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1 Euler method

Let us consider an ordinary differential equation of the form

dx

dt
= f(x, t), (1)

where f(x, t) is a function defined in a suitable region D of the plane (x, t). Suppose that we
wish to evaluate the solution x(t) of this equation, which satisfies the initial condition

x(t0) = x0, (2)

where (x0, t0) belongs to the interior of D.
We wish to set up a numerical method for the solution of this problem. Of course, in general,

we do not expect to obtain an analytical expression as the result. What we can expect to achieve
is to obtain an array containing some values tn of the independent variable and the corresponding
values xn of x(tn):

t0 x0
t1 x1
t2 x2
...

...

To evaluate the quantities xn, we shall apply different methods which allow us to evaluate
x(t+h), where h is a small increment of t which we shall assume to be positive, when x(t) (and
in case earlier values of x) is known.

Suppose we know x(t0) = x0. Let us consider the Taylor expansion of the solution x(t) of
equation (1) around t0:

x(t0 + h) = x0 + hx1 + O
(
h2
)
. (3)

We have of course

x1 =
dx

dt

∣∣∣∣
t=t0

. (4)

On the other hand, since x(t) is by hypothesis the solution of equation (1) around t = t0, we
have

dx

dt

∣∣∣∣
t=t0

= f(x0, t0). (5)

We thus obtain an estimate of x(t0 + h):

x̃(t0 + h) = x0 + hf(x0, t0). (6)

We see that the difference between this estimation and the exact solution x(t) is proportional
to h2.



This reasoning suggests a first method to solve the differential equation (1) on the interval
[t0, t0 + T ] with the initial condition x(t0). We divide the interval into N subintervals [tn−1, tn],
n = 1, . . . , N , with tN = t0 + T , tn − tn−1 = T/N = h. We let x(t0) = x0 and evaluate in turn
x(tn), n = 1, . . . , N via the expression

x(tn) = x(tn−1) + hf(x(tn−1), tn−1), n = 1, . . . , N. (7)

We thus obtain an array (tn, xn) that can be further thickened by interpolation. This method
of numerical solution is known as the Euler method.

To evaluate the error implied by this method, let us assume to know the exact solution x(t)
in the interval [t0, t0 + h]. We then have

x(t0 + h) = x(t0) +

∫ t0+h

t0

dt f(x(t), t). (8)

By the theorem of the mean, there is then a value t̄ of t between t0 and t0 + h such that

x(t0 + h) = x(t0) + h f(x(t̄), t̄). (9)

Now x(t) has a derivative and if f(x, t) also possesses derivatives with respect to its arguments,
and since |t̄− t0| < h, we have

|f(x(t̄), t̄)− f(x0, t0)| < Kh, (10)

for some positive constant K. We thus obtain

|δx| < Kh2. (11)

On the other hand, the number of intervals of length h in which we have to divide an interval
of fixed length T is given by T/h. Thus the error on the estimate of x(t0 + T ) is proportional
to h1. One expresses this result by saying that the Euler method is a first-order method.

Let us consider, e.g., the equation
dx

dt
= x, (12)

with the initial condition
x(0) = 1. (13)

It is well known that the solution of this problem is given by

x(t) = et. (14)

Evaluating the solution by the Euler method, it is easy to see that one obtains

x(t+ nh) = (1 + h)n . (15)

Thus, if we fix T and N we obtain the approximation

xN (T ) =

(
1 +

T

N

)N

. (16)

We have of course
lim

N→∞
xN (T ) = x(T ). (17)
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Figure 1: Successive approximations to x(t) = exp(x), by the Euler method, with n =
2, 4, 8, 16, 32 points. The exact solution is also shown.

Although this expression in fact converges to the exact solution, figure 1 shows that it does
it quite slowly. Let us in fact imagine that we wish to evaluate x(T ) at a fixed value of T . If
we divide the interval [0, T ] into N intervals, the “step” h will be equal to 1/(TN), and the
error is proportional to h2 at each step. Thus the error on x(T ), since the errors add up, will
be proportional to Nh2 ∼ 1/N . To obtain one more figure in x(T ) we’ll have to introduce 10
times more points. To make things explicit, with N = 32 we have xN (1) = 2.6770 instead of
the exact result x(1) = 2.7183, while with 320 points we have xN (1) = 2.7140.

