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Abstract

I report a few nice identities concerning the Fibonacci and Lucas numbers.

1 Definition

The Fibonacci (Fn) and Lucas (Ln) numbers are sequences satisfying the Fibonacci
recursion relation

Xn+1 = Xn + Xn−1, (1)

where n ∈ N. As we shall see, it is easy to generalize to n ∈ Z. The initial conditions
are respectively

F0 = 0, F1 = 1; (2)
L0 = 2, L1 = 1. (3)

The first elements of the sequences are given by

F : 0 1 1 2 3 5 8 13 21 . . .
L : 2 1 3 4 7 11 18 29 47 . . .

Since the recursion relation is of second order, in order to apply the induction
method, one has to make sure that the relations one wants to prove hold both for
n = 0 and n = 1. To define the sequence for negative values of n, write (1) in the
form

Xn−1 = Xn+1 − Xn. (4)
∗Image courtesy of M. Peliti and R. Forina.



We can then prove that

F−n = (−1)n+1Fn, L−n = (−1)nLn, n ∈ N. (5)

Proof:

Fibonacci: we have

F−1 = F1 − F0 = 1; F−2 = F0 − F−1 = −1. (6)

Assuming that the relation holds for n = m, we have

F−m−1 = F−m+1 − F−m = (−1)mFm−1 − (−1)m−1Fm = (−1)mFm+1. (7)

Lucas: We have

L−1 = L1 − L0 = 1− 2 = −1; L−2 = L0 − L−1 = 2+ 1 = 3. (8)

Assuming that the relation holds for n = m, we have

L−m−1 = L−m+1−L−m = (−1)m−1Lm−1−(−1)mLm = (−1)m−1Lm+1. (9)

2 Interpretation

The Fibonacci sequence was introduced in the Liber Abaci by Leonardo da Pisa,
named Fibonacci (Bonaccio’s son). Fibonacci considers the growth of an idealized
rabbit population, assuming that: a newly born breeding pair of rabbits are put in
a field; each breeding pair mates at the age of one month, and at the end of their
second month they always produce another pair of rabbits; rabbits never die, but
continue breeding forever. Fibonacci posed the puzzle: how many pairs will there
be in one year?

• At the end of the first month, they mate, but there is still only 1 pair.

• At the end of the second month they produce a new pair, so there are 2 pairs
in the field.

• At the end of the third month, the original pair produce a second pair, but the
second pair only mate without breeding, so there are 3 pairs in all.

• At the end of the fourth month, the original pair has produced yet another
new pair, and the pair born two months ago also produces their first pair,
making 5 pairs.
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At the end of the nth month, the number of pairs of rabbits
is equal to the number of mature pairs (that is, the number
of pairs in month n − 2) plus the number of pairs alive last
month (month n−1). The number in the n-th month is the nth
Fibonacci number. The figure on the right (from a manuscript
of the Liber Abaci) shows the beginning of the sequence. The
number of months is written in black in letters, while the num-
ber of rabbits (in red) is written with Arabic numbers, that the
Liber Abaci introduced to the Western culture.

Fibonacci’s numbers (for n > 0) have an interesting geometric interpretation [1]:
they count the number of ways in which n cases can be covered with squares or
dominos. Denoting this number by Nn, we have

Nn = Fn+1. (10)

We have indeed N1 = 1 = F2 (a single case can only be covered by a single square),
and N2 = 2 = F3 (two cases can be either covered by two squares or by a single
domino). For larger values of n, let us consider separately the coverings in which
the first case is covered by a square, and those in which it is covered by a domino.
They obviously exhaust all possibilities. The first ones, by removing the first square,
are seen to count to Nn−1, while the second ones, by removing the first domino,
count to Nn−2. We have therefore

Nn = Nn−1 +Nn−2, n > 2. (11)

Therefore, by induction, we obtain the relation (10). The Fibonacci sequence was
first discussed in a similar context by Indian grammarians [2], who evaluated the
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number of ways that a verse containing n moras (syllable units) can be made of
short (one mora) or long (two moras) syllables. As an example, Figure 1 shows the
F7 = 13 decompositions of a verse of n = 6 moras. Here | denotes a short syllable
(called laghu) and S denotes a long syllable (called guru).232 PARMANAND SINGH 

TABLE II 

HM 12 

(I) sss (6) / SSI (wlslI 
(2) I ) ss (7) s 1 s 1 (11) I SI I I 
(3) I s 1 s (8) I I I SI (12)SI I I I 
14) s 1 / s (91 SS( 1 ~~3~llIlII 
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number of morae in a meter is written above and its expansion below, illustrates 
this rule. 

The expansion of the meter having 6 morae, along with the serial number of 
each variation, is as given in Table II. 

The expansion of m&r&vrttas just described corresponds to a partitioning of a 
number (the number being the number of morae in the meter), where the digits 
take on the values 2 and 1 and their order is relevant; the number of digits in a 
partition, however, is arbitrary. 

Here, it is easily seen that the variations of mtitrii-vrttus form the sequence of 
numbers which are now called Fibonacci numbers. For, the numbers of variations 
of meters having I, 2, 3, 4, 5, 6, . . . morae are, respectively, I, 2. 3, 5, 8, 13, 
. . . , and these are the Fibonacci numbers. It is also observed that the method 
for finding the numbers of variations of miitrd-vrftus leads to the general rule, 
U,, = U,,-, + U,,-? for the formation of Fibonacci numbers. Thus it can be safely 
concluded that the concept of the sequence of these numbers in India is at least as 
old as the origin of the metrical sciences of Sanskrit and Prakrit poetry. 

EARLY DEVELOPMENTS: ACARYA PICJGALA 
AND ACARVA BHARATA 

&rya Piligala is the first authority on the metrical sciences in India whose 
writings indicate a knowledge of the so-called Fibonacci numbers. In his commen- 
tary, the Vedbthadipika on ~ksuwinukramtmi. SadguruSisya writes that .&rya 
Pixigala was a younger brother of .&%rya P@ini [Agrawala 1969, lb]. There is an 
alternative opinion that he was a maternal uncle of Panini [Vinayasagar 1965, 
Preface, 121. The period during which Pgnini was active has been discussed by 
several scholars (such as A. A. Macdonell, A. Weber, G. A. Grierson, T. Gold- 
stucker, and others) who have, for different reasons, placed him between 700 B.C. 

and A.D. 100. Agrawala [ 1969, 463-4761, after a careful investigation in which he 
considered the views of earlier scholars. has concluded that Ptinini lived between 
480 and 410 B.C. 

