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Studies in Composing  
Hydrogen Atom Wavefunctions

L A n C e  J .  P u T n A m ,  J o A n n  K u C H e R A - m o R i n  

a n d  L u C A  P e L i T i

In research laid out in this paper, we have attempted to rep-
resent the state of a quantum system and its evolution in an 
immersive integrated environment so as to present scientists 
with a better intuitive understanding of quantum reality and 
composers with a powerful medium for aesthetic investiga-
tions and creative expression. The hydrogen-like atom is par-
ticularly important for scientists, as it accurately describes 
some of the fundamental quantum mechanical phenomena 
of nature. For the composer, this atom supplies a set of well-
defined mathematical constraints that can be adjusted to cre-
ate a wide variety of spatiotemporal structures.

Making such a quantum system perceptible is of utility 
to both the scientist and the artist. First of all, doing so ren-
ders the abstract mathematical system into a format that can 
be experienced in a more intuitive and visceral way. Such a 
representation will not necessarily contribute to our under-
standing of the Hilbert space in which the atom lives but can 
give a feeling of this abstract space in the more familiar space 
that we all inhabit. Second, perceptualizing the atom can as-

sist in understanding emergent patterns, flows, symmetries 
and dynamics when multiple hydrogen-like wavefunctions 
are mixed in superposition. It can be difficult to represent 
these complex phenomena in one’s head from mathematical 
equations alone.

In order to represent the wavefunctions, we use the Al-
loSystem software framework [1] to facilitate the interactive 
visualization of this information and the AlloSphere [2], a 
spherical three-story virtual reality environment, to allow 
full immersion. Not only can the AlloSphere provide an in-
tuitive understanding of the hydrogen-like atom through 
perception [3] but it also permits the observation of multiple 
levels of structure in a way that is more naturally compre-
hensible than a flat (wall) display (Fig. 1). The hydrogen-like 
atom provides a test bed for the AlloSystem software and 
AlloSphere instrument and a necessary prerequisite for rep-
resentation of more complex and nuanced quantum systems. 
We decided, as a first step, to represent the wavefunctions 
visually, as this appears to be more easily understood than, 
for instance, translating them into sound.

ReLATed WoRK

Over the past century, many approaches have been taken 
to visualizing atomic orbitals, mostly for didactic purposes. 
The first visualizations of hydrogen atom orbitals were made 
in 1931 using time exposure photography of the motions of 
a modified mechanical lathe [4]. Thaller has done extensive 
work on the visualization of quantum mechanical states, in 
particular in three-dimensional systems [5,6] and hydrogen-
like atoms, by means of several visualization techniques. 
However, research emphasizing the temporal evolution of 
the wavefunctions is comparatively limited.

Several existing interactive tools visualize dynamic mix-
tures of hydrogen-like atom wavefunctions in real time. Fal-
stad’s Hydrogen Atom Applet [7] displays a volume rendering 
of mixtures of any number of orbitals, but only with low en-
ergy levels. Dauger’s Atom in a Box [8] also employs volume 
rendering and allows the mixing of up to eight wavefunctions 
with relatively high energy levels. These tools, however, do 
not represent wavefunctions with spin.
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The authors present their studies in composing elementary wavefunctions 
of a hydrogen-like atom and identify several relationships between 
physical phenomena and musical composition that helped guide the 
process. The hydrogen-like atom accurately captures some of the 
fundamental quantum mechanical phenomena of nature and supplies the 
composer with a set of well-defined mathematical constraints that can 
create a wide variety of complex spatiotemporal patterns. The authors 
explore the visual appearance of time-dependent combinations of two 
and three eigenfunctions of an electron with spin in a hydrogen-like 
atom, highlighting the resulting symmetries and symmetry changes.
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The time evolution of an arbitrary initial wavefunction 
can be visualized using a software package developed by 
Belloni and Christian [9,10]. The method applies to a one-
dimensional system with a purely discrete spectrum. The 
wavefunctions are projected on the eigenfunctions of the 
system, and subsequent evolution is obtained by evolving 
the coefficients of the decomposition. While the subtleties 
of quantum-mechanical evolutions are well captured by 
this software, its application to higher-dimensional systems 
would be quite difficult.

Artistically, we identify our work closely with Whitney’s 
concept of digital harmony [11] in applying harmonics 
and other musical notions, such as scales and transitions 
of curves, to visual composition. Voss-Andreae’s quantum 
sculptures [12] are also relevant, being visual interpretations 
of quantum mechanics. However they are more conceptual 
in nature and do not give a picture of the complex dynamics 
of quantum systems.