There are even more serious problems. Let us consider the following system of ordinary
differential equations:

dx

dt
= −y;

dy

dt
= x. (18)

The exact solution of this equation, satisfying the initial condition (x(0) = 1, y(0) = 0) is given
by the pair cos t, sin t, so that we obviously have

x2(t) + y2(t) = x20 + y20; ∀t. (19)

By the Euler method we obtain

x(t0 + h) = x(t0)− hy(t0); (20)

y(t0 + h) = y(t0) + hx(t0). (21)

It is useful to write down this relation in matrix form:

X(t0 + h) = (1 + hF)X(t0), (22)

where

X(t0) =

(
x(t)
y(t)

)
, (23)
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1 is the unit matrix, and

F =

(
0, −1
1, 0

)
. (24)

We thus obtain the following estimate of X(T ):

XN (T ) =

(
1, −T/N

T/N, 1

)N (
1
0

)
. (25)

Now, if we evaluate x2N (T ) + y2N (T ), we obtain
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Figure 2: Solution of equation (18) by the Euler method for 0 ≤ t ≤ π/2, with initial condition
x(0) = 1, y(0) = 0, and for N = 4, 8, 16, 32. The exact solution x(t) = cos t, y(t) = sin t is also
shown.

x2N (T ) + y2N (T ) =

(
1 +

(
T

N

)2
)N (

x2(0) + y2(0)
)
' eT

2/N
(
x2(0) + y2(0)

)
. (26)

We see from figure 2 that the numerical solution wanders away from the exact one as T grows,
forming a logarithmic spiral, as shown, e.g., in figure 3.

2 Heun method

To have a better approximation one could think of using more terms in the Taylor expansion (3)
in the right-hand side of equation (1). However this approach is not very convenient, since it
requires to evaluate the higher derivatives of the f(x, t), first analytically and then numerically.
It would be safer to evaluate just the f(x, t), in case more than one time.

We can find a method of this kind by the following reasoning. Let us consider a differential
equation x′(t) = fx(x, y),whose exact solution x(t) is represented in figure 4. Suppose that for
a given value t0 of t the solution lies at the point P = (t0, x0). Then f(x0, t0) is the slope of
the tangent to the curve drawn in P. For t = t0 + h the exact solution will lie, for instance, in
R, while the Euler-method solution will lie along the tangent, for instance in Q. In our case,
in which the exact solution is convex, Q lies below the curve: otherwise said, Euler’s method
underestimates the solution.
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Figure 3: Solution of the differential equation (18) by the Euler method, for 0 ≤ t ≤ 12π, with
the initial condition x(0) = 1, y(0) = 0, and for N = 1024. The exact solution x(t) = cos t,
y(t) = sin t is also shown.

Suppose that we knew the exact solution for t = t0 + h, and therefore the exact value
of f1 = f(x(t0 + h), t0 + h), which corresponds to the slope of the line RS. If, instead of
evaluating x(t0 + h)cby the Euler method via f(x0, t0) we were to use f1, we would obtain for
x(t0+h) the estimate Q1 (the vectors PQ1 and RS are equal): then we would have overestimated
x(t0 + h). (Let us remark that if the solution x(t) had been concave rather than convex, the
Euler method would have provided an overestimation, while the vector PQ1 would have been
an underestimate.)

It appears that we could obtain a better estimate of x(t0 +h) by taking the average of these
estimates:

x(t0 + h) ' x(t0) +
1

2
(f(x0, t0) + f(x(t0 + h), t0 + h))h. (27)

The problem is that we do not know x(t0 + h)! We can however take advantage of the Euler
method to obtain a first estimate of x(t0 + h), and then use this estimate in (27). We obtain in
this way the Heun method:

x1 = x0 + f(x0, t0)h; (28)

x(t0 + h) ' x(t0) +
h

2
[f(x0, t0) + f(x1, t0 + h)] . (29)

Let us evaluate the solution of x′(t) = x(t) by this method. We obtain

x1 = (1 + h)x(t0); (30)

x(t0 + h) ' x(t0)

[
1 +

1

2
(1 + 1 + h)h

]
= x(t0)

(
1 + h+

h2

2

)
. (31)

Thus the first three terms in the Taylor expansion of x(t0 + h) are correctly retrieved. In
figure 5 I compare the results of the Euler and the Heun methods for the equation (12). Let us
remark that the computational cost lies most often with the evaluation of the function f(x, t).
Noe the Euler method requires one evaluation for each step, while the Heun method requires
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Figure 4: Towards the definition of the Heun method. Given the known solution on point P, the
point Q represents the estimate of the solution according to the Euler method. The red curve
represents the exact solution. The point Q1 represents the solution obtained starting from P,
but with the tangent evaluated on the point R corresponding to the exact solution. The point
R lies near the midpoint of the line QQ1.

two evaluations. It is therefore fairer to compare the two methods with the same number of
evaluations of f(x, t), and thus when the number of points of the Euler method is twice that
of the Heun one. We now see that on this scale the Heun method with 8 points yields results
that cannot be set apart from the exact ones, while the Euler method with 16 points look rather
different.

Let us now look at the equation (18). We obtain

X(t+ h) = GX(t), (32)

dove

G =

(
1− h2/2, −h

h, 1− h2/2

)
. (33)

We have therefore

x2(t+ h) + y2(t+ h) =
(
1 + h4/4

) (
x2(t) + y2(t)

)
. (34)

Thus x2 + y2 is much better conserved, but it remains true that the errors add up and that the
estimated solution is a logarithmic spiral rather than a closed curve.

