Simple quantum systems

L. P

Abstract

Solution of several problems of [1, Vol. I].

1 Finite square well (Problem 25)

Let us consider the potential V(x) defined by

_H22 .
V() _{ h"g*/2m, for |x| < L; 1)

N 0, otherwise.

We are looking for normalizable solutions of the Schrédinger equation. Let us
consider solutions which behave like e *1*l as x — +00. We then have

72 xc2

E=——.
2m

(2)

Since the potential is even, the eigenfunction will be either even (+) or odd (—).
Even functions will be proportional to coskx for |x| < L, where k* = g — x2, and
odd functions will be proportional to sinkx. We must impose the continuity of the
function and its derivative at x = £L. We have

Case (+): We set
A coskx, for |x| < L;
Ale *(IXI=L) = otherwise.

Pi(x) = {

Thus the conditions for x = L are

0= Acos(kL) — A’;
0 = —kAsin(kL) + xA’.

The determinant of this system is given by
A = xcos(kL) — ksin(kL). 5)

We this obtain the equation
tankL = % (6)

We can parametrize this equation by setting

% = tané, tan6 > 0. (7)



Then we have, when tan6 > 0,
k =q|cos@|, Kk =q|sinf|,

and
tankL = tan 6,

ie.,

o = |cos b, for tan6 > 0.
gL

Case (—): We set

Asinkx, for |x| < L;
ll)—(x) = Al'si —x(|]x|-L) .
signxe otherwise.

Thus we obtain the equations

0= AsinkL— A" =0;
0 =kAcoskL +«xA’.

The determinant of this system reads
A = — (ksinkL + kcoskL).

We this obtain

tankL:—k:— 1 0.
K tan 6

Thus we obtain the equation, for tanf < 0,

k = |sinf]|, Kk = |cosf|,
leading to
0 = |sinf], for tanf < 0.
qL

(8)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Thus for nm/2 < gL < (n+1)7t/2 we have (n + 1) bound states, alternatively
even and odd. The figure shows the geometrical construction for gL = 37 /1.1.
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2 Square well between walls (Problem 26)

Problem

Solve the Schrodinger equation for the potential V(x) given by

2.2
_hz%' for |x| <a;

V(x) =10, fora < |x| < L;

~+o0, otherwise.
Solution
“Bound” states: E < 0

We set E = —1%k%/2m, k? = q2 — %2,
Even states: Let u. (x) be defined by

A coskx, for |x| <a;
ui(x) = ¢ Al coska sinhx(L—x), fora<x<L;
0, otherwise.

We obtain the equations

0=A; — Al sinhx(L —a);
0 = kA, sinka + kA, coska coshx(L — a).

The determinant reads
A = kcoska coshk(L — a) — ksinka sinh k(L — a).
Thus we obtain the equation

ktanka = x cothx(L — a).

Odd states: Let u_(x) be defined by

A sinkx, for |x| <a;
uy(x) = ¢ A sinka sinhx(L—x), fora<ux<L;
0, otherwise.

We obtain the equations

0=A; — Al sinhx(L — a);
0 = kA, coska + kA, sinka coshx(L — a).

The determinant reads
A = ksinka coshk(L — a) — kcoska sinh k(L — a).
Thus we obtain the equation

—kcotka = x cothx(L — a).
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The figure shows the construction for 2 = 20 and L = 100.
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“Free” states: E > 0
Set E = h*K?/2m, k* = ¢* + K2

Even states: Define 1 (x) by

A, coskx, for0 < x <a

e (x) = A coskasinK(L—x), fora<x<L; 26)
uy(x) =uy(—x), for 0 > x > —L;
0, otherwise.

We obtain the conditions
0=A; — A’ sinK(L—a); @)
0 = —kA, sinka + KA/, coskacosK(L — a).

The determinant reads

A = KcoskacosK(L —a) —ksinkasinK(L —a) = 0. (28)
Thus we obtain the equation
ktanka = KcotK(L — a). (29)
Odd states: Define u_(x) by
A_sinkx, for0 < x <ug;
0 (x) = A" sinkasinK(L —x), fora<x<1L; (30)
—u_(—x), for 0 > x > —L;
0, otherwise.



The continuity conditions read

0=A_—A"_sinK(L —a);

0 =kA_ coska+ KA sinkacosK(L — a). (1)
The determinant is given by
A = KsinkacosK(L —a) + kcoskasinK(L — a). (32)
This leads to the equation
—kcotka = KcotK(L — a). (33)

For L > a, and Ka > 1, there is exactly one even and one odd solution in each KL
interval of width 7r. The figure shows the costruction for a = 0.3 and L = 2.

60
40 1
201

I
s 09
_20_

_40_

—60

Let us evaluate the normalization integral N, = | _+LL dx uZ (x). We have

cos? ka
sin® K(L —
cos? ka

./\/'+—2/ dx cos®kx +2 / dx sin? K(L — x)

[cotK(L —a) — K(L —a) (14 cot’ K(L —a))]

cos’ka [k ko,
T [K tanka — K(L —a)(1+ @ tan ku)}

=7 (ka + sinka coska) —

(ka + sinka coska) —

»\r—\ »\H

2 2
[ka + < 1122 sin ka cos ka)} + (L —a) <cos ka + % sin ka)

(34)
We have likewise

1 k> . k2
N_ = 7 [ka— (1 — Kzsmkacoska