ConCePTuAL FRAmeWoRK

Our conceptual framework is based on a particular process 
of musical composition, namely the organization of frequen-
cies and pitches, transposed from the sound domain to the 
visual domain. More specifically, we propose working with 
wavefunctions in a way similar to how a composer works 
with musical tones in creating a larger work.

Quantum mechanics dictates that the evolution of a quan-
tum state is realized by a process that closely resembles addi-
tive synthesis in music. A general time-dependent quantum 
state is obtained by the superposition of a number of wave-
functions representing stationary states—the eigenfunc-
tions—multiplied by periodically varying coefficients. The 

eigenfunctions correspond to the simple sounds that accrue 
to form the complete synthesized sound. Their superposition 
produces the complex spatiotemporal pattern described by 
the time-dependent wavefunction. Here, we present several 
concepts in musical composition and physics that support 
our analogy between wavefunctions and musical tones.

Compositional Process

Music carries meaning on several timescales, from indi-
vidual timbres and pitches (foreground) to short melodies  
and rhythms (middle ground) all the way up to the large-
scale form and structure of a work (background), each  
engaging distinct perceptual and cognitive processes. Typi-
cally, a composer who starts to realize a piece of music either 
has a big idea at the macro level (e.g. a large structure to un-
fold) or something at the micro level, such as a small group 
of notes. One strategy composers use to master their data  
in developing a piece is to work at a middle-ground level,  
that is, controlling the larger structure at the background 
while unfolding the microstructure at the foreground [13]. 
Also, in predicting local motion in self-generative music 
from the microstructure, a middle-ground-to-foreground 
approach may aid in local directional choices. In Xenakis’s 
compositional approach, local events are decided randomly; 
however, these events are constrained by clearly articulated 
probability distributions [14]. This approach is similar to  
the relationship between the deterministic Schrödinger evo-
lution and probabilistic measurement process in quantum 
mechanics.

Sketching is a technique used in composition whereby a 
composer will try out various scenarios of harmonic struc-
tures in creating a work. Typically a composer will write a 

Fig. 1.	 Researchers	controlling	parameters	of	our	real-time	visualization	of	a	hydrogen-like	atom	
on	the	AlloSphere	bridge.	The	AlloSphere	is	located	in	the	California	NanoSystems	Institute		
at	the	University	of	California,	Santa	Barbara. (©	Lance	Putnam)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-000.jpg&w=466&h=238
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series of studies, called études, that are part of the sketching 
process. The sketching process is hierarchical in that a rough 
draft of the structure is sketched and various parts are then 
filled in at the micro level, which will cause adjustments at the 
macro level. This is the middle-ground area that functions 
as the pendulum between the micro and macro layers. Since 
this process is hierarchical, it can be applied at the level of 
addition of frequencies to build larger structures.

Our initial approach in composing with the hydrogen-like 
atom was to start with a middle ground, which we identify 
as interference patterns resulting from mixtures of eigen-
functions, allowing us then to experiment with various 
combinations of multiple wavefunctions that were scientifi-
cally correct and aesthetically pleasing to us. We began the 
process by sketching a series of studies mixing multiple ei-
genfunctions together. The studies ranged from the physics-
motivated to the open-ended, exploring beating and complex 
interference patterns such as fine-splitting. We created the 
basic musical alphabet by mixing the multiple eigenfunctions 
together with certain chosen characteristic frequencies.

Eigenfunctions

We employed eigenfunctions as our basic units of composi-
tion. Eigenfunctions are identified by a set of quantum num-
bers that determine the particular shape of the eigenfunction 
in space (see Geometric Properties of the Eigenfunctions 
below) as well as its frequency of evolution through time. 
Controlling the effect of the quantum numbers on the visual 
pattern produced is the basic step in the creation of a satisfac-
tory composition.

A quantum state represented by a single eigenfunction 
evolves through a space-independent phase factor that 
changes periodically in time with its characteristic frequency. 
Thus, the spatial distribution of an eigenfunction’s magni-
tude does not change with time. Additionally, two different 
eigenfunctions can share the same characteristic frequency. 
An eigenfunction is analogous to a normal mode in a pipe, 
while a characteristic frequency is analogous to a pure tone.