3 Implicit midpoint method

Suppose again that we knew the exact solution x(t) of the differential equation (1). By the
theorem of the mean we have, as we have already seen,

x(t0 + h) = x(t0) + hf(x(t̄), t̄), (35)

where t0 < t̄ < t0+h. This relation suggests another possible estimate of x(t0+h): the midpoint
of the interval [t0, t0 + h] is most likely closer to t̄ than either of the endpoints. We can thus set

x̃(t0 + h) = x(t0) + hf(x̄, t̄), (36)
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Figure 5: Comparison between the Euler and the Heun method in the solution of equation (12),
with the initial condition x(0) = 1. The Euler-method solution with 16 points, and the Heun-
method one with 8 points (which requires 16 evaluations of f(x, t)), and the exact solution are
shown.

where x̄ = x(t0 + h/2). The problem is, of course, that we do not know x(t0 + h/2). We solved
this problem in the Heun method by evaluating x(t0 + h) via the Euler method, and evaluating
the mean increment of x(t) in the interval [t0, t0 + h] by averaging the increments estimated at
the beginning and at the end of the interval. Another possibility is to set

x̄ =
x(t0 + h) + x(t0)

2
, (37)

i.e., by averaging the values of x(t) at the endpoints. We thus obtain

x̃(t0 + h) = x(t0) + hf((x̃(t0 + h) + x(t0))/2, t0 + h/2). (38)

This expression should be considered as an equation for x̃(t0 + h). Thus, instead of an explicit
equation for the estimate of x(t0+h), this method provides an equation (which will be most often
non linear) which must be solved to obtain the estimate. It is therefore an implicit method.

What is its advantage? Let us rewrite (38) in the form

x̃(t0 + h)− x(t0) = hf((x̃(t0 + h) + x(t0))/2, t0 + h/2). (39)

We see that x(t0) and x̃(t0+h) play a perfectly symmetric role in this equation: we can consider
it as an equation in x̃(t0 + h), where x(t0) is known, or just as well as an equation in x(t0),
if x̃(t0 + h) is known. This symmetry is especially advantageous if the differential equation is
invariant under the transformation t −→ −t, as is the case of the equations for the dynamics of
particles.

Of course the method requires a fast and cheap algorithm to solve the equation (38). This
can be found easily, exploiting the fact that h is small. Let us consider, e.g., the sequence defined
by

x0 = x(t0); xn+1 = x0 + hf((xn + x0)/2, t0 + h/2); n = 1, 2, . . . (40)
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Figure 6: Solution of the differential equation (18) by the Heun metnod, for 0 ≤ t ≤ 6π with
the initial condition x(0) = 1, y(0) = 0, and for N = 64. The exact solution is also shown.

This sequence (for h small enough!) approaches x∗, which satisfies the equation

x∗ = x0 + hf((x∗ + x0)/2, t0 + h/2). (41)

Indeed, let us set, e.g., xn = x∗ + δx. We then have

xn+1 = x0 + hf((xn + x0)/2, t0 + h/2) ' x∗ + h f ′(x∗) δx. (42)

Thus, if |h f ′(x∗)| < 1, we have |xn+1 − x∗| < |δx| = |xn − x∗|, and the sequence (xn) tends to
x∗. This method is easy to implement, but is not necessarily the most effective.

Let us now look at the behavior of this method for our differential equations. For (12) we
have the equation

x̃(t0 + h) = x̃ = x0 + h

(
x0 + x̃

2

)
. (43)

This is a linear equation whose solution reads

x̃ = x0
1 + h/2

1− h/2
. (44)

The error of this solution is comparable to that of the Heun method.
It is more interesting to look at the equation (18). Letting

X =

(
x
y

)
; ‖X‖2 = x2 + y2, (45)

and introducing the notations X0 = X(t0) and X̃ = X(t0 + h), we have

AX̃ = BX0, (46)
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where

A =

(
1, −h/2
h/2, 1

)
, (47)

B =

(
1, h/2
−h/2, 1

)
. (48)

We thus obtain
X̃ = A−1BX0 = TX0, (49)

where

T =
1

1 + h2/4

(
1− h2/4, h
−h, 1− h2/4

)
. (50)

It is then easy to verify that
‖X̃‖2 = ‖X0‖2. (51)

Thus the trajectory of the estimated solution will not wander away from the exact one. This
does not imply of course that the solution is exact, as one can see, e.g., in figure 7. However the
error lies mostly in the delay with respect to the exact solution, rather than in the trajectory.
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Figure 7: Implicit midpoint method in the solution of equation (18). Left panel: y(t) as a
function of t for 0 ≤ t ≤ 2π, with N = 10 points, together with the exact solution sin t. Right
panel: the trajectory in the (x, y)-plane.

