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In this note, I report the solution of the two-dimensional Ising model
in zero magnetic field, as reported by Vdovichenko [1]. The model was
first solved by Lars Onsager in 1944 by a mathematical tour de force [2].
Simpler derivations were found later by Kac and Ward [3], Schulz, Mattis
and Lieb [4] and others. The present solution was inspired by Kac and
Ward’s one, but is simpler. It was made widely known by Landau and
Lifshitz’s treatise on theoretical physics [5].

We consider a system of N = L2 Ising spins placed on a square lattice.
Thus the spin placed at the (k, `) lattice point is denoted by σk`, and one
has σk` = ±1, k, ` ∈ {1, . . . , L}. The hamiltonian H({σ}) is given by

H({σ}) = −∑
k`

[J (σk`σk,`+1 + σk`σk+1,`) + hσk`] , (1)

where we have assumed periodic boundary conditions:

σk+L,` = σk,`+L = σk`, ∀k, `. (2)

We set h = 0 from now on. Then we have seen in section 5.11 that the
partition function can we written

Z(K) =
(

2
1− t2

)N

∑
G

′t|G|, (3)

where
t = tanh

J
kBT

, (4)
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and the sum runs over all diagrams G that can be drawn on the lattice,
such that (i) each bond appears at most once, and (ii) at each vertex meet
zero, two or four bonds. In this expression |G| is the number of bonds that
appear on the diagram G. Then this expression can be written in the form

S = ∑
G

′t|G| = ∑
r

trgr, (5)

where gr is the total number of diagrams satisfying the two rules above
and containing exactly r bonds.

We shall now evaluate this expression by transforming it into a sum
over loops. The resulting expression will then be evaluated by reducing it
to a random-walk problem.

A generic diagram G can be considered as a collection of loops. A loop
is the trajectory of a walk that starts and ends on the same site. How-
ever, the decomposition of a diagram into loops is ambiguous if there are
self-intersections, i.e., if there are vertices where four bonds meet. Let us
consider, e.g., the diagram in figure 1. It can be considered as the collec-
tion of two loops (which meet at one vertex) (case (a)), or as a single loop
whose path does intersect itself (case (c)) or does not (case (b)). In order

−= +

Figure 1: A diagram with self-intersections can be decomposed in several
different ways into loops.

to obtain a nonambiguous sum, we assign to each diagram a factor (−1)n,
where n is the number of intersections. In this situation, the contribution
of case (c) will be opposite to that of case (b), and they cancel out, leaving
only the contribution of case (a). One can easily realize, then, that with
this convention, the contribution of diagrams in which three bonds meet
at a vertex identically vanishes, as can be seen in figure 2. In this way the
sum over all diagrams G is reduced to a sum over all loops, in which each
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Figure 2: A diagram with a three-bond vertex can be obtained as sum of
two diagrams with number of intersections which differ by one. Their
contributions cancel out.

loop appears with a weight proportional to (−1)n, where n is the num-
ber of self-intersections. Notice that we do not allow vertices connected to
only one bond, and, therefore, the possibility that a walker gets back in its
steps.

Now we can express the number of self-intersections of a loop by the
following trick. It is well known that the total angle through which the
tangent angle to the trajectory of a walker performing a loop turns around
is given by 2π(` + 1), where the parity of ` is equal to the parity of the
number of intersections n. Thus, if we assign a factor eiφ/2 to each lattice
point with turning angle φ, then we shall have at the end of the loop a
factor (−1)`+1 = (−1)n+1, where n is the number of intersections. With
this counting, each diagram made up of s loops will give a contribution
proportional to (−1)s+n. Thus we have to multiply this contribution by
(−1)s in order to have the required sign in equation (5).

In order to count up the angle it is convenient to deal with directed
loops. Let us denote by fr the sum over all undirected loops consisting of
r bonds (taking into account the factors tr and eiφn/2). Then the sum over
all double loops of ` bonds will be given by

1
2 ∑

r1+r2=`

fri fr2 ,

taking into account the possible permutations of the loops. Thus we have
in general

S =
∞

∑
s=1

(−1)s 1
s!

∞

∑
r1,r2,...,rs=1

fr1 fr2 · · · frs = exp

{
−

∞

∑
r=1

fr

}
. (6)
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In going from undirected to directed loops each loop is encountered twice,
thus if we denote by vr the sum of the contributions of directed loops with
r bonds, we have

S = exp

{
−1

2

∞

∑
r=1

vr

}
. (7)

We shall now evaluate vr. Given a lattice point (k, `), let us denote the
possible directions as follows:

N : (k, `) −→ (k, `+ 1);
E : (k, `) −→ (k + 1, `);
S : (k, `) −→ (k, `− 1);

W : (k, `) −→ (k− 1, `).

Let us denote by Wr(k`ν | k0`0ν0) the sum of all contributions of r-bond
diagrams starting from lattice point k0`0 in the direction ν0 ∈ {N, E, S, W}
and ending in lattice point (k, `) in the direction ν. Each bond occurs with
a factor teiφ/2, where φ is the change of direction in going to the next bond.