Eigenfunctions can be placed in superposition to create 
a wavefunction (see Appendix). Such wavefunctions gener-
ally have more complex properties than their constituent ei-
genfunctions. This is analogous to how more complex tones 
can be built from simple tones, as occurs when an organ 
is played, or during musical voicing and chorusing. These 
emergent complexities often arise due to particular patterns 
of interference.

Interference Patterns

From an artistic standpoint, the phenomenon of interfer-
ence is interesting, as it allows complex emergent patterns 
to be constructed from an “alphabet” of simple parts. Strong 
interference patterns occur when two or more waveforms 
with similar frequencies are superposed.

An elementary form of interference, beating, occurs when 
two sinusoids with similar frequencies are summed together. 
Musically speaking, beating effects can enrich static tones 
by imposing an evolution of timbre relative to pitch that is 

an order of magnitude slower. To obtain a complex beating 
pattern, one can mix two waveforms with the same timbre 
but slightly different pitch. This technique, called celeste, was 
devised by early organ builders to enrich the sound of indi-
vidual notes. Similarly, mixing two eigenfunctions produces 
a spatial pattern that evolves periodically in time, with a 
frequency equal to the difference between the characteristic 
frequencies of the eigenfunctions.

While celeste produces a more complex time evolution of 
a waveform, the effect is strictly periodic in both the time 
and frequency domains. To alleviate these periodicities, one 
must mix three or more waveforms together. A wavefunc-
tion obtained by superposing three or more eigenfunctions 
produces a pattern that in general never repeats itself. Inter-
estingly, fine-splitting in an atom can be represented with a 
mixture of three eigenfunctions.

Hydrogen-Like Atom

A hydrogen-like atom consists of a single particle of mass 
m subject to a central force whose potential is inversely 
proportional to the distance from the nucleus. The charac-
teristic frequencies given by this spectrum rapidly become 
smaller, leading to slower evolution, as the principal quan-
tum number n increases. They depend only on n and J; the J 
dependence (a spin-orbit coupling effect) is very weak. The 
J dependence produces the fine-splitting of spectral lines, 
further discussed in Three Eigenfunctions below.

The hydrogen eigenfunctions provide sufficient complex-
ity to be used as building blocks for our composition. Using 
hydrogen rather than, say, the harmonic oscillator eigenfunc-
tions is analogous to using an organ to create music rather 
than individual sine waves. This lends sufficient interest in 
using the compositional process of mixing waveforms to 
build chords that act as building blocks for visualization. 
However, the fact that a great number of eigenfunctions ex-
hibit the same characteristic frequency strongly reduces the 
number of possibilities to obtain beating patterns. Therefore 
we took the liberty of assigning frequencies to the eigenfunc-
tions arbitrarily.

Geometric Properties of the Eigenfunctions

To assist in composition, it is useful to understand the geo-
metrical properties of the eigenfunctions. It is convenient 
to start from the eigenfunctions of the spinless electron 
identified by the quantum numbers (n, ℓ, m). They are char-
acterized by a number of windings, shells and stacks, i.e. el-
ementary patterns relative to a sphere with a north and south 
pole on the z-axis (Table 1). Windings are the cycles made by 
the phase of the eigenfunction in making one loop around 
the z-axis; stacks are the parallel slices running perpendicular 
to the z-axis; and shells are the concentric regions separated 
by spherical surfaces where the eigenfunction vanishes.

The eigenfunctions of the electron with spin are obtained 
by superimposing two spinless eigenfunctions with the same 
values of n and ℓ, but with values of m that differ by 1. Thus, 
one eigenfunction has one more winding and one less stack 
than the other. As the spin eigenfunction is identified by a 
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spinor with two complex components at each point in space, 
rather than by a single complex number, as in the spinless 
version, it cannot be simply described in terms of windings 
and stacks. However, in general, higher quantum numbers 
correspond to more spatially extended and varying eigen-
functions.

STudieS

In our studies, we aimed to explore the emergent structures 
and dynamics resulting from mixing together multiple ei-
genfunctions. Due to the vast number of possible eigenfunc-
tion combinations, we decided to limit our scope, for now, to 
mixtures of only two or three eigenfunctions.