The implicit midpoint method as a symplectic integrator

This property of the implicit midpoint method is the consequence of a deeper property. Let us
consider a canonical differential equation for the pair of variables (x, p):

dx

dt
=
∂H

∂p
; (52)

dp

dt
= −∂H

∂x
. (53)

In this equation, H(x, p) is the hamiltonian. Let us remark that equation (18) takes this shape,
if we set p = y and H = (p2 + y2)/2. Then H(x, p) is conserved in the sense that if (x(t), p(t))
is a solution of the (52,53) which satisfies (x(t0), p(t0)) = (x0, p0), we have

H(x(t), p(t)) = H(x0, p0) = const. (54)
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We have indeed
dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂p
=
∂H

∂x

∂H

∂p
− ∂H

∂p

∂H

∂x
= 0. (55)

Let us now evaluate the change of H for the solution obtained via the implicit midpoint method.
Let us denote by X = (x, p) the generic point of the (x, p)-plane, by X0 = (x0, p0) the solution
at the time t0, and by X̃ = X0 + δX̃ the estimate of X(t0 + h) obtained by the implicit midpoint
method:

X̃ = (x0 + δx̃, p0 + δp̃), (56)

where (δx̃, δp̃) are solutions of the equation

δx̃ = hHx(x0 + δx̃/2, p0 + δp̃/2); (57)

δp̃ = −hHp(x0 + δx̃/2, p0 + δp̃/2) (58)

We have introduced the shorthand Hx = ∂H/∂x, etc. Let us denote by X̄ = (x̄, p̄) the midpoint.
We then have

H(X̃) = H(X̄) +Hpδx̃/2 +Hxδp̃/2 + O
(
δX̃2
)

; (59)

H(X0) = H(X̄)−Hpδx̃/2−Hxδp̃/2 + O
(
δX̃2
)
, (60)

where the derivatives are evaluated in in X̄. Subtracting these equations, and taking into account
the fact that the second-order terms in δX̃ annihilate, we obtain

∆H = H(X̃)−H(X0) = Hpδx̃/2 +Hxδp̃/2 + O
(
δX̃3
)

= h (HxHp −HpHx) + O
(
δX̃3
)

= O
(
δX̃3
)
. (61)

The conservation of H is thus verified up to order δX̃3, and thus h3.
In the case of differential equations of canonical form we have a subtler conservation law.

Suppose that the system finds itself in X0 = (x0, p0) at the initial timet = t0. Consider small
perturbations, δX1 = (δx0, 0) and δX1 = (0, δp0) of the initial state. In the (x, p)-plane these
perturbations identify a parallelogram of area A = δX1 × δX2 = δ0 δp0, where “×” denotes
the cross product. Let us now follow the solution of the differential equation to a generic
instant t. Let us denote by X(t) the solution satisfying the initial condition X(t0) = X0, and
by X1(t) and X2(t) respectively those which satisfy the initial conditions X(t0) = X0 + δX1 and
X(t0) = X0 + δX2. Then the vectors δXi(t) = Xi(t)− X(t), for i = 1, 2, identify a parallelogram
of area A(t) = δX1(t)× δX2(t). Now we have

A(t) = A, ∀t. (62)

Indeed, letting
δXi(t) = (δxi(t), δpi(t)), (63)

we have, for i = 1, 2,

dδxi
dt

= Hpxδxi +Hppδpi; (64)

dδpi
dt

= −Hxxδxi −Hxpδpi. (65)
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In this expression, the derivatives of H are evaluated in X(t). On the other hand we have

dA

dt
=

d

dt
det

(
δx1(t), δp1(t)
δx2(t), δp2(t)

)
= δẋ1δp2 + δx1δṗ2 −

(
δẋ2δp1 + δx2δ̇p1

)
= Hpxδx1δp2 +Hppδp1δp2 −Hxxδx1δx2 −Hxpδx1δx2

− (Hpxδx2δp1 +Hppδp2δp1 −Hxxδx2δx1 −Hxpδx2δp1) = 0. (66)

It is straightforward to generalize this result to a system of 2N differential equations, with N
pairs of conjugate variables (xi, pi) (i = 1, . . . , N), where the equations have the canonical form
(52,53). For each pair the area Ai(t) of the corresponding parallelogram is conserved. As a
corollary, sif we consider 2N small perturbations δXi (i = 1, . . . , N), which encompass a small
region of the space (x1, p1, . . . , xN , pN ), and follow the evolution of this region in time, the
corresponding volume remains constant. In mechanics, this result is known as the Liouville
theorem.