According to YBdava [Sinharay 1977, 1051, a commentator belonging to the 10th 
century, Pidgala’s rule “miSrau ca” (i.e., “and the two mixed”)’ is also meant for 
the expansion of mat@vrttas, and m&r&vrttas should be expanded by combining 
the expansions of two earlier meters with a gum and a fughu, respectively. 

I Throughout the paper the translations of the texts are by the author of the paper 

Figure 1: Decomposition of a verse of n = 6 moras into short (|, laghu) and long
(S, guru) syllables. The method goes back to Ācārya Piṅgala, believed to have been
active in the 3rd/2nd century BCE. From ref. [2].

Interestingly, Lucas’ numbers also allow for a similar interpretation. Let us
consider a circular board with n cases, and let us count the number of ways in
which it can be covered by either (curved) squares or (curved) dominos. If n = 1,
we have only one way, but for n = 2 there are three ways: one covering by two
squares, and two by a curved domino, depending on whether the domino’s gap lies
between the last cell and the first one (a situation we shall call in phase) or not. An
example for n = 4 is given in Figure 2. Then, for n > 2, we look at the last tile of
the board. The first tile is defined as the one that covers the case number 1, and it
can be either a square, a domino in phase (covering cases 1 and 2) or a domino out
of phase (covering cases n and 1). The last tile is the one which precedes the first
tile. If it is a square, remove it, and you get the covering of a circular board with
n − 1 cases (since the first tile is free to be either a square, or a domino in phase or
out of phase). By the same token, if the last tile is a domino, we obtain a covering
of a circular board with n − 2 cases. Summing up, we obtain the same recursion
relation (10), with the initial values N1 = 1, N2 = 3, from which we conclude that
for circular boards one has

Nn = Ln. (12)

This interpretation shows that Lucas’ numbers solve the so-called Chinese
philosophers’ problem. There are n Chinese philosophers sitting at a circular
table. Between any two neighboring philosophers there is a single chopstick. Each
philosopher can be either eating—in which case he needs both chopsticks at his
left and at his right—or meditating—in which case he needs no chopstick. The
problem is to find the number of configurations that the philosophers may assume.
Each eating philosopher takes two consecutive chopsticks out of the table, and thus
corresponds to a circular domino. Chopsticks that are left alone correspond to
squares.
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Figure 2: Coverings of a circular board with n = 4 cases. The light cases are
covered by (curved) squares, and the dark ones by (curved) dominos. The upper
five coverings are in phase, the bottom two are out of phase. From [1].

3 Simple relations

From the values shown one can conjecture that

Fn + Ln = 2Fn+1. (13)

Proof: The relation is valid forn = 0 andn = 1. Assuming it to be true up ton = m,
we have

Fm+1 + Lm+1 = (Fm + Fm−1) + (Lm + Lm−1) = (Fm + Lm) + (Fm−1 + Lm−1)

= 2Fm+1 + 2Fm = 2Fm+2.

(14)

We have, on the other hand,

Fn + Fn+2 = Ln+1. (15)

Proof: The relation is valid for n = 0 and n = 1. Assuming it to be true for n = m,
we have

Lm+2 = Lm+1 + Lm = (Fm + Fm+2) + (Fm−1 + Fm+1)

= (Fm + Fm−1) + (Fm+2 + Fm+1) = Fm+1 + Fm+3.
(16)

We also have the relation
Ln + Ln+2 = 5Fn. (17)

Proof: The relation holds for n = 0 and n = 1. Assuming it to be true up to n = m,
we have

Lm+1 + Lm+3 = (Lm + Lm−1) + (Lm+2 + Lm+1)

= (Lm + Lm+2) + (Lm−1 + Lm+1) = 5Fm+1 + 5Fm = 5Fm+2.
(18)
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Addition formulas

We have
Fm+n =

1

2
(FmLn + FnLm) . (19)

Proof: The relation is valid for n = 0 and n = 1. Assuming it to be true up to n = `,
we have

FmL`+1 + F`+1Lm = Fm (L` + L`−1) + (F` + F`−1)Lm

= 2 (Fm+` + Fm+`−1) = 2Fm+`+1.
(20)

We have likewise
Lm+n =

1

2
(LmLn + 5FmFn) . (21)

Proof: For n = 1 the relation becomes

Lm + 5Fm = 2Lm+1. (22)

We can check that it holds for m = 0 and m = 1. Assuming that it holds up to
m = `, we have

L`+1 + 5F`+1 = L` + L`−1 + 5 (F` + F`−1) = (L` + 5F`) + (L`−1 + 5F`−1)

= 2L` + 2L`−1 = 2L`+1.
(23)

Let us nowprove (21) by induction onn, since it holds forn = 0 (trivially) andn = 1.
Assuming that it holds up to n = `, we have

2Lm+`+1 = 2 (Lm+` + Lm+`−1)

= 2 (LmL` + 5FmF`) + 2 (LmL`−1 + 5FmF`−1)

= 2Lm (L` + L`−1) + 10Fm (F` + F`−1) = 2LmL`+1 + 10FmF`+1

= 2 (LmL`+1 + 5FmF`+1) .

(24)

These formulas yield as corollaries the doubling formulas:

F2n = FnLn; (25)

L2n =
1

2

(
L2n + 5F2n

)
. (26)

4 The fundamental relation

From the relations we have derived, we can obtain the fundamental identity

L2n − 5F2n = 4(−1)n. (27)

Proof: It holds trivially for n = 0 and n = 1. Using the relations (13,22)

Fm+1 =
1

2
(Fm + Lm) ,

Lm+1 =
1

2
(5Fm + Lm) ,

(28)

6



we can then prove that if it holds up to n = m, it holds for n = m + 1. We have
indeed

L2m+1 − 5F
2
m+1 =

1

4

(
L2m + 25F2m − 10LmFm

)
−
5

4

(
F2m + L2m − 2LmFm

)
= −L2m + 5F2m.

(29)

Note that the fundamental relation has some resemblance with the fundamental
trigonometric relation

cos2 θ+ sin2 θ = 1. (30)

In some sense, L plays the role of the cosine and F that of the sine.