To visualize a wavefunction with spin, we used a color-
mapped isosurface, as we found it gave a clear picture of the 
wavefunction’s overall magnitude and phases. The surface 
was drawn at a particular value of the wavefunction mag-
nitude |Ψ|. The surface was colored according to the spin 
vector phases θ (spin-up/-down state) and φ (relative phase). 
We mapped θ to hues going between orange (spin up) and 
cyan (spin down) and φ to a grayscale gradient. The grayscale 
gradient is discontinuous, revealing an abrupt cut where the 
phase completes the cycle [15]. The cuts are more indica-
tive than a smooth mapping and helpful in distinguishing 
between the two different phases. The hues and grays are 
interpolated according to the proximity of the spin vector to 
the equator—more hue near the poles and more gray near 
the equator (Color Plate D).

One Eigenfunction

There are already a number of programs allowing for the 
visualization of single eigenfunctions of the hydrogen-like 
atom [16,17]. Since the time dependence of a single eigen-
function only appears in an overall phase factor, it led to a 
completely time-independent image in our representation, 
where the overall phase factor is neglected. Thus the rep-
resentation of single eigenfunctions lay outside the scope 
of the compositional process, and we did not investigate it 
systematically. Indeed, a number of software projects have 
already tackled the problem of visualizing the eigenfunc-
tion of the hydrogen-like atom, both in its spinless version 
and in that with spin [18,19]. We are more interested in the 
time-dependent patterns one obtains by mixing two or more 
eigenfunctions.

Two Eigenfunctions

General Patterns. When mixing two eigenfunctions, we al-
ready observe a wide variety of patterns. The patterns evolve 
periodically, either by changing shape or by rotating, with 
a frequency proportional to the energy difference of the ei-
genstates. In order to make this evolution visible, we arbi-
trarily lower this frequency. Fortunately, these patterns can 
be classified into a handful of general categories of shapes 
and dynamics that can be related to the quantum numbers.

We observed the following mutually exclusive types of 
dynamics with respect to the wavefunction magnitude and 
spin:

1. No change over time.
2.  Rotation around the z-axis (with possible exception 

of relative phase).
3.  Beating of magnitude
 a. isotropically
 b. radially
 c. along the z-axis

Type 1 dynamics involve no change in the wavefunction 
magnitude and spin vector. This occurs whenever the char-
acteristic frequencies ν are equal. Type 2 dynamics display 
a periodic rotation of the wavefunction around the z-axis. 
There is also a periodic change in the relative phase of the 
spin at the same rate. One can interpret this rotation as an 
angular traveling wave. Type 3 dynamics are the most inter-
esting and consist of beating effects that may involve a change 
in the shape of the wavefunction magnitude. The primary 
constraint on Type 3 dynamics is that the j values are equal. 
Beating patterns are rotationally invariant around the z-axis. 
For Type 2 and Type 3 dynamics, the rate of change of the 
wavefunction magnitude is equal to the difference between 
the two characteristic frequencies. The exact constraints on 
the eigenfunction parameters are given in Table 2.

The shape of the wavefunction magnitude is limited to a 
few particular types of point group symmetries. The differ-
ence between the j values is the order of dihedral symmetry 

TABLe 1. Geometric properties of spinless 
eigenfunctions in terms of quantum numbers.

Parameter   Range

Winding	number	 nw	 :	=	m	 .	.	.	,	−2,	−1,	0,	1,	2,	.	.	.

Number	of	stacks	 ns	 :	=	ℓ	−	|m|	+	1	 1,	2,	.	.	.

Number	of	shells	 nr	 :	=	n	−	ℓ		 1,	2,	.	.	.

TABLe 2. Parameter constraints for two-eigenfunction dynamic 
types. Empty cells indicate no dependence on the parameter.

dynamic Type	 n	 ℓ	 J	 j	 	 Comments

1	 		 	 	 		 =	

2	 		 	 	 	≠	 ≠	

3(a)	 =	 =	 =	 =	 ≠

3(b)	 ≠	 =	 =	 =	 ≠

3(c)	 	 ℓ1	+	ℓ2		 	 	=	 ≠	 Asymmetric	
	 	 odd	 	 	 	 w.r.t	xy-plane

3(c)	 	 ℓ1	+	ℓ2	 	≠	 =	 ≠	 Symmetric	
	 	 even	 	 	 	 w.r.t	xy-plane
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around the z-axis, i.e. the number of planes of reflection pass-
ing through the z-axis. When the j values are equal, there 
are an infinite number of reflection planes, and thus the 
shape is rotationally invariant around the z-axis. For non-
beating wavefunctions, the shape exhibits either reflection 
or  rotation-reflection symmetry with respect to the xy-plane. 
The rules are

Changing J does not affect symmetry type since it only 
changes the eigenfunction weights. Complex wavefunctions 
displaying the two types of symmetry are shown in Fig. 2.

