations. These extensions have general implications for scenar-

os of the Origins of Life. In particular, we have shown that tran-

ient compartmentalization has a relaxed error threshold and is
obust to noise. Although the former is also accomplished by the

tochastic corrector model ( Szathmáry and Demeter, 1987 ), tran-

ient compartmentalization is much more primitive: it needs nei-

her cell division nor deterministic growth. 

In the presence of mutations, we have found that the phase dia-

ram of this system only contains the parasite and the coexistence

hases. The case where ribozymes grow faster than the parasites

an be analyzed in terms of a modified error threshold, which in-

erestingly now depends on the dynamics of compartmentalization

nd selection. The asymptotes of these error thresholds are derived

nalytically for arbitrary selection functions and allow to easily ap-

ly the theory to study various general classes of survival scenar-

os. 

To analyze the role of noise in growth, we have introduced a

imple model for replication. The behavior of the model relies on

he number of rate-limiting steps, which are assumed to be inde-

endent. For a single rate-limiting step, the model describes sim-

le autocatalysis or rate-limiting binding to an enzyme. A poly-

er of length L can have L rate-limiting steps due to sequential

onomer incorporation. When growing two simple autocatalysts

ompeting for resources, there exists a fundamental trade-off: the

loser the growth rates, the larger the compositional variability.

imilar growth rates are important for coexistence, but composi-

ional variability can be strongly detrimental to compartment sur-

ival. In the presence of selection, most compartments will acquire

on-sustainable compositions. Selection mechanisms with cell di-

ision cannot afford such giant fluctuations, because at least half

f the daughter cells need to survive to prevent extinction. 

Template replication can remove this problem. If it is rate-

imiting, growth becomes increasingly deterministic with polymer

ize. As such, it will increase compartment survival. This may

rovide an evolutionary pressure pushing simple autocatalysts to-

ards template replicators. Such a pressure would also enhance

volvability by making more powerful selection mechanism acces-

ible to these replicators. 

For the RNA droplet experiment ( Matsumura et al., 2016 ),

rowth should be in the replication-limited regime, which we have

uantified using tools borrowed from the theory of branching pro-

esses. In the weak noise limit, we constructed a modified phase

iagram for our original ribozyme-parasite model. Transient com-

artments can use noise in growth to stabilize coexistence with a

arasite. 

Of course, the two effects that we have studied here separately,

amely mutations and noise in growth, could be present simulta-

eously. We cannot also exclude that a more detailed modeling of

he molecular replication or a different form of compartmentaliza-

ion dynamics could lead to features not captured by the present

reatment. Nevertheless, we think that the present framework rep-

esents a basis on which further studies could be built. In partic-

lar, our results and their future extensions may have bearing on

evelopments of important experimental techniques such as digi-

al quantitative PCR ( Hindson et al., 2011 ) and Directed Evolution

 Dramé-Maigné et al., 2018 ). 

These findings invite us to consider the role of group selec-

ion during prebiotic evolution from a new perspective. A first

uestion is whether transient compartmentalization could have

llowed major transitions ( Maynard Smith and Szathmáry, 1995 )

t the molecular level, such as the emergence of chromosomes

 Smith and Szathmáry, 1993 ), to occur before the advent of cell di-

ision. Second, we have shown that template polymerization, com-

ared to autocatalysis of small molecules, enhances synchroniza-

ion between compartmentalized replicators. This could have acted

s a driving force for the transition from simple autocatalysts to

ore elaborate polymeric replicators. Third, the framework should

e extended to integrate more elaborate growth dynamics. A re-

ent extension( Laurent et al., 2019 ) considers replicators which are
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themselves polymerases while parasites need the polymerase for

their own growth. One of the main results of that study is that

thanks to such interactions, there is no need of an explicit selec-

tion to preserve the replicases in a coexistence region by transient

compartmentalization. Finally, it remains to be elucidated how cell

division and cell lineages could have emerged from transient com-

partments. 
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Appendix A. Population-level noise generated by a single 

individual in the initial condition 

Let us consider an age-dependent renewal process, in which

the probability density of branching at age t is given by f ( t ), and

upon branching, the probability of having k offspring is given by

φk (assumed to be age-independent for simplicity). We would like

to evaluate the behavior of the number N ( t ) of individuals at time

t . Let us define the function h ( s ) by 

h (s ) = 

∞ ∑ 

k =0 

φk s 
k . (A.1)

We also define the generating function for the process N ( t ) by 

G (s, t) = 

∞ ∑ 

k =0 

p k (t) s k , (A.2)

where p k ( t ) is the probability that N(t) = k . We assume that

p k (0) = δk 1 = p 0 
k 
, i.e., that we start from a single object. We can

then evaluate p k ( t ) by adding the probability that no branching

has occurred between 0 and t , which is given by 1 − ∫ t 
0 d t f (t) =

1 − F (t) , with the effect of the first branching at time u , such that

0 < u < t . We obtain 

p k (t) = p 0 k ( 1 − F (t) ) + 

∑ 

l 

φl 

∫ t 

0 

d u f (u ) 
∑ 

{ n i } 
δ∑ � 

i =1 n i ,k 

� ∏ 

i =1 

p n i (t − u )