Let us now show that the implicit midpoint method conserves A, of course provided that
the δXi are small enough. Given X0 = X(t0) and the increment h of t, the estimate X̃ = (x̃, p̃)
of X(t0 + h) is the solution of

x̃ = x0 + hHp

(
x0 + x̃

2
,
p0 + p̃

2

)
; (67)

p̃ = p0 − hHx

(
x0 + x̃

2
,
p0 + p̃

2

)
. (68)

Given an increment δX0 = (δx0, δp0) of the condition at t = 0, the corresponding increment δX̃
of X̃ is the solution of

δx̃ = δx0 +
h

2
[Hpx(δx0 + δx̃) +Hpp(δp0 + δp̃)] ; (69)

δp̃ = δp0 −
h

2
[Hxx(δx0 + δx̃) +Hxp(δp0 + δp̃)] . (70)

These equations can be written in the following form:

AδX̃ = BδX0, (71)

where the matrices A and B are defined by

A =

(
h
2Hpx, −h

2Hpp
h
2Hxx, 1 + h

2Hxp

)
; B =

(
1 + h

2Hpx,
h
2Hpp

−h
2Hxx, 1− h

2Hxp

)
. (72)

They allow therefore for the solution

δX̃ = A−1BδX0 = TδX0, (73)

where, letting

H = det

(
Hxx, Hxp

Hpx, Hpp

)
, (74)

we have (taking into account the equality of the mixed derivatives)

T =
1

|A|

(
1 + hHxp − (h/2)2H, −hHpp

hHxx, 1− hHpx − (h/2)2H

)
; (75)

|A| = 1− (h/2)2H. (76)
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Let us consider the initial vectors δX1 = (δx0, 0) and δX2 = (0, δp0). The corresponding incre-
ments δX̃1, δX̃2, are given by

δX̃1 =
1

|A|

( (
1 + hHxp − (h/2)2H

)
δx0

hHxx, δx0

)
; (77)

δX̃2 =
1

|A|

(
−hHpp δp0(

1− hHpx − (h/2)2H
)
δp0

)
. (78)

With these initial vectors we have A(t0) = δx0 δp0. The area encompassed by the vectors δX̃1

and δX̃2 is given by the cross product of the vectors, i.e., by the determinant of the matrix one
obtains my writing them side by side. An easy calculation shows that one has

δX̃1 × δX̃2 = |T| δx0δp0, (79)

where |T| = detT. It is also easy to verify that

|T| = 1. (80)

Thus the implicit midpoint method conserves the areas of the kind of δX̃1 × δX̃2. These ex-
pressions are called symplectic forms, and the conservation law is therefore known as the
symplectic property of the implicit midpoint method. The method is therefore especially
adapted for the integration of equations in the canonical form. In the special case of particle
dynamics there are however also simpler (explicit) methods that possess this property.

4 Runge-Kutta methods

One of the problems with the implicit midpoint method is that the number of calls of the
function f(x, t) needed to solve the equation t̄ = x(t0 + h/2) cannot be forecast. One can ask
what happens if one makes just one call to estimate x̄, i.e., one lets

x̄ = x0 +
h

2
f(x0, t0), (81)

and then evaluates the estimate x̃ via equation (36). One thus obtains an algorithm that can
be written as follows:

k1 = f(x0, t0); (82)

k2 = f(x0 + (h/2)k1, t0 + h/2); (83)

x̃ = x0 + hk2. (84)

This algorithm is known as the explicit midpoint method, oar also as the second-order
Runge-Kutta method, or RK2. One can show that the errors of this methods are larger than
those of the Heun method, while the number of calls of the function f(x, t) is the same. However
it allows us to introduce a discussion of several integration methods known as Runge-Kutta
methods, some of which are the most popular in the applications.

Let us consider equation (8). The integral on the right-hand side can be estimated by means
of any method used to evaluate integrals numerically. Let us denotef(x(t), t) by F (t). We then
have, e.g.:

The rectangle rule: I =

∫ t0+h

t0

dt F (t) ' hF (t0 + h/2);
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The trapezoid rule: I ' h

2
(F (t0) + F (t0 + h)) ;

The Simpson rule: I ' h

6
(F (t0) + 4F (t0 + h/2) + F (t0 + h)) .

These prescriptions also require a method to evaluate F (t∗) = f(x(t∗), t∗), and thus x∗ = x(t∗),
where t∗ is a value of t lying between t0 and t0 + h. This method can be implicit (i.e., requires
the solution of an equation) or explicit (yielding an estimate of x∗ as a function of already
known quantities). Thus the implicit midpoint method corresponds to the rectangle rule with
implicit evaluation, the RK2 to the rectangle rule with explicit evaluation, while the Heun
method corresponds to the trapezoidal rule with explicit evaluation. (The advantage of the
Heun method with respect to the RK2 one corresponds to the advantage of the trapezoidal rule
with respect to the rectangle one.)