Light-Emitting Combinations. Although we cannot rep-
resent the process of light emission in our system, we can 
illustrate it through a superposition of eigenfunctions that 
satisfy the selection rules (see Appendix). This leads to a 
number of interesting wavefunctions that change periodi-
cally at a rate equal to the frequency of the emitted photon. 
Figure 3 shows all such superpositions, which can be built 
out of the lowest values of n. Interestingly, they include all 
the non-trivial types of dynamics and three distinct types of 
spin distributions.

When the n values vary widely, one sees a relatively smaller 
radial interference. Indeed, most of the interference takes 
place in the region occupied by the eigenfunction with the 
smaller n value. More complex patterns can be found when 
the n values are close and larger (Fig. 4).

It appears that the only shapes for light emission super-
positions are rotationally invariant around z or have reflec-
tive symmetry with respect to the xy plane. None exhibit 
rotation-reflection symmetry.

Three Eigenfunctions

Combining three eigenfunctions, each with its own fre-
quency, generally yields a beating pattern that never repro-
duces itself exactly. The number of possible combinations 
increases rapidly. We have not yet performed a systematic 

study of the resulting patterns. As with the simple combina-
tions, the more interesting wavefunctions resulted when we 
chose values of n close to one another, because, in such cases, 
the spatial extension of the combining eigenfunctions have 
a larger overlap.

A special case of physical interest—because it yields the 
quantum description of a common spectral phenomenon—is 
an illustration of fine-splitting an emission spectral line. This 
corresponds to preparing the system in a superposition of 
three eigenfunctions: a low-energy eigenfunction and two 
“excited” eigenfunctions (details in Appendix). The resulting 
wavefunction exhibits a strong beating with a carrier fre-
quency roughly equal to the difference between the frequen-
cies of the excited and the low-lying eigenfunctions, slowly 
modulated with a frequency equal to the difference between 
the frequencies of the two excited eigenfunctions. One such 
combination is shown in Fig. 5. In a real physical situation, 
the modulation is at least about 18,800 times slower than the 
beating frequency. Thus, if we were to rescale the involved 
frequencies faithfully, the modulation would be too slow to 
be visible. Therefore we chose to rescale the frequencies in-
dependently, keeping the modulation frequency somewhat 
smaller than the fundamental one.

One can explore different combinations of three eigen-
functions in a similar way. Figure 6 shows a combination of 
higher-quantum number eigenfunctions, which exhibits a 
slow modulation of the wavefunction shape superimposed 
on a global rotation. These combinations would apply to, 
for example, an atom immersed in a magnetic field directed 
along the z-axis.

FuTuRe WoRK

Probability Flow

The evolving shape of the probability distribution is con-
nected with the probability density flow, which demands to 
be visualized itself, in order to illustrate the nature of the 
underlying wave dynamics. One could achieve this by a static 
representation of the velocity field v(r, t) or, more intuitively, 

Fig. 2. Two-eigenfunction	combinations	exhibiting	the	two	possible	symmetry	types.	Here,	(n,	ℓ,	J,	j)	are	(4,	2,	2½,	−2½)	
and	(4,	3,	3½,	j2).	Left:	rotation-reflection	symmetry	with	j2	=	1½.	Right:	reflection	symmetry	with	j2	=	2½.	(©	Lance	Putnam)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-001.jpg&w=175&h=32
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-002.jpg&w=224&h=182
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-003.jpg&w=224&h=182
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Fig. 3. The	lowest-energy	light-emitting	superpositions,	involving	a	n	=	2,	ℓ	=	1	state	
and	the	ground	state	with	n	=	1,	ℓ	=	0.	(©	Lance	Putnam)

Fig. 4. Beating	patterns	of	light-emitting	superpositions	with	large	n	values.	
Top	row:	n	values	differ	by	3.	Bottom	row:	n	values	are	equal.	(©	Lance	Putnam)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-004.jpg&w=331&h=183
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-004.jpg&w=331&h=183
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-006.jpg&w=162&h=179
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-007.jpg&w=101&h=178
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-008.jpg&w=102&h=178
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-009.jpg&w=102&h=178
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-010.jpg&w=101&h=143
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-011.jpg&w=102&h=177
http://www.mitpressjournals.org/action/showImage?doi=10.1162/LEON_a_00912&iName=master.img-012.jpg&w=99&h=174
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by representing via flow particles the actual motion with the 
local velocity. We have explored this option by introducing 
a small number of agents moving with the local velocity. The 
dynamics of these agents is connected to the changing shape 
of the wavefunction in a nontrivial and intriguing way, but a 
more systematic study is needed.