(A.3)

Multiplying by s k and summing, we obtain 

G (s, t) = s ( 1 − F (t) ) + 

∫ t 

0 

d u f (u ) h ( G (s, t − u ) ) . (A.4)

Taking the derivative with respect to s at s = 1 , we obtain the fol-

lowing equation for the average μ(t) = 

∑ 

k k p k (t) : 

μ(t) = 1 − F (t) + m 

∫ t 

0 

d u μ(t − u ) f (u ) , (A.5)

where m = h ′ (1) = 

∑ 

k k φk is the average number of daughters

upon branching. 
To solve this equation in the limit t → ∞ , let us multiply both

ides by e −αt and take the limit. Since lim t→∞ 

F (t) = 1 , we ob-

ain 

∗ = lim 

t→∞ 

μ(t)e −αt = lim 

t→∞ 

∫ ∞ 

0 

d u mμ(t − u ) e −α(t−u ) e −αu f (u ) 

= μ∗ m 

∫ ∞ 

0 

d u e −αu f (u ) . (A.6)

his equation allows for a solution different from 0 and ∞ if α is

hosen to satisfy 

 

∫ ∞ 

0 

d u e −αu f (u ) = 1 . (A.7)

hen, making use of a result by Smith (1953) , we obtain 

1 

μ∗ = 

αm 

2 

m − 1 

∫ ∞ 

0 

d u u e −αu f (u ) . (A.8)

s a consequence, we have 

(t) ≈ μ∗ e αt . (A.9)

In the case we are considering we have 

f L (t) = 

1 


(L ) 
κL t L −1 e −κt , (A.10)

nd m = 2 , which yields 

= κ(2 

1 /L − 1) ≈ κ ln 2 

L 
, (A.11)

iving, as long as L � 1, 

(t) ≈ 2 

κt/L 

2 ln 2 

. (A.12)

We can use this framework to also evaluate higher moments of

he population size, and from that obtain the coefficient of vari-

tion of the population size which characterizes the amplitude of

he noise. Let us denote the second derivative of the generating

unction with respect to s by ζ

(t) = 

d 2 G (s, t) 

d 2 s 

∣∣∣∣
s =1 

= 

∞ ∑ 

k =1 

(k (k − 1)) p k (t) . (A.13)

t large times, ζ ( t ) ≈ ζ ∗e 2 αt . The variance of the population size
2 follows from the standard relation: 

2 = ζ + μ − μ2 � ζ − μ2 . (A.14)

or the specific case we are considering, we find 

∗ = 

2 μ∗2 

(2 

L +1 
L − 1) L − 2 

. (A.15)

fter extracting the leading contribution in the large L limit, we

nd: 

σ

μ
≈

√ 

2 ln (2) √ 

L 
, (A.16)

hich is numerically close to 1 / 
√ 

L since 
√ 

2 ln 2 = 0 . 980 . ≈ 1 . 

ppendix B. Population-level noise generated from n 

ndividuals in the initial condition 

If we start from n individuals rather than just one, we can write

he probability to have k individuals at time t , p (n ) 
k 

(t) , in terms of

he subpopulations generated by n single individuals, 

p (n ) 
k 

(t) = 

∑ 

{ m 1 , ... ,m n } 
δ∑ 

j m j ,k 

n ∏ 

j=1 

p (1) 
m j 

(t) . (B.1)

ere, p (1) 
k 

(t) denotes the probability of having a population size

f k at time t , starting from one individual, which was considered

https://doi.org/10.13039/501100001665
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n Appendix A . Note that we have added an addition superscript

1) to the notation used in Appendix A to emphasize the initial

ondition. From this equation, the new generating function follows:

 

(n ) (s, t) = [ G 

(1) (s, t)] n . (B.2)

rom this equation, we obtain the average, 

(n ) (t) = nμ(1) (t) , (B.3) 

hich expresses the average with n initial strands in terms of the

verage with one initial strand. For the second moment, we ob-

ain 

(n ) = n (n − 1)[ μ(1) ] 2 + nζ (1) , (B.4) 

e can then extract σ ( n ) by using Eq. (A.14) , which yields 

 σ (n ) ] 2 = n (n − 1)[ μ(1) ] 2 + nμ(1) − n 

2 [ μ(1) ] 2 + nζ (1) 

= nζ (1) + nμ(1) (1 − μ(1) ) . (B.5) 

ogether with Eq. (B.3) , this leads to 

σ (n ) 

μ(n ) 
� 

√ 

ζ (1) − [ μ(1) ] 2 √ 

n μ(1) 
= 

σ (1) 

√ 

n μ(1) 
(B.6) 

hich is the coefficient of variation found previously for a single

ndividual in the initial condition, divided by 
√ 

n as expected for

he growth from independent individuals. This confirms the scaling

ound in Eq. (44) . 
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