5 Generating functions and explicit expressions

The generating function Ξ(x) associated with the sequence X is defined by

Ξ(x) =

∞∑
n=0

Xnx
n. (31)

Given the Fibonacci recursion relation (1), the generating function satisfies the
equation

1

x2
(Ξ(x) − X0 − xX1) =

1

x
(Ξ(x) − X0) + Ξ(x), (32)

which admits the solution

Ξ(x) =
X0(1− x) + xX1
1− x− x2

. (33)

We thus obtain

Φ(x) =
x

1− x− x2
, for F; (34)

Λ(x) =
2− x

1− x− x2
, for L. (35)

Note that the relations (13,22) correspond to

Φ(x) +Λ(x) =
2

x
(Φ(x) −Φ(0)) ; (36)

Λ(x) + 5Φ(x) =
2

x
(Λ(x) −Λ(0)) . (37)

It is interesting to point out that Euler, in [4, ch. 4, §62], considers the infinite
series representing the function

K(z) =
1+ 2z

1− z− z2
= 1+ 3z+ 4z2 + 7z3 + 11z4 + 18z5 + · · · , (38)

where the coefficient of zn is the Lucas number Ln+1. Indeed, the relation between
K(z) and the generating function Λ(z) is given by

Λ(z) = 2+ zK(z), (39)
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as can be directly checked. It is amusing to notice that Euler narrowly missed
the opportunity of establishing the generating function of the Fibonacci numbers.
Indeed, Euler remarked that the coefficients αk of the series appearing in eq. (38)
satisfy the recursion

αk+2 = αk+1 + αk, (40)

but failed to make the connection with the Fibonacci sequence.
We have

1− x− x2 =

(
1+

x

φ

)(
1−

x

ϕ

)
, (41)

where φ is the golden ratio and ϕ its inverse:

φ =

√
5+ 1

2
, ϕ =

√
5− 1

2
= φ− 1 =

1

φ
. (42)

We can thus obtain an explicit form of the Fibonacci and Lucas numbers. Let us
indeed decompose (1 − x − x2)−1 in linear combination of the simple fractions
(1+ x/φ)−1 and (1− x/ϕ)−1. We obtain

1

1− x− x2
=

1

φ+ϕ

(
φ

1− x/ϕ
+

ϕ

1+ x/φ

)
. (43)

We obtain therefore

Φ(x) =
x√
5

(
φ

1− x/ϕ
+

ϕ

1+ x/φ

)
=

x√
5

(
φ

1− φx
+

ϕ

1+ϕx

)
; (44)

Λ(x) =
2− x√
5

(
φ

1− x/ϕ
+

ϕ

1+ x/φ

)
=

1

1− φx
+

1

1+ϕx
. (45)

Expanding the fractions in geometric series we obtain Binet’s formula for F:

Fn =
1√
5
[φn − (−ϕ)n] . (46)

The analogue formula for L reads

Ln = φn + (−ϕ)n. (47)

Now it is easy to see that
φ > 1; ϕ < 1. (48)

Thus, for large values of n, the first term dominates the second. Thus we have, for
large values of n,

Fn ≈
1√
5
φn. (49)

Indeed, since one can see that the second term is smaller than 1
2 for n > 1, the

expression is equivalent to

Fn =

[
1√
5
φn
]
, (50)

where [. . .] denotes the approximation to the nearest integer. We obtain likewise for
n > 2,

Ln = [φn] . (51)
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These expressions provide a formula for φn:

φn =
1

2

(
Ln +

√
5Fn

)
. (52)

Going to negative values of the exponent we have

φ−n =
(−1)n

2

(
Ln −

√
5Fn

)
, (53)

which can be checked by exploiting the fundamental identity.
Binet’s formulas allow todefine theFibonacci andLucasnumbers for non-integer

values of n. Let us rewrite, e.g., (47) in the form

Ln = φn + cos(πn)φ−n = enψ + cos(πn)e−nψ, (54)

where
ψ = logφ. (55)

This formula makes sense also for non-integer values of n. We can set likewise

Fn =
enψ − cos(πn)e−nψ√

5
. (56)

An alternative way is to define χ by

−3 −2 −1 0 1 2 3

n

−4

−2

0

2

4

F
n
,
L
n

Fibonacci
Lucas

Figure 3: Extension of the Binet formulas to non-integer values of n via equa-
tions (54,56).

χ = logϕ− iπ, (57)

and use Binet’s formulas in this way:

Ln = enψ + enχ; (58)

Fn =
enψ − enχ√

5
. (59)
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In this way, however, the values of Ln and Fn are in general complex for non-integer
values of n. In fact, one easily sees that the real part of these expressions repro-
duces (54) and (56), while their imaginary part does not vanish. In the following
figures 4 and 5 we plot the behavior of these functions for n ∈ [−3.4, 3.4]: first
parametrically in the complex plane, then as functions of n.

−6 −4 −2 0 2 4 6

Re z

−4

−2

0

2

Im
z

Fibonacci
Lucas

Figure 4: Extension of the Binet formulas to non-integer values of n via equa-
tions (58,59). Parametric plot in the complex plane.
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n
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−2
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2
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F
n

Re Fn
Im Fn

−2.5 0.0 2.5

n

−4

−2

0

2

4

L
n

ReLn
ImLn

Figure 5: Extension of the Binet formulas to non-integer values of n via equa-
tions (58,59). Real and imaginary parts as functions of n. Left: Fn; right: Ln.
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6 Expressing an arbitrary natural number by a sum of dis-
tinct Fibonacci numbers

Each natural number can be expressed in a unique way by a sum of distinct and
non-consecutive Fibonacci numbers. This result, due to Gerrit Lekkerkerker [3], is
known as the Zeckendorf theorem [5]. Its proof runs as follows:

Existence: The theorem is surely valid for n = 1, 2, 3, since these are Fibonacci
numbers. Assume that it is valid for all natural numbers less thann. Then, ifn
is a Fibonacci number, there is nothing to prove. Otherwise, letm be such that
Fm < n < Fm+1. Then a = n−Fm < n can be expressed as a sum of Fibonacci
numbers by the inductive hypothesis, and since a < Fm+1 − Fm = Fm−1, this
expression does not contain Fm−1. Therefore the decomposition also holds
for n = Fm + a.

Uniqueness: We need the following lemma:

The sum of any non-empty set of distinct, non-consecutive Fi-
bonacci numbers whose largest member is Fm is strictly smaller
than the next larger Fibonacci number Fm+1.