Time-Dependent Perturbation as a Compositional Process

In order to introduce a more complex temporal behavior—
such as transition from a fixed chord to a melody that evolves 
over time—one could add a time-dependent perturbation 
VI(t) to the Hamiltonian. This perturbation changes the 
wavefunction from, say, a single eigenfunction to a complex 
superposition of many eigenfunctions. Thus, in principle, 
one could use a well chosen perturbation to produce a num-
ber of different wavefunctions in succession.

There are a number of technical difficulties in follow-
ing this path. On the one hand, one would need enough 
computer power to solve the full-fledged time-dependent 

Schrödinger equation. One could however make the task 
more manageable by projecting the evolution back onto a 
chosen finite-dimensional subspace of wavefunctions, al-
lowing exploitation of the already-implemented represen-
tation of the wavefunctions. On the other hand, it is hard 
to identify which perturbation leads to a given sequence of 
wavefunctions. While the time-dependence of weights and 
phases could be chosen arbitrarily, it could be worthwhile to 
identify physically relevant perturbations that lead to inter-
esting pattern sequences.

ConCLuSion

With our representation of the hydrogen-like atom, we were 
able to study various wavefunction combinations that form 
“chords” from our quantum alphabet of musical “tones.” We 
worked together on a daily basis throughout June 2012 and 
January 2013, eventually arriving at the current mapping 
representations. We implemented different iterations of the 
mappings, most of which we discarded as either not informa-
tive enough from the physical point of view or not aestheti-
cally pleasing. For example, we employed point-cloud and 
vector-field representations of the wavefunction; however, 
the visual pattern was dominated by the distribution of these 
reporter glyphs [20]. The isosurface representation has the 
advantage of leading to an immediate grasp of the broad fea-
tures of the probability density distribution described by the 
wavefunction. The subtler effects contained in the spinor am-
plitudes and phases are reasonably well reported via our color 
coding. We found with some satisfaction that physics-based 
combinations often led to aesthetically pleasing patterns, as 
in the case of the light-emitting superposition.

The interactive tool we built with AlloSystem was easy 
to use for a visual investigation of the properties of the hy-
drogen atom eigenfunctions, as a function of their quantum 
numbers. In this sense alone, the software can be efficiently 
exploited as a didactic tool. However, even more insight is 
gained by looking at the unfolding of the visual patterns of 
a combination of several eigenfunctions. This behavior also 
provides a more intuitive understanding of the mechanisms 
of time-dependent perturbation theory.

Fig. 5. Time	evolution	(left	to	right)	of	the	lowest-energy	fine-splitting.	One	has	a	combination	of	an	n	=	1,	
ℓ	=	0	ground-state	eigenfunction	with	two	excited	eigenfunctions	having	different	values	of	J.	(©	Lance	Putnam)

Fig. 6. A	three-eigenfunction	combination.	The	eigenfunctions	each	
have	n	=	10,	ℓ	=	9,	and	J	=	9½,	but	three	different	values	of	j	(7½,	−9½	
and	−½,	respectively).	The	third	eigenfunction	enters	with	a	small	coefficient.	
This,	superposed	on	the	slow	rotation	of	the	ensemble,	produces	a	slower	
modulation	of	the	column	heights.	(©	Lance	Putnam)
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APPendix

A hydrogen-like atom wavefunction Ψν(r) is given as a prod-
uct of independent radial and angular functions

where

For the spinless electron: ν = (n, ℓ, m);
For the electron with spin: ν = (n, ℓ, J, j).

Here (r, θ, φ) are the spherical coordinates of the position 
r, s = ↑, ↓ is the spin quantum number, and

n is the principal quantum number: n = 1, 2, 3, …;
ℓ is the angular quantum number: ℓ = 0, 1, …, n − 1;
m is the magnetic quantum number: m = −ℓ, −ℓ + 1, 

…, ℓ − 1, ℓ;
J is the total angular momentum: J = ℓ ± ½
j is the z-component of the total angular momentum: 

j =  −J, −J + 1,  …, J − 1, J.

