
Simple quantum systems

L. P.

Abstract

Solution of several problems of [1, Vol. I].

1 Finite square well (Problem 25)

Let us consider the potential V(x) defined by

V(x) =

{
−h̄2q2/2m, for |x| < L;
0, otherwise.

(1)

We are looking for normalizable solutions of the Schrödinger equation. Let us
consider solutions which behave like e−κ|x| as x → ±∞. We then have

E = − h̄2κ2

2m
. (2)

Since the potential is even, the eigenfunction will be either even (+) or odd (−).
Even functions will be proportional to cos kx for |x| < L, where k2 = q2 − κ2, and
odd functions will be proportional to sin kx. We must impose the continuity of the
function and its derivative at x = ±L. We have

Case (+): We set

ψ+(x) =

{
A cos kx, for |x| ≤ L;
A′e−κ(|x|−L), otherwise.

(3)

Thus the conditions for x = L are

0 = A cos(kL)− A′;
0 = −kA sin(kL) + κA′.

(4)

The determinant of this system is given by

∆ = κ cos(kL)− k sin(kL). (5)

We this obtain the equation

tan kL =
κ

k
. (6)

We can parametrize this equation by setting

κ

k
= tan θ, tan θ ≥ 0. (7)



Then we have, when tan θ ≥ 0,

k = q |cos θ| , κ = q |sin θ| , (8)

and
tan kL = tan θ, (9)

i.e.,
θ

qL
= |cos θ| , for tan θ ≥ 0. (10)

Case (−): We set

ψ−(x) =

{
A sin kx, for |x| ≤ L;
A′ sign x e−κ(|x|−L), otherwise.

(11)

Thus we obtain the equations

0 = A sin kL− A′ = 0;
0 = kA cos kL + κA′.

(12)

The determinant of this system reads

∆ = − (κ sin kL + k cos kL) . (13)

We this obtain
tan kL = − k

κ
= − 1

tan θ
> 0. (14)

Thus we obtain the equation, for tan θ ≤ 0,

k = |sin θ| , κ = |cos θ| , (15)

leading to
θ

qL
= |sin θ| , for tan θ ≤ 0. (16)

Thus for nπ/2 ≤ qL < (n + 1)π/2 we have (n + 1) bound states, alternatively
even and odd. The figure shows the geometrical construction for qL = 3π/1.1.
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2 Square well between walls (Problem 26)

Problem

Solve the Schrödinger equation for the potential V(x) given by

V(x) =


− h̄2q2

2m , for |x| ≤ a;
0, for a < |x| ≤ L;
+∞, otherwise.

(17)

Solution

“Bound” states: E < 0

We set E = −h̄2κ2/2m, k2 = q2 − κ2.

Even states: Let u+(x) be defined by

u+(x) =


A+ cos kx, for |x| ≤ a;
A′+ cos ka sinh κ(L− x), for a < x ≤ L;
0, otherwise.

(18)

We obtain the equations

0 = A+ − A′+ sinh κ(L− a);
0 = kA+ sin ka + κA′+ cos ka cosh κ(L− a).

(19)

The determinant reads

∆ = κ cos ka cosh κ(L− a)− k sin ka sinh κ(L− a). (20)

Thus we obtain the equation

k tan ka = κ coth κ(L− a). (21)

Odd states: Let u−(x) be defined by

u+(x) =


A+ sin kx, for |x| ≤ a;
A′+ sin ka sinh κ(L− x), for a < x ≤ L;
0, otherwise.

(22)

We obtain the equations

0 = A+ − A′+ sinh κ(L− a);
0 = kA+ cos ka + κA′+ sin ka cosh κ(L− a).

(23)

The determinant reads

∆ = κ sin ka cosh κ(L− a)− k cos ka sinh κ(L− a). (24)

Thus we obtain the equation

−k cot ka = κ coth κ(L− a). (25)
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The figure shows the construction for a = 20 and L = 100.

0.0 0.2 0.4 0.6 0.8 1.0
k/q

0.00

0.25

0.50

0.75

1.00

1.25
y/

q

Even
Odd
rhs

“Free” states: E > 0

Set E = h̄2K2/2m, k2 = q2 + K2.