The lemma can be proved by induction onm.
Now take two non-empty sets of distinct non-consecutive Fibonacci numbers
S and T which have the same sum. Consider sets S ′ and T ′ which are equal to
S and T from which the common elements have been removed (i.e., S ′ = S\T
and T ′ = T\S). Since S and T had equal sum, and we have removed exactly
the elements from S ∩ T from both sets, S ′ and T ′ must have the same sum as
well.
Now we will show by contradiction that at least one of S ′ and T ′ is empty.
Assume the contrary, i.e., that S ′ and T ′ are both non-empty and let the largest
member of S ′ be Fs and the largest member of T ′ be Ft. Because S ′ and T ′

contain no common elements, Fs 6= Ft. Without loss of generality, suppose
Fs < Ft. Then by the lemma, the sum of S ′ is strictly less than Fs+1 and
so is strictly less than Ft, whereas the sum of T ′ is clearly at least Ft. This
contradicts the fact that S ′ and T ′ have the same sum, and we can conclude
that either S ′ or T ′ must be empty.
Now assume (again without loss of generality) that S ′ is empty. Then S ′ has
sum 0, and so must T ′. But since T ′ can only contain positive integers, it must
be empty too. To conclude: S ′ = T ′ = ∅ which implies S = T , proving that
each Zeckendorf representation is unique.

Thus we can associate to each natural number n a binary sequence q(n) = (qk),
where qk = 1 if Fk appears in the Zeckendorf representation of n and vanishes
otherwise.

The Zeckendorf representation of an arbitrary integer n can be obtained by the
following algorithm:

1. Setm = n and define q as an empty list.
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2. Identify the index ν of the largest Fibonacci number not exceeding m by the
expression

ν =

⌊
log(
√
5m)

logφ + ε

⌋
, (60)

where ε > 0 is chosen so that the expression yields the correct result also
for small values of m. It appears that choosing epsilon = 1/m is a suitable
choice.

3. Append ν to q and updatem tom− Fν.

4. Ifm = 0, return q. Otherwise, go back to 2.

This algorithm is implemented in the following Python code.

import numpy as np
from scipy.constants import golden

def fibo(n):
"""Binet's formula for the Fibonacci numbers"""
n = int(n)
phi = golden # Golden ratio
return int((phi**n-(1-phi)**n)/np.sqrt(5))

def repr(n):
"""Zeckendorf's representation of n."""
m = int(n)
phi = golden # Golden ratio
q = []
while m > 0:

# Index of the largest Fibonacci number not exceeding m
nu = int(np.log(np.sqrt(5)*m)/np.log(phi)+1/m)
# New value of m
m -= fibo(nu)
q.append(nu)

return q

n = 35777577295165947
q = repr(n)

# Check
s = sum([ fibo(k) for k in q ])

We obtain q(n) = [80, 78, 76], and n = 35777577295165947 =
∑
k∈q Fk.

One can also prove that all integers (positive, null or negative) can be expressed
uniquely as sums of Fibonacci numbers with non-positive index (negafibonacci num-
bers) in which no two consecutive negafibonacci numbers are used [6]. Without
giving an explicit proof of this result, we report an effective algorithm for the ne-
gafibonacci representation of an arbitrary integer n.
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1. If n = Fi for some i 6 0, stop. (This is the case, e.g., for n = 0 = F0 and
n = 1 = F−1).

2. If n > 0 and for k > 0, F2k < n < F2k+1, i.e., −F−2k < n < F−2k−1, we set
n = F−2k−1 + (n− F−2k−1), and apply the algorithm to n− F−2k−1.

3. If n > 0 and for k > 0, F2k−1 < n < F2k, i.e., F−2k+1 < n < −F−2k, set
n = F−2k+1 + (n− F−2k+1) and apply the algorithm to n− F−2k+1.

4. If n < 0 and for k > 0, F2k < −n < F2k+1, i.e., −F−2k−1 < n < F−2k, write
n = F−2k + (n− F−2k), and apply the algorithm to n− F−2k.

5. If n < 0 and for k > 0, F2k−1 < −n < F2k, i.e., F−2k < n < F−2k+1, write
n = F−2k + (n− F2k) and apply the algorithm to n− F−2k.

This algorithm is implemented in the following Python code.

import numpy as np
from scipy.constants import golden

def fibogen(n):
"""Fibonacci numbers for arbitrary integers"""
n = int(n)
phi = golden # Golden ratio
if n >= 0:

return int((phi**n-(1-phi)**n)/np.sqrt(5))
else:

return (-1)**(-n+1)*int((phi**(-n)-(1-phi)**(-n))/np.sqrt(5))

def bunder(n):
"""Bunder representation of n"""
m = int(n)
phi = golden # Golden ratio
p = []
if m == 0:

return [0]
else:

while m !=0:
if m > 0:

nu = int(np.log(np.sqrt(5)*m)/np.log(phi))
if nu%2 == 0: # Case 2

m -= fibogen(-nu-1)
p.append(-nu-1)
continue

else: # Case 3
m -= fibogen(-nu)
p.append(-nu)
continue

else:
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nu = int(np.log(-np.sqrt(5)*m)/np.log(phi))
if nu%2 == 0: # Case 4

m -= fibogen(-nu)
p.append(-nu)
continue

else: # Case 5
m -= fibogen(-nu-1)
p.append(-nu-1)
continue

return p

n = -35958667

q = bunder(n)

Weobtainq(n) = [−38,−33,−28,−26,−23,−21,−19,−13,−11,−9,−6,−4,−2], and
n = −35958667 =

∑
k∈q(n) Fk.

One can also express uniquely any positive integer n as a sum of distinct non-
consecutive Lucas numbers. The algorithm runs as follows:

1. Set q to an empty list andm to n.

2. Form > 0:

(a) Ifm = 2, append 0 to q. Otherwise, ifm = 1, append 1 to q. Setm to 0.
(b) If m > 2, identify the index ν of the largest Fibonacci number not ex-

ceedingm by the expression

ν =

⌊
logm
logφ + ε

⌋
. (61)

(c) Append ν to q and setm tom − Lν. Repeat from point (a) or point (b),
whichever applies.

3. Return q.

This algorithm is implemented in the following Python code.

import numpy as np
from scipy.constants import golden

def lucas(n):
"""Binet's formula for the Lucas numbers"""
n = int(n)
phi = golden
return int(phi**n+(1-phi)**n)

def decompLucas(n):
"""Espressing an arbitrary positive integer as a sum of different Lucas numbers."""
m = int(n)
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phi = golden # Golden ratio
q = []
while m > 0:

if m == 1:
q.append(m)
break

elif m == 2:
q.append(0)
break

else:
# Index of the largest Lucas number not exceeding m
nu = int(np.log(float(m))/np.log(phi)+0.15)
# New value of m
m -= lucas(nu)
q.append(nu)

return q

n = 35673580958667341
q = decompLucas(n)

s = sum([ lucas(k) for k in q])

We obtain q(n) = [79, 74, 69, 67, 64, 61, 58, 54], and n = 35673580958667341 =∑
k∈q(n) Lk.