The wavefunctions satisfy the time-dependent Schrödinger 
equation

iℏ∂tΨ = ĤΨ

where the Hamiltonian operator Ĥ corresponds to the en-
ergy of the system. The eigenfunctions Ψν are solutions of 
the time-independent Schrödinger equation

ĤΨν = Ψ

and are identified by a collection ν of quantum numbers. 
A general time-dependent wavefunction Ψ is obtained as a 
linear combination of eigenfunctions with time-varying co-
efficients cν(t) that evolve according to

cν(t) = eiνt ⁄ ℏcν(0).

While the amplitude |Ψ|2 = |Ψ↑|2 + |Ψ↓|2 yields the prob-
ability of finding the electron at a given position in space, 
there is much physical information contained in the full Ψ, 
e.g. the probability of observing a given value of the spin.

In this work we consider only pure states, which are de-
scribed by a complex-valued wavefunction Ψ(x). In our 
case x = (r, s), so Ψ can also be considered a spinor, i.e. a 
two-component vector Ψ = (Ψ↑, Ψ↓). Each component of a 
spinor eigenfunction is proportional to an eigenfunction of 
the spinless electron with a proportionality coefficient dic-
tated by symmetry. Thus each spinor eigenfunction has two 
components, each of which is an eigenfunction of the spin-
less electron with different values of m. Given j, the upper 
and lower eigenfunctions have m = j − ½ and m = j + ½, re-
spectively. One can associate to each spinor a 3D spin vector v 
that points in the local direction of the spin.

Light is emitted when the electron, coupled to an elec-
tromagnetic field, performs a transition from a state with 
quantum numbers ν and energy ν to a state with quantum 
numbers ν´ and a smaller energy ν´ (the reverse transition 
corresponds to light absorption). The energy of the emitted 
photon is given by  = ν − ν´ and is related to its fre-
quency ω by the Planck relation  = ℏω. Symmetry dictates 
that the transition can only take place if ν and ν´ satisfy the 
selection rules:

For the spinless electron ν = (n, ℓ, m), ν´ = (n´, ℓ´, m´), 
with ℓ − ℓ´ = ±1, m − m´ = 0, ±1.

For the electron with spin, ν = (n, ℓ, J, j), 
ν´ = (n ,́ ℓ ,́ J ,́ j´), with ℓ − ℓ  ́= ±1, j − j  ́= 0, ±1.

Fine-splitting of an emission spectral line corresponds to a 
superposition of three eigenfunctions: a low-lying eigenfunc-
tion with quantum numbers (n0, ℓ0, J0), and two “excited” 
eigenfunctions with n1, 2 = n0, ℓ1, 2 = ℓ0 + 1 and two different 
values J1 and J2 satisfying J1, 2 = ℓ ± ½.
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Glossary

eigenfunction—in quantum mechanics, a wavefunction associated with 
a specific possible value of a physical observable. A general wave-
function can be obtained as a superposition of eigenfunctions.

perceptualization—the mapping of data so that it can be perceived in a 
meaningful way through human senses, e.g. visualization and soni-
fication.

pure state—a state of a quantum system that contains its fullest specifica-
tion compatible with the laws of quantum mechanics. It is described 
by a wavefunction.

Schrödinger equation—the equation describing the evolution of a quan-
tum state. It reads iℏ∂tΨ = Ĥ Ψ, where Ĥ is the Hamiltonian operator 
associated with the energy of the system.

spin—a purely quantum degree of freedom of elementary particles, rep-
resenting an intrinsic contribution to the total angular momentum. 
For electrons, the spin assumes the values ±ℏ ⁄ 2, where ℏ is the 
reduced Planck constant.

superposition—an additive mixture of waveforms, typically from the 
same family of functions. The parts cannot necessarily be recovered 
fully from the whole. The solutions of the Schrödinger equation are 
a superposition of eigenfunctions with time-varying coefficients.

wavefunction—the complex-valued function Ψ(x) defined on the con-
figuration space of a quantum system that contains a full description 
of a pure quantum state. Its evolution is described by the time- 
dependent Schrödinger equation.
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Isosurface color mappings representing the spin  
vector phases, q and f. Spin up (q = 0) is orange 
and spin down (q = p) is cyan. (© lance Putnam)
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