Even states: Define u+(x) by

u+(x) =


A+ cos kx, for 0 < x ≤ a;
A′+ cos ka sin K(L− x), for a < x ≤ L;
u+(x) = u+(−x), for 0 > x > −L;
0, otherwise.

(26)

We obtain the conditions

0 = A+ − A′+ sin K(L− a);
0 = −kA+ sin ka + KA′+ cos ka cos K(L− a).

(27)

The determinant reads

∆ = K cos ka cos K(L− a)− k sin ka sin K(L− a) = 0. (28)

Thus we obtain the equation

k tan ka = K cot K(L− a). (29)

Odd states: Define u−(x) by

u−(x) =


A− sin kx, for 0 ≤ x ≤ a;
A′− sin ka sin K(L− x), for a < x ≤ L;
−u−(−x), for 0 > x > −L;
0, otherwise.

(30)
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The continuity conditions read

0 = A− − A′− sin K(L− a);
0 = kA− cos ka + KA′− sin ka cos K(L− a).

(31)

The determinant is given by

∆ = K sin ka cos K(L− a) + k cos ka sin K(L− a). (32)

This leads to the equation

−k cot ka = K cot K(L− a). (33)

For L� a, and Ka� 1, there is exactly one even and one odd solution in each KL
interval of width π. The figure shows the costruction for a = 0.3 and L = 2.
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Let us evaluate the normalization integral N± =
∫ +L
−L dx u2

±(x). We have

N+ = 2
∫ a

0
dx cos2 kx + 2

cos2 ka
sin2 K(L− a)

∫ L

a
dx sin2 K(L− x)

=
1
k
(ka + sin ka cos ka)− cos2 ka

K
[
cot K(L− a)− K(L− a)

(
1 + cot2 K(L− a)

)]
=

1
k
(ka + sin ka cos ka)− cos2 ka

K

[
k
K

tan ka− K(L− a)(1 +
k2

K2 tan2 ka)
]

=
1
k

[
ka +

(
1− k2

K2 sin ka cos ka
)]

+ (L− a)
(

cos2 ka +
k2

K2 sin2 ka
)

.

(34)

We have likewise

N− =
1
k

[
ka−

(
1− k2

K2 sin ka cos ka
)]

+ (L− a)
(

sin2 ka +
k2

K2 cos2 ka
)

. (35)
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For large values of L, the amplitude of the wave function inside the hole is domi-
nated by the last term. We obtain therefore

1
A2
+L
≈ cos2 ka +

k2

K2 sin2 ka; (36)

1
A2
−L
≈ sin2 ka +

k2

K2 cos2 ka. (37)

Notice that this amplitude reaches a maximum for Ka = (2m + 1)π/2 (even) and
Ka = mπ (odd). These values correspond to the resonances. In the limit KL � 1,
the amplitude of the wave function beyond the hole is given by

lim
L→∞

sin2 K(L− a)
A2
+ cos2 ka

= L; lim
L→∞

cos2 K(L− a)
A2
+ sin2 ka

= L. (38)

Thus we obtain, for |x| > a and KL� 1,

u±(x) = ± 1√
L

sin K(L− |x|). (39)
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3 Virtual levels (Problem 27)

The potential V(x) is given by

V(x) =

{
+∞, for x < 0;
(h̄2Ω/2m)δ(x− `), for x ≥ 0.

(40)

We look for the wavefunctions ψk(x) satisfying ψk(x) = α sin(kx) for x ≤ `, and
a cos(k (x− `)) + b sin(k (x− `)) for x > `. We obtain the conditions

a = α sin(k`);
b = α [cos(k`) + (Ω/k) sin(k`)] .