7 Darwin’s elephants and the Tribonacci sequence

In the first edition of the Origin of Species by Ch. Darwin, one reads the following
passage (p. 64):

The elephant is reckoned to be the slowest breeder of all known
animals, and I have taken some pains to estimate its probable minimum
rate of natural increase: it will be under the mark to assume that it
breeds when thirty years old, and goes on breeding till ninety years old,
bringing forth three pairs of young in this interval; if this be so, at the
end of the fifth century there would be alive fifteen million elephants,
descended from the first pair.

This estimate, provided without an explicit calculation, was challenged about ten
years after the publication of the book. In 1869 at least three letters from readers
of the book caused Darwin to revisit his calculations. In particular, a letter signed
Ponderer, and published in The Athenaeum, p. 772 in No. 2171, June 5, 1869, states:

Perhaps some of your readers will be able to enlighten my dull in-
tellect as to the process of reasoning by which this result is obtained.
According to Mr. Darwin’s theory, each pair brings forth a pair when it
is thirty, when it is sixty, andwhen it is ninety. Hence if there be one pair
in the first year, there will be one pair born in the thirtieth year; these
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two pairs will produce two pairs in the sixtieth year, and these four will
produce four pairs in the ninetieth. After that we have only to add the
numbers born in the three preceding periods to find out how many are
born in each period; because after they have attained the age of ninety
years they cease to breed. This method of reasoning gives the number
of pairs born in each period of thirty years as 1, 1, 2, 4, 7, 13, 24, 44, 81,
149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513; the last number being
born in the period commencing with the five hundred and tenth year.
Therefore the number of elephants alive at that time would be 42,762
pairs, that is, 85,524 elephants, less the number that would have died
by reason of their age. But Mr. Darwin says that there would be fifteen
millions. On what does he base his calculation?

The rebuttal by Darwin in his letter of June 7 continues:

Hence you may perhaps think it worth while to publish a rule by
which my son, Mr. George Darwin, finds that the product for any num-
ber of generations may easily be calculated:

The supposition is that each pair of elephants begins to breed when
aged 30, breeds at 60, and again, for the last time, at 90, and dies when
aged 100, bringing forth a pair at each birth. We start, then, in the year
0 with a pair of elephants, aged 30. They produce a pair in the year
0, a pair in the year 30, a pair in the year 60, and die in the year 70.
In the year 60, then, there will be the following pairs alive, viz.: one
aged 90, one aged 60, two aged 30, four aged 0. The last three sets are
the only ones which will breed in the year 90. At each breeding a pair
produces a pair, so that the number of pairs produced in the year 90will
be the sum of the three numbers 1, 2, 4, i.e. 7. Henceforward, at each
period, there will be sets of pairs, aged 30, 60, 90 respectively, which
breed. These sets will consist of the pairs born at the three preceding
periods respectively. Thus the number of pairs born at any period will
be the sum of the three preceding numbers in the series, which gives
the number of births at each period; and because the first three terms
of this series are 1, 2, 4, therefore the series is 1, 2, 4, 7, 13, 24, 44, & c.
These are the numbers given by “Ponderer.” At any period, the whole
number of pairs of elephants consists of the young elephants together
with the three sets of parents; but since the sum of the three sets of
parents is equal in number to the number of young ones, therefore the
whole number of pairs is twice the number of young ones, and therefore
thewhole number of elephants at this period (and for ten years onwards)
is four times the corresponding number in the series. In order to obtain
the general term of the series, it is necessary to solve an easy equation
by the Calculus of Finite Differences.

It is unlikely that Darwin’s son George could have helped his father with the cal-
culations for the first edition of the Origin, since he was only 13 at the time. The
reasoning was spelled out in somewhat more explicit (but imprecise) detail in the
sixth edition of the book, Darwin (1872, p. 51):
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it will be safest to assume that [the elephant] begins breeding when
30 years old, and goes on breeding till 90 years old, bringing forth six
young in the interval, and surviving till one hundred years old; if this
be so then, after a period of from 740 to 750 years there would be nearly
nineteen million elephants alive.

The evaluation of the rate of increase of the elephant population is based on a
linear recurrence relation of the form

Tk+1 = Tk + Tk−1 + Tk−2, (62)

where k denotes an elephant generation (of duration of 30 years) and Tk denotes
the number of elephant pairs (each supposed to be a male-female twin pair, for
simplicity) born in generation k. The initial condition is T0 = 1, T1 = 1, T2 = 2.
The sequence quoted by “Ponderer” is easily seen to follow. This recursion is a
straightforward generalization of the Fibonacci recursion, with three terms instead
of two. The sequence first appears in the mathematical literature in a paper by
M. Agronomof (Sur une série récurrente, Mathesis 4 125-126 (1914)) and was chris-
tened as the “Tribonacci” sequence, by M. Feinberg (Fibonacci-Tribonacci, Fibonacci
Quarterly 1 71-74 (1963)). It appears therefore that Darwin, his son George, “Pon-
derer”, and an unnamed mathematician friend of Darwin referred to in Darwin’s
notes unwittingly defined the Tribonacci sequence before actual mathematicians
took interest in it.

It is easy to check that the 25th entry in the Tribonacci sequence is equal to
4700770: according to the rule quoted above, the total number of elephants alive
after 25 generations (750 years) is four times this quantity, i.e., 18803080, close to
nineteen million, as stated by Darwin.

I owe these considerations to a paper by Podani et al. [7].

7.1 On the Tribonacci sequence

Some properties of the Tribonacci sequence are easily established.
First of all, it is easy to see that the n-th Tribonacci number Tn+1 neasures the

number of ways that a segment of length n can be covered by segments of length
1, 2 or 3. This obviously generalizes to higher orders, leading to the definition of
Tetranacci, Pentanacci, etc., sequences.

Define the generating function T(x) of the Tribonacci sequence by the expression

T(x) =

∞∑
k=0

Tkx
k. (63)

We then have, by the recursion relation (62) and taking into account the initial
condition,

T(x) − (x+ x2) = x (T(x) − x) + x2T(x) + x3T(x), (64)

yielding
T(x) =

x

1− x− x2 − x3
. (65)
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Denoting by α, β and γ the zeros of the polynomial 1− x− x2 − x3, we obtain

T(x) =
α

(α− β)(α− γ)(x− α)
+

β

(β− γ)(β− α)(x− β)
+

γ

(γ− α)(γ− β)(x− γ)
.