In general, these methods require the successive evaluation of quantities of the form

ki = f(x0 + h
∑
j

aijkj , t0 + cih), i = 1, . . . , s, (85)

to produce an estimate of x(t0 + h) via an expression of the form

x̃(t0 + h) = x0 + h
∑
i

biki. (86)

These expressions can be conveniently summarized by a Butcher table:

c1 a11 a12 · · · a1s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

(87)

In this scheme we have, e.g.,

• For the Euler method:
0 0

1
(88)

• For the Heun method:
0 0 0
1 1 0

1
2

1
2

(89)

• For the RK2 method:
0 0 0
1
2

1
2 0

0 1

(90)

• For the implicit midpoint method:
1
2

1
2

1
(91)
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Note that in the explicit methods, the elements aij with j ≥ i vanish. In these cases the Butcher
table can be simplified in the form

0
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1
b1 b2 · · · bs−1 bs

(92)

Since the ki can be interpreted as the slope of the solution x(t) evaluated at the time t0 + cih,
one requires for consistency that the following relations are satisfied:

ci =
∑
j

aij , for i = 1, . . . , s; (93)

∑
i

bi = 1. (94)

The most popular Runge-Kutta method is known as RK4. It is an explicit method described
by the following simplified Butcher table:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(95)

This corresponds in practice to the following sequence of evaluations:

k1 = f(x0, t0); (96)

k2 = f(x0 + (h/2)k1, t0 + h/2); (97)

k3 = f(x0 + (h/2)k2, t0 + h/2); (98)

k4 = f(x0 + hk3, t0 + h); (99)

x̃(t0 + h) = x0 +
h

6
(k1 + 2k2 + 2k3 + k4) . (100)

The method corresponds to the Simpson rule, with two evaluations of F (t0 + h/2), where the
second one is used to estimate F (t0 + h). The error on x(t+ h) at each step is of order h5, and
thus the total error in a finite interval is of order h4. Thus it is a fourth-order method, what
justifies denoting it by RK4.

Truncation error in Runge-Kutta methods

To evaluate the truncation error in these methods, one can use the following approach. Let us
consider the differential equation

dx

dt
= f(x, t). (101)

Assume that we wish to evaluate the solution x(t) in the point t = t0 + h. Let us write the
generic Taylor expansion x(t0 + h) in powers of h:

x(t0 + h) = x0 +
h

2
x1 +

h2

2
x2 +

h3

6
x3 + O

(
h4
)
. (102)
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Expanding the right-hand side of equation (101) in powers of h, taking into account the expansion
of x(t0 + h), we obtain

f(x(t0 + h), t0 + h) = f0 + h (fxx1 + ft)

+
h2

2

(
fxx(x21 + x2) + 2fxtx1 + ftt

)
+ O

(
h3
)
, (103)

where f0 = f(x0, t0), fx = ∂f/∂x|x0,t0 , etc. Integrating this expression between t0 and h, and
adding x(t0) = x0 we obtain the expansion of the (101):

x(t0 + h) = x0 +

∫ h

0
dh′ f(x(t0 + h′), h′)

= x0 + hf0 +
h2

2
(x1fx + ft) +

h3

6

(
(x2 + x21)fxx + 2x1fxt + ftt

)
+ O

(
h4
)
.(104)

Comparing equations (104) and (102) we obtain the expressions of the Taylor coefficients xi:

x1 = f0; (105)

x2 = f0fx + ft; (106)

x3 = fxxf
2
0 + 2fxtf0 + ftt + fx (ft + f0fx) . (107)

Let us evaluate an estimate of the RK2 form:

k1 = f(x0, t0); (108)

k2 = f(x0 + ak1, t0 + ah); (109)

x̃(t0 + h) = x0 + (1− b)k1 + bk2. (110)

We can now evaluate the Taylor expansion in powers of h of the estimate x̃(t0 + h):

x̃(t0 + h) = x0 + hf0 + h2ab (fxf0 + ft)

+
h3

2
a2b
(
fxxf

2
0 + 2fxtf0 + ftt

)
+ O

(
h4
)
. (111)

Thus in order for the two expansions to coincide to order h2 we must have ab = 1
2 . Thus we are

only free to fix a. We can then evaluate the difference between (104) and (111):

x(t0 + h)− x̃(t0 + h) =
h3

12

[
2ftfx + 2f0f

2
x + (2− 3a)(ftt + 2fxtf0 + fxxf

2
0 )
]

+ O
(
h4
)
. (112)

We cannot evaluate the error of order h3. However, choosing a = 2/3, we can simplify its
expression:

x(t0 + h)− x̃(t0 + h) =
h3

6
fx(ft + f0fx) + O

(
h4
)
. (113)

Conclusion: the RK2 scheme, with b = 1/(2a), has a truncation error of order h3 aat each step,
and thus a total error of order h2. In a sense the optimal scheme corresponds to a = 2/3.