Then it is possible to write a linear recursion relation for Wr:

Wr+1(k`ν | k0`0ν0) = ∑
k′`′ν′

Tk`ν,k′`′ν′W(k′`′ν′ | k0`0ν0). (8)

The transition matrix T = (Tk`ν,k′`′ν′) has the expression

Tk`ν,k′`′ν′ = tAνν′δk′,k+α(ν′)δ`′,`+β(ν′), (9)

where

α(N) = 0; β(N) = −1;
α(E) = −1; β(E) = 0;
α(S) = 0; β(S) = +1;

α(W) = +1; β(N) = 0.

The matrix A = (Aνν′) (where ν, ν′ = N, E, S, W) is given by

A =


1, ω, 0, ω∗

ω∗, 1, ω, 0
0, ω∗, 1, ω
ω, 0, ω∗, 1

 , (10)
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where
ω = eiπ/4, (11)

and ω∗ is the complex conjugate of ω.
The connection between the weights W and the loop contributions vr

is given by

vr =
br

r
, (12)

where
br = TrWr = ∑

k`ν

W(k`ν | k`ν). (13)

The factor 1/r comes from the fact that a single diagram with r bonds can
be obtained from r different walks, depending on the starting point. Now,
from equation (9), we have

TrWr = TrTr = ∑
i

λr
i , (14)

where λi are the eigenvalues of the matrix T. From this equation, taking
into account equations (7) and (12), we obtain

S = exp

{
−1

2 ∑
r,i

1
r

λr
i

}
= exp

{
1
2 ∑

i
ln (1− λi)

}
= ∏

i

√
1− λi. (15)

Thus the problem boils down to the diagonalization of the matrix T. One
can see from equation (9) that T depends only on the differences in the
indices k, `. It can thus be diagonalized by a Fourier transformation. We
set

Tνν′(m, n) = ∑
k`

e−2πi(mk+n`)Tk`ν,00ν′ . (16)

We then find that

Tνν′(m, n) = t


γ∗(n), ωγ∗(m), 0, ω∗γ(m)

ω∗γ∗(n), γ∗(m), ωγ(n), 0
0, ω∗γ∗(m), γ(n), ωγ(m)

ωγ∗(n), 0, ω∗γ(n), γ(m)

 , (17)

where
γ(m) = e2πim/L. (18)
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Thus, for given values of (m, n), we have

4

∏
i=1
{1− λi(m, n)} = det (I− T(m, n))

=
(

1 + t2
)2
− 2t(1− t2)

(
cos

2πm
L

+ cos
2πn

L

)
.(19)

Thus we obtain

Z = 2N(1− t2)−N ∏
mn

[
(1 + t2)2 − 2t(1− t2)

(
cos

2πm
L

+ cos
2πn

L

)]1/2

,

(20)
where the product runs over L consecutive values of m and of n.

Setting p = 2πm/L and q = 2πn/L, the Helmholtz free energy is given
by

F(T) = −NkBT
{

ln 2− ln(1− t2)

+
1
2

∫ +π

−π

dp dq
(2π)2 ln

[
(1 + t2)2 − 2t(1− t2) (cos p + cos q)

]}
.(21)

Let us consider the contribution of the integral. The minimum value of
the integrand is reached for p = q = 0, and is given by

ln
[(

1 + t2
)2
− 4t

(
1− t2

)]
= ln

[
t2 + 2t− 1

]2
.

The argument of the logarithm vanishes for

t = tc =
√

2− 1,

which corresponds to the transition temperature Tc given by equation (5.72):

J
kBTc

=
1
2

ln
(

1 +
√

2
)

.

In order to understand the behavior of F in the neighborhood of this tem-
perature, let us introduce τ = t − tc and expand the integrand for small
values of τ and of p, q. One has

F(T) =
1
2

∫ +π

−π

dp dq
(2π)2 ln

[
c1τ2 + c2

(
p2 + q2

)]
+ regular terms,
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where c1 and c2 are constants. Integrating, one obtains

F(T) = aτ2 ln |τ|+ regular terms,

where a > 0 is a constant. The specific heat C is proportional to−d2F/dτ2.
Thus we have

C ' −a ln |τ|+ regular terms, (22)

indicating that the specific heat exhibits a logarithmic divergence at the
critical temperature.

The evaluation of the spontaneous magnetization m0 = 〈σ〉 proceeds
in a similar way [6], starting, e.g., from the relation

m2
0 = lim

k→∞
〈σ1`σ1,`+k〉 .

One obtains m0 = 0 for t < tc given above, and

m0 =

{
1−

(
t−1 − t

2

)4}1/8

(23)

for t > tc, i.e., below the transition temperature. Thus, for small positive
values of τ = t− tc one has

m0 ∝ τβ (24)

where the exponent β is given by

β =
1
8

. (25)

The connection between the Ising model and the statistics of loops can
be interpreted more deeply as the equivalence between the model and a
system of noninteracting fermions. This correspondence is exploited by
Schulz, Mattis and Lieb [4] in their solution of the Ising model.
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