(66)
Expanding the factor 1/(x − ξ) (ξ ∈ {α,β, γ}) in geometric series, we obtain a
Binet-like formula for the Tribonacci sequence:

Tk =
α̃k+1

(α̃− β̃)(α̃− γ̃)
+

β̃k+1

(β̃− γ̃)(β̃− α̃)
+

γ̃k+1

(γ̃− α̃)(γ̃− β̃)
, (67)

where α̃ = α−1, β̃ = β−1 and γ̃ = γ−1 are the three zeros of the polynomial
x3 − x2 − x− 1. The unique real zero of this polynomial is known as the Tribonacci
constant, and is given by

τ =
1

3

(
1+

3

√
19− 3

√
33+

3

√
19+ 3

√
33

)
, (68)

as obtained by Cardano’s formula. We have

lim
k→∞ Tk+1Tk = τ ≈ 1.84. (69)

It is interesting to remark that this constant can be obtained by a geometric
construction that requires the compas and a marked ruler, i.e., a ruler on which one
can put marks a given distance from each other [8]. This construction is shown in
fig. 6. Let C be a unit circle with center O. Trace a line r and denote by D its crossing
with C. Trace the normal r ′ to r in D. Mark a distance 1 on the ruler, and keep one
marker (A) on r and the other one (B) on r ′. Move the ruler until it touches C in C.
Then the distance of A from O is equal to τ.

O A

C

B

Dτr

r′

1
1

α

C

Figure 6: Construction of the Tribonacci constant τ by compass and marked ruler.

Indeed, denoting by α the angle OAB, we have

sinα =
1

τ
, cosα = τ− 1, (70)
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by considering the right trianglesOCAandADB respectively. Applying the relation
sin2 α+ cos2 α = 1, we obtain the equation

1

τ2
+ (τ− 1)2 = 1, (71)

that leads to
τ4 − 2τ3 + 1 = 0. (72)

This equation has the obvious solution τ = 1. Dividing by τ− 1 we obtain

τ3 − τ2 − τ− 1 = 0. (73)

8 Fibonacci and Newton’s method for φ

The golden ratio φ is the positive solution to the equation f(x) = 0, where

f(x) = x2 − x− 1. (74)

According to Newton’s method, given an estimate xn of the root of f(x), the next
estimate can be obtained by

xn+1 = xn −
f(xn)

f ′(xn)
. (75)

Let us take x0 = 2 and look at the first approximations to φ that one obtains in this
way. We have

n xn Expression
0 2 F3/F2
1 5/3 F5/F4
2 34/21 F9/F8
3 1577/987 F17/F16

This leads to the conjecture [9]

xn = F2n+1+1/F2n+1 . (76)

To obtain this relation, we need the identity

F2m+1 + F
2
m = F2m+1. (77)

Proof: It holds form = 0 andm = 1. Assuming it true for a givenm, let us consider
F2m+3. We have F2m+3 = F2m+2 + F2m+1. By the duplication formula, F2m+2 =
Fm+1Lm+1, andwehaveLm+1 = Fm+Fm+2. Thusweobtain F2m+3 = Fm+1Fm+2+
Fm+1Fm+F2m+1. Using the recursion hypothesis the last term becomes F2m+F2m+1.
But Fm+1Fm+2 + Fm+1Fm + F2m = (Fm+1 + Fm)Fm+2 = F

2
m+2. Therefore F2m+3 =

F2m+2 + F
2
m+1.

Settingm = 2n and using the recursion hypothesis we have

xn+1 = xn −
x2n − xn − 1

2xn − 1
=
x2n + 1

2xn − 1
=
F2m+1/F

2
m + 1

2Fm+1/Fm − 1

=
F2m+1 + F

2
m

Fm(2Fm+1 − Fm)
=

F2m+1

Fm (Fm+1 + Fm−1)
=
F2m+1

FmLm
=
F2m+1

F2m
.

(78)
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9 Fibonacci and binomial coefficients

We have the following identity:

Fn+1 =

bn/2c∑
i=0

(
n− i

i

)
. (79)

Thus Fibonacci’s numbers are the sum of the “shallow diagonals” in Pascal’s trian-
gle, as shown in Figure 7. Proof: It holds for n = 0, since

(
0
0

)
= 1, and for n = 1,

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1
1

2
3

5
8

13
21

34
55

89

Figure 7: Relation (79) between Fibonacci’s numbers and the Pascal triangle. From
Wikipedia.

since
(
1
0

)
= 1. Assume it holds up to n = m. Ifm = 2k− 1, we have

Σ =

k∑
i=0

(
2k− i

i

)
=

k∑
i=0

(
2k− 1− i

i

)
+

k∑
i=0

(
2k− 1− i

i− 1

)
, (80)

by Pascal’s identity (
n

i

)
=

(
n− 1

i

)
+

(
n− 1

i− 1

)
. (81)

In the first sum, the term with i = k vanishes. In the second sum, the first term
vanishes, and we can set j = i− 1. We thus obtain

Σ =

k−1∑
i=0

(
2k− 1− i

i

)
+

k−1∑
i=0

(
2k− 2− i

i

)

=

b(m−1)/2c∑
i=0

(
m− 1− i

i

)
+

b(m−2)/2c∑
i=0

(
m− 2− i

i

)
= Fm + Fm−1 = Fm+1.

(82)

The case in whichm = 2k is totally analogous.
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We also have the following identities:

n∑
i=0

(
n

i

)
Fi = F2n; (83)

n∑
i=0

(
n

i

)
Li = L2n. (84)

These are most easily derived from equations (46,47). One has indeed

n∑
i=0

(
n

i

)
Li =

n∑
i=0

(
n

i

)
φi +

n∑
i=0

(
n

i

)
(−ϕ)i = (1+ φ)n + (1−ϕ)n

= φ2n + (−ϕ)2n,

(85)

where we have used the identities

1+ φ = φ2, 1−ϕ = ϕ2 = (−ϕ)2. (86)

One can similarly show that, since

1− φ = −ϕ, 1+ϕ = φ, (87)

one has
n∑
i=0

(
n

i

)
(−1)iFi = (−1)n−1Fn; (88)

n∑
i=0

(
n

i

)
(−1)iLi = (−1)nLn. (89)

10 Fibonacci and Lucas polynomials

Let us consider the polynomials ξn(x) in the variable x satisfying the recurrence
relation

ξn+2(x) = xξn+1(x) + ξn(x). (90)

With the initial condition

f0(x) = 0, f1(x) = 1, (91)

we obtain the Fibonacci polynomials:

f1(x) = 1;
f2(x) = x;
f3(x) = x

2 + 1;
f4(x) = x

3 + 2x;
f5(x) = x

4 + 3x2 + 1;
...
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With the initial condition

`0(x) = 2, `1(x) = x, (92)

we obtain the Lucas polynomials:

`0(x) = 2;
`1(x) = x;
`2(x) = x

2 + 2;
`3(x) = x

3 + 3x;
`4(x) = x

4 + 4x2 + 2;
`5(x) = x

5 + 5x3 + 5x;
...