The corresponding evaluation for RK4 is straightforward but extremely tedious. One can
find it in the following Mathematica notebook: rk4Eng.nb. The calculation confirms that the
error is of order h5 at each step, and that the total error is of order h4. Let us stress that
the method does not possess the symplectic property, and therefore it is not adapted for the
integration of equations in the canonical form. On the other hand it is well adapted for the
integration of dissipative systems.
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5 Verlet methods

The differential equations governing the evolution of a system of particles interacting via forces
which depend only on their reciprocal positions can be solved by a class of very powerful methods
known as Verlet methods. They are third-order symplectic methods whose implementation is
especially simple. Suppose that we wish to solve the differential equation

d2x

dt2
= f(x, t). (114)

Let us consider the Taylor expansion of x(t) around t0, where x(t0) = x0:

x(t0 + h) = x0 + hx1 +
h2

2
x2 +

h3

3!
x3 + O

(
h4
)
. (115)

Evaluating this expansion in −h, we obtain

x(t0 − h) = x0 − hx1 +
h2

2
x2 −

h3

3!
x3 + O

(
h4
)
. (116)

Summing these two equations we obtain

x(t0 + h) + x(t0 − h) = 2x0 + h2x2 + O
(
h4
)
. (117)

On the other hand, since x(t) is a solution of equation (114), we have

x2 =
d2x

dt2

∣∣∣∣
t=t0

= f(x0, t0). (118)

We obtain therefore

x(t0 + h) = 2x(t0)− x(t0 − h) + h2f(x0, t0) + O
(
h4
)

= x̃(t0 + h) + O
(
h4
)
. (119)

This equation defines the “standard” Verlet method.
Notice that the method requires at each step the knowledge of the value x(t0) of the solution

at time t0 and of its value x(t0−h) at the previous step. On the other hand the initial conditions of
equation (114) are usually given in the form (x(t0), v(t0)), where v0 = dx/dt|t=t0 . Thus in order
to start evaluating x(t) by the Verlet method, one needs to obtain an estimate of x(t0 − h) by
some other method. In this sense, the standard Verlet method is not self sufficient. However,
since this evaluation is needed only at the first step, one can use also a rather expensive method
to obtain this estimate, such as the RK4 one. Once x(t0 − h) has been estimated, the standard
Verlet method allows for the estimation of x(t) up to order h3 (global) with just one evaluation
of f(x, t) aat each step.

Let us also remark that the relation (117) éis perfectly symmetric between x(t0 + h) and
x(t0 − h). Thus the Verlet method, just like the implicit midpoint method, is invariant with
respect to the transformation t −→ −t. Therefore, if we evaluate the solution x(t) for t0 ≤
t ≤ t0 + T , we can trace it back by solving the differential equation by the Verlet method with
negative time increments h, starting from the initial condition x(t0 + T + h), x(t0 + T ): this
reasoning does not take into account the effects of rounding errors, related to the finite precision
of the representation of real numbers in the computer.

It is well known that the evolution of a particle system conserves the energy if all forces are
conservative. In practice, if x = (xi), (i = 1, . . . , N), and equation (114) hass the form

d2xi
dt2

= − 1

mi

∂U

∂xi
, (120)
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where U(x) = U(x1, . . . , xN ) is some function, we have

E =

N∑
i=1

1

2
mi

(
dxi
dt

)2

+ U(x) = const. (121)

To evaluate this quantity, we need an estimate of the velocity v = (dxi/dt). Subtracting equa-
tions (118) and (119) from each other, we obtain

v =
dx

dt

∣∣∣∣
t=t0

=
x(t0 + h)− x(t0 − h)

2h
+ O

(
h2
)
. (122)

This expression contains the difference of quantities that are very close to each other, and will be
marred by sizable rounding errors. One can still verify that E remains constant up to order h2

at each step, which suggests that the global error is of order h. In fact the error is smaller, since
it is due mostly to the error in the estimate of v, while the estimated solution approaches the
exact one with a global error of order h3. Thus conservation is verified up to order h3 (globally),
even if the estimate of E, step by step, has a h2 error. However, the fact that the velocity is
badly estimated can be corrected by introducing a slightly more complex scheme that also yields
a good evaluation of the velocity. This method is known as the velocity Verlet method.

The velocity Verlet method

The velocity Verlet method formally involves two evaluations of f(x, t) per step, but one can
see that each evaluation can be used in two successive steps, so that the computational effort
is essentially the same as in the standard Verlet method. Its advantage is that it also yields a
good estimate of the velocity at each step. Suppose we know x(t0) = x0 and v(t0) = v0. Let us
estimate v(t0 + h/2):

v(t0 + h/2) = v0 +
h

2
f(x0, t0) + O

(
h2
)
. (123)

To evaluate x(t0 + h), we use the approximation
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Figure 8: Solution of the pendulum differential equation d2x/dt2 = − sinx with initial condition
x0 = 3, v0 = 0 by the velocity Verlet algorithm. Left panel: trajectory in the (x, v) plane. Right
panel: value of the energy E = v2/2 + (1 − cosx). One sees that the value of the energy is
not constant, but repeats periodically. Indeed the conserved quantity is a shadow hamiltonian
whose difference from the “true” hamiltonian can be estimated from the graph.

x(t0 + h) = x(t0) + hv(t0 + h/2). (124)

17



To evaluate v(t0 + h), we use again (123):

v(t0 + h) = v(t0 + h/2) + (h/2)f(x(t0 + h), t0 + h). (125)

Eliminating v(t0 + h/2) by equation (123), we obtain the following algorithm:

x(t0 + h) ' x(t0) + hv(t0) + (h2/2)f(x(t0), t0); (126)

v(t0 + h) ' v0 +
h

2
(f(x0, t0) + f(x(t0 + h), t0 + h)) . (127)

This method yields an update of the pair (x, v) at each step. Note that the second evaluation
of the force which appears in the velocity equation can be used for the next update of x(t).