(41)
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These equations obviously admit solutions for all positive values of k. Let us set
a = − sin φ(k), b = cos φ(k), so that ψk(x) = sin(k(x− `)− φ) for x > `. We then
have

α = −sin φ(k)
sin(k`)

=
cos φ(k)

cos(k`) + (Ω/k) sin(k`)
. (42)

We obtain therefore the expression of φ(k):

− cot φ(k) = cot(k`) +
Ω
k

. (43)

This implies

sin2 φ(k) =
1

1 + cot2 φ(k)
=

sin2(k`)
1 + (Ω/k) sin(2k`) + (Ω/k)2 sin2(k`)

. (44)

Therefore
|α(k)|2 =

1
1 + (Ω/k) sin(2k`) + (Ω/k)2 sin2(k`)

. (45)

When k2 � Ω, these levels lie very close to the values of k for which sin(k`) = 0.
The dependence of α(k) on k smoothens out as k increases. The phase shift of the
wavefunction upon crossing ` is given by δ = φ(k)− k`. It satisfies the relation

tan δ = −Ω
k

sin2(k`)
1 + (Ω/2k) sin(2k`)

. (46)

Notice that when k is smaller than Ω/2, the denominator on the rhs vanishes
when

sin(2k`) = −2k
Ω

. (47)

This equation has solutions for 2k` close to (2n + 1)π or to 2nπ. In the first case,
the numerator is close to 1 and about constant. Then tan δ goes through infinity,
but the actual value of the wave function changes smoothly. In the second case
there is a zero of tan δ very close to the point in which it diverges. This means
that the phase goes from, say, π/2 to π in a very short range of k`. Here I plot
the amplitude |α(k)|2 on the left y axis and the phase shift δ on the right δ axis. In
the plot I have redefined the determination of arctan in order to make it smooth.
A second plot shows the behavior of |α|2 and δ close to the first resonance for
k` ≈ π. Note that δ goes through π/2 exactly at the resonance (marked with “R”).
For larger values of k, δ makes only small ripples away from π.
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4 Dirac comb (Problem 29)

Problem

Given a periodic potential formed by a sequence of Dirac functions with a distance
a between them:

V(x) =
h̄2

m
Ω

+∞

∑
n=−∞

δ(x− na), (48)

determine the energy bands for this potential.

Solution

Let us consider the fundamental solutions

u±(x) = e±ikx. (49)

Let u(x) be given by

u(x) =

{
A+u+(x) + A−u−(x), for 0 < x < a;
eiκa (A+u+(x− a) + A−u−(x− a)) , for a < x < 2a.

(50)
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At x = a, we have the boundary conditions

lim
x→a+

u(x) = lim
x→a−

u(x); (51)

lim
x→a+

u′(x) = lim
x→a−

u′(x) + 2Ωu(a). (52)

This implies

eiκa(A+ + A−) =
(

A+eika + A−e−ika
)

; (53)

ik eiκa (A+ − A−) = ik
(

A+eika − A−e−ika
)
+ 2Ω(A+eika + A−e−ika). (54)

We need to find non-vanishing solution to this homogeneous system. This can
only happen if the determinant vanishes. By evaluating the determinant we obtain
the equation

cos κa = cos ka +
Ω
k

sin ka. (55)

This equation allows for real values of κ provided∣∣∣∣cos ka +
Ω
k

sin ka
∣∣∣∣ ≤ 1. (56)

Thus the edges of the bands are given by the condition

cos ka +
Ω
k

sin ka = ±1. (57)

Case (+1): We have
Ω
k

sin ka = 1− cos ka = 2 sin2 ka
2

, (58)

and
sin ka = 2 sin

ka
2

cos
ka
2

. (59)

Thus we obtain
sin

ka
2

= 0, or
Ω
k

= tan
ka
2

. (60)

The conditions correspond respectively to

ka
2

= mπ, and
k
Ω

= cot
ka
2

. (61)

Case (−1): We have

Ω
k

sin ka = − (1 + cos ka) = −2 cos2 ka
2

, (62)

and therefore
cos

ka
2

= 0, or
Ω
k

= − cot
ka
2

. (63)

The conditions correspond respectively to

ka
2

= (2m + 1)π, and
k
Ω

= − tan
ka
2

. (64)
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This allows to solve the equation graphically.
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The spectrum can be obtained by expressing k as a function of the quasi-
momentum κ. We have indeed