Note that fn(x) is of degree n− 1, while `n(x) is of degree n.
To obtain a compact expression of these polynomials, let us introduce their

generating function Ξ(t, x), defined by

Ξ(t, x) =

∞∑
n=0

tnξn(x). (93)

From (90) we obtain the equation

1

t2
(Ξ(t, x) − ξ0 − tξ1(x)) =

x

t
(Ξ(t, x) − ξ0(x)) + Ξ(t, x), (94)

which has the solution

Ξ(t, x) =
ξ0 (1− tx) + tξ1(x)

1− xt− t2
. (95)

Thus we obtain

Φ(t, x) =
t

1− xt− t2
, (Fibonacci); (96)

Λ(t, x) =
2− xt

1− xt− t2
, (Lucas). (97)

We can decompose this expression in simple fractions, using the decomposition

1− xt− t2 = (1+ t/φ(x)) (1− t/ϕ(x)) , (98)

where

φ(x) =
x+
√
x2 + 4

2
; ϕ(x) =

−x+
√
x2 + 4

2
. (99)

We then have

fn(x) =
1

φ(x) +ϕ(x)
(φn(x) − (−ϕ(x))n) ; (100)

`n(x) = φ
n(x) + (−ϕ(x))n . (101)
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These formulas can be generalized to non-integer values of n. Defining

ψ(x) = logφ(x), (102)

we have, for n ∈ R (and indeed for complex n)

fn(x) =
enψ(x) − cos(πn)e−nψ(x)

√
x2 + 4

; (103)

`n(x) = enψ(x) + cos(πn)e−nψ(x). (104)

We can use the generating function to establish a connection of (fn) and (`n)
with the Chebyshev polynomials of the second kind (Un). The generating function
of the Chebyshev polynomials of the second kind is indeed given by [10, 8.945.2,
p.995]: ∞∑

n=0

Un(w)τ
n =

1

1− 2wτ+ τ2
. (105)

The expression of Un(w) is given by (see appendix)

Un(w) =

bn/2c∑
k=0

(−1)k
(
n− k

k

)
(2w)n−2k. (106)

Setting 2w = −ix and τ = it we obtain

1

1− xt− t2
=

∞∑
n=0

Un

(
−
ix
2

)
intn =

∞∑
n=0

bn/2c∑
k=0

(−1)k
(
n− k

k

)
(−ix)n−2k intn

=

∞∑
n=0

bn/2c∑
k=0

(
n− k

k

)
xn−2ktn.

(107)

Thus we have an explicit form for fn(x):

fn+1(x) = inUn
(
−
ix
2

)
=

bn/2c∑
k=0

(
n− k

k

)
xn−2k. (108)

Note that setting x = 1 in this expression yields (79) as a corollary. The explicit
expression for `n(x) is not as nice:

`n(x) =

bn/2c∑
k=0

[
2

(
n− k

k

)
−

(
n− 1− k

k

)]
xn−2k. (109)

11 Fibonacci squares and the golden spiral

One can use the Fibonacci sequence to obtain an approximation to the golden spiral,
as shown in figure 8. Note that the curves are quarter-circle arcs, and the initial
squares have a unit side.
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Figure 8: Approximation to theGoldenSpiral by the Fibonacci Squares construction.

A form of the Fibonacci spiral (Figure 9) is obtained by the expression

x(t) =
√
2 cos (π(t+ 1/2)/2) Ft +

√
2 sin (π(t+ 1/2)/2) Ft−1;

y(t) = −
√
2 sin (π(t+ 1/2)/2) Ft +

√
2 cos (π(t+ 1/2)/2) Ft−1.

(110)

For integer values (k) of t this corresponds to

xk = (−1)bk/2cFk + (−1)b(k−1)/2cFk−1;
yk = −(−1)b(k−1)/2cFk + (−1)bk/2cFk−1.

(111)

This curve passes through points of coordinates Xk = (xk, yk), where

x2m = (−1)mF2m−2, y2m = (−1)mF2m+1; (112)
x2m+1 = (−1)m+1F2m+2, y2m+1 = −(−1)m+1F2m−1. (113)

Thus we have

∆X2m = X2m − X2m−1 = (−1)m+1 (F2m−1,−(F2m+1 + F2m−3)) ; (114)
∆X2m+1 = X2m+1 − X2m = (−1)m+1 ((F2m+2 + F2m−2) , F2m) . (115)

We then have

∆X2m · ∆X2m+1 = F2m−1 (F2m+2 + F2m−2) − F2m (F2m+1 + F2m−3)

= F2m−1 (F2m+1 + F2m + F2m−2)

− F2m (F2m+1 + F2m−1 − F2m−2)

= −F2m+1 (F2m − F2m−1) + F2m−2 (F2m−1 + F2m)

= −F2m+1F2m−2 + F2m−2F2m+1 = 0.

(116)
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Figure 9: A Fibonacci Spiral.

Since
∆X2m+2 = (−1)m (F2m+1,−(F2m+3 + F2m−1)) , (117)

we have likewise

∆X2m+2 · ∆X2m+1 = −F2m+1 (F2m+2 + F2m−2) + F2m (F2m+3 + F2m−1)

= −F2m+1 (F2m+2 + F2m − F2m−1)

+ F2m (F2m+1 + F2m+2 + F2m−1)

= −F2m−1 (−F2m+1 + F2m) − F2m+2 (F2m+1 − F2m)

= −F2m−1 · (−F2m+2) − F2m+2F2m−1 = 0.

(118)

Thus the lines connecting consecutive Fibonacci pairs are mutually orthogonal.
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A Proof of (106)

The Chebyshev polynomials of the second kind satisfy the recursion relation

Un+1(x) = 2xUn(x) −Un−1(x), (119)

where Un(x) = 0 for n < 0 and U0(x) = 1. Indeed, multiplying both sides by τn+1
and summing, we recover the expression (105) of the generating function. We wish
to prove that

Un(x) =

bn/2c∑
k=0

(−1)k
(
n− k

k

)
(2x)n−2k. (120)

For n = 0 the formula yields U0(x) = 1 and for n = 1 it yields U1 = 2x. Assuming
it to be true up to n = 2m we have

U2m+1(x) = 2x

m∑
k=0

(−1)k
(
2m− k

k

)
(2x)2m−2k

−

m−1∑
k=0

(−1)k
(
2m− 1− k

k

)
(2x)2m−1−2k

=

m∑
k=0

(−1)k
(
2m− k

k

)
(2x)2m+1−2k

+

m−1∑
k=0

(−1)k+1
(
2m− (k+ 1)

k

)
(2x)2m+1−2(k+1)

=

m∑
k=0

(−1)k
[(
2m− k

k

)
+

(
2m− k

k− 1

)]
(2x)2m+1−2k

=

m∑
k=0

(−1)k
(
2m+ 1

k

)
(2x)2m+1−2k.