One can show (via the usual tedious method) that the error on v(t0 + h) and x(t0 + h) is
of order h3. We can also show explicitly that the method has the symplectic property. Indeed,
considering the perturbation δX = (δx0, δv0) we obtain the following expression of the change
δX̃:

δX̃ = TδX, (128)

where the matrix T is given by

T =

(
1 + h2

2 fx, h
h
2

[
fx +

(
1 + h2

2

)
fx(x̃(t0 + h), t0 + h)

]
, 1 + h2

2 fx(x̃(t0 + h), t0 + h)

)
. (129)

One easily verifies that, to the order evaluated above, one has

|T| = 1. (130)

The velocity Verlet algorithm is closely related to the so-called leapfrog method, in which
the velocity is evaluated at times tk+1/2 = t0 +(k+1/2)h, while positions are evaluated at times
tk = t+ kh. The leapfrog algorithm reads as follows:

v(tk+1/2) ' v(tk−1/2) + hf(x(tk), tk); (131)

x(tk+1) ' x(tk) + hv(tk+1/2). (132)

Let us remark that the method is explicitly time-reversal invariant. In fact, let us assume that
we have obtained the estimates of x(tk+1) and v(tk+1/2) by the above expressions, and let us
evaluate x(tk) and v(tk−1/2). We obtain

x(tk) = x(tk+1)− hv(tk+1/2) = x(tk) + hv(tk+1/2)− hv(tk+1/2) = x(tk); (133)

v(tk−1/2) = v(tk+1/2)− hf(x(tk), tk) = v(tk−1/2) + hf(x(tk), tk)− hf(x(tk), tk)

= v(tk−1/2). (134)

One can also check that the velocity Verlet algorithm defined by equations (126,127) possesses
the same invariance. We have indeed, writing x0 for x(t0) etc., and x1 for x(t0 + h) etc.,

x0 = x1 − hv1 + (h2/2)f(x1, t1)

= x0 + hv0 + (h2/2)f(x0, t0)− h [v0 + (h/2) (f(x0, t0) + f(x1, t1))] + (h2/2)f(x1, t1)

= x0; (135)

v0 = v1 − (h/2) [f(x0, t0) + f(x1, t1)]

= v0 + (h/2) [f(x0, t0) + f(x1, t1)]− (h/2) [f(x0, t0) + f(x1, t1)]

= v0. (136)
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Indeed one can obtain the velocity Verlet algorithm from the leapfrog method by introducing
the following estimate of the velocity at times tk:

v(tk) =
v(th+1/2)− v(tk−1/2)

h
, (137)

and by eliminating v(tk+1/2) at each step. Thus, in a sense, the velocity Verlet method is just
a different way to write down the leapfrog algorithm.

6 Richardson extrapolation

It is possible to improve our approximations to the exact solution x(t) by taking advantage of
the dependence of the estimator x̃(t0 + h) on the step size h. Suppose that we have a method
which allows us to estimate x(t0 + h), given x(t0), with an error of order hk, where k is some
positive integer. We then have

x(t0 + h) = x̃h + ahk + · · · , (138)

where we have neglected term od order higher than hk. Let us now evaluate x(t0 + h) using
a step size h/2 and applying the algorithm twice. We obtain an estimate that we denote by
x̃(h/2), and we have

x(t0 + h) = x̃h/2 +
a

2k
hk + · · · (139)

Let us multiply this equation by 2k and subtract it form equation (138). We obtain(
2k − 1

)
x(t0 + h) = 2kx̃h/2 − x̃h + · · · (140)

Thus we have

x(t0 + h) =
2kx̃h/2 − x̃h

2k − 1
+ · · · , (141)

where the neglected terms are of order higher than hk. This technique can be easily generalized
to factors different from 2 and is called Richardson extrapolation.

Let us investigate its working for the differential equation

dx

dt
= f(x, t) (142)

via the Euler method. We have
x̃h(t0 + h) = x0 + hf0, (143)

where f0 = f(x0, t0), and

x̃h/2(t0 + h/2) = x0 +
h

2
f0; (144)

x̃h/2(t0 + h) = x0 +
h

2
f0 +

h

2
f

(
x0 +

h

2
f0, t0 +

h

2

)
. (145)

Since the global error of the Euler method is of order h, let us set k = 1. We thus have the
extrapolation

x̃(t0 + h) = 2x̃h/2(t0 + h)− x̃h(t0 + h)

= x0 + hf

(
x0 +

h

2
f0, t0 +

h

2

)
. (146)

We have thus recovered the explicit midpoint method.
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