E =
h̄2k2

2m
, (65)

where

κa = cos−1
(

cos ka +
Ω
k

sin ka
)

. (66)

Thus κa ∈ [0, π]. We can plot κa as a function of k over the intervals in which the
condition (57) is satisfied.
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5 Periodic square barriers

We consider a periodic potential of period `+ L, defined by

V(x) =

{
0, if 0 ≤ ξ ≤ L;
(h2/2m)Ω2, if L ≤ ξ ≤ L + `;

(67)
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where

ξ = (L + `)

⌊
x

L + `

⌋
, (68)

where bxc denotes the fractional part of x. We consider wavefunctions ψk(x) that
have the form

ψk(x) =

{
a eikx + b e−ikx, for 0 ≤ x ≤ `;
α eκ(x−`) + β e−κ(x−`), for ` ≤ x ≤ `+ L.

(69)

Here κ is expressed as a function of k and Ω by

κ =
√

Ω2 − k2. (70)

It is imaginary when k > Ω. In the region (` + L) ≤ x ≤ (2` + L), the wave
function will have the form a′ eik(x−`−L) + b′ e−ik(x−`−L), were (a′, b′) are related to
(a, b) by (

a′

b′

)
= T ·

(
a
b

)
, (71)

where T is a certain matrix. By imposing the continuity of ψk and its first derivative
at the discontinuities of V, we obtain the expression of T:

T = A−1
0 · B · B−1

0 · A, (72)

where

A =

(
eik`, e−ik`

ik eik`, −ik e−ik`

)
; (73)

A0 =

(
1, 1
ik, −ik

)
; (74)

B =

(
eκL, e−κL

κ eκL, −κ e−κL

)
; (75)

B0 =

(
1, 1
κ, −κ

)
. (76)

We obtain therefore

T =
1

2kκ

(
T11, T12
T21, T22

)
, (77)

with

T11 = eik` [i(k2 − κ2) sinh(κL) + 2kκ cosh(κL)
]

,

T12 = −ie−ik` (k2 + κ2) sinh(κL),

T21 = ieik` (k2 + κ2) sinh(κL),

T22 = e−ik` [−i(k2 − κ2) sinh(κL) + 2kκ cosh(κL)
]

.

(78)

One can check that

detT = 1; (79)

TrT =
1
kκ

[
2kκ cos(k`) cosh(κL) + (κ2 − k2) sin(k`) sinh(κL)

]
. (80)
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For k > Ω, let us define κ =
√

k2 −Ω2. We then obtain again detT = 1 and

TrT =
1
kκ

[
2kκ cos(k`) cos(κL)− (k2 + κ2) sin(k`) sin(κL)

]
. (81)

We are looking for the eigenvalues λ± of T that satisfy

λ± = e±K(L+`), (82)

where K (the quasi-momentum) is real. Since detT = 1, the eigenvalues can be
either real (and then one will larger than one, and the other smaller than one,
leading to a non-normalizable wavefunction) or complex, with modulus equal to
one. This will obtain (and the wavefunction will be extended) if the discriminant
of the secular equation of T is negative, i.e., if TrT satisfies the inequality

|TrT| ≤ 2. (83)

Thus the band edges k∗ are given by the conditions

TrT(k∗) = ±2. (84)

Deep in the wells, i.e., when k� Ω, we can set κ ≈ Ω and we obtain

TrT ≈ 1
k
(2k cos(k`) cosh(ΩL) + Ω sin(k`) sinh(ΩL)) . (85)

For ΩL� 1 the right-hand side yields

TrT ≈ 1
k
(
2k cos(k`) + Ω2L sin(k`)

)
, (86)

which compares with the result (57) obtained for the Dirac comb, taking into
account the difference of notation.

For k � Ω we have κ ≈ k, and therefore TrT ≈ 2(cos2(k`) − sin2(k`)) =
2 cos(2k`), and the forbidden bands appear close to the values of k such that 2k` =
(2n + 1)π/2.
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