(121)

We have used the Pascal identity and the convention(
m

n

)
= 0, n < 0. (122)
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Analogously, when n = 2m+ 1, we have

U2m+2(x) = 2x

m∑
k=0

(−1)k
(
2m+ 1− k

k

)
(2x)2m+1−2k

−

m∑
k=0

(−1)k
(
2m− k

k

)
(2x)2m−2k

=

m∑
k=0

(−1)k
(
2m+ 1− k

k

)
(2x)2m+2−2k

+

m∑
k=0

(−1)k+1
(
2m+ 1− (k+ 1)

k

)
(2x)2m+2−2(k+1)

=

m∑
k=0

(−1)k
[(
2m+ 1− k

k

)
+

(
2m+ 1− k

k− 1

)]
(2x)2m+2−2k

+ (−1)m+1

(
m

m

)
(2x)0

=

m∑
k=0

(−1)k
(
2m+ 2

k

)
(2x)2m+2−2k + (−1)m+1

=

m+1∑
k=0

(−1)k
(
2m+ 2

k

)
(2x)2m+2−2k.

(123)
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B Python scripts

B.1 The square construction

# fibonacciSquares.py -- Draw the approximation to the Golden Spiral
# by the squares construction --

import numpy as np
import matplotlib.pyplot as plt

def box(p0, p1):
"""Draw a rectangular box, given the points p0 and p1 on the diagonal. """
x0 = (p0[0], p0[0])
y0 = (p0[1], p0[1])
x1 = (p1[0], p1[0])
y1 = (p1[1], p1[1])
l0 = (p0[0], p1[0])
l1 = (p0[1], p1[1])
return ((l0, y0), (x1, l1), (l0, y1), (x0, l1))

def arc(p0, p1):
"""Draw a quarter-circle arc connecting p0 to p1 counterclockwise."""
if np.sign(p1[0]-p0[0]) == np.sign(p1[1]-p0[1]):

y = np.linspace(p0[1], p1[1], 250)
x = p1[0]+(p0[0]-p1[0])*np.sqrt(1-((y-p0[1])/(p1[1]-p0[1]))**2)

else:
x = np.linspace(p0[0], p1[0], 250)
y = p1[1]+(p0[1]-p1[1])*np.sqrt(1-((x-p0[0])/(p1[0]-p0[0]))**2)

return (x, y)

def fibSquares(N):
"""Draw a fibonacci squares scheme based on the first N fibonacci numbers."""
N = int(N)
fib = np.zeros(N)
fib[1] = 1
for k in range(2, N):

fib[k] = fib[k-1] + fib[k-2]
P = np.zeros((N, 2))
P[1, 0] = 1
boxes = []
arcs = []
for k in range(1, N):

P[k, :] = P[k-1, :] + ((-1)**((k-1)//2)*fib[k],-(-1)**(k//2)*fib[k])
boxes.append(box(P[k, :], P[k-1, :]))
arcs.append(arc(P[k, :], P[k-1, :]))

return boxes, arcs

N=9
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boxes, arcs = fibSquares(N)
for i in range(len(boxes)):

for j in range(len(boxes[0])):
plt.plot(boxes[i][j][0], boxes[i][j][1], color = 'k')

plt.plot(arcs[i][0], arcs[i][1], lw = 2, color = 'r')
plt.axis('equal')
plt.axis('off')
plt.savefig('Figures/fiboSquare.pdf')

B.2 Fibonacci spiral

# spiral.py - Fibonacci spiral, with its broken spiral inside

import numpy as np
import matplotlib.pyplot as plt
from scipy.constants import golden

sq5 = np.sqrt(5)
sq2 = np.sqrt(2)
phi = golden #Golden ratio
psi = np.log(phi)

def fibo(t):
"""Binet's formula for the Fibonacci numbers."""
return (np.exp(t*psi)-np.cos(np.pi*t)*np.exp(-t*psi))/sq5

def fibsequence(L):
"""Sequence of the first L Fibonacci numbers."""
L = int(L)
if L < 2:

print("%s: error: L=%d must not be smaller than 2" % ('spiral.py', L))
sys.exit(13)

fib = np.zeros(L+1, dtype=int)
for k in range(2):

fib[k] = k
for k in range(2, L+1):

fib[k]=fib[k-1]+fib[k-2]
return fib

def fibspiral(L, N0):
"""Fibonacci spiral up to the L-th Fibonacci number, with N0 points per interval."""
L = int(L)
N0 = int(N0)
N = N0*L
t = np.linspace(1, L, N)
x = np.zeros(N)
y = np.zeros(N)
for k in range(N):
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# Fibonacci spiral from equation (85)
w = np.array([fibo(t[k]),fibo(t[k]-1)])
q = np.array([[np.cos(np.pi*(t[k]+1/2)/2),np.sin(np.pi*(t[k]+1/2)/2)],

[-np.sin(np.pi*(t[k]+1/2)/2), np.cos(np.pi*(t[k]+1/2)/2)]])
qq = np.dot(w, q)*sq2
x[k] = qq[0]
y[k] = qq[1]

return x, y

def brokenspiral(L):
"""Broken spiral up to the L-th Fibonacci number."""
L = int(L)
t0 = np.zeros(L)
t1 = np.zeros(L)
f = fibsequence(L)
for k in range(1,L+1):

# The broken spiral from equation (86)
w = np.array([f[k],f[k-1]])
q = np.array([[np.cos(np.pi*(k+1/2)/2),np.sin(np.pi*(k+1/2)/2)],

[-np.sin(np.pi*(k+1/2)/2), np.cos(np.pi*(k+1/2)/2)]])
qq = np.dot(w, q)*sq2
t0[k-1] = qq[0]
t1[k-1] = qq[1]

return t0, t1

N0 = 25
L = 9

x, y = fibspiral(L, N0)
t0, t1 = brokenspiral(L)

ax = plt.subplot()
ax.plot(x, y, 'k-')
ax.plot(t0, t1, 'k--')
ax.axis('equal')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.savefig('Figures/fiboSpiral.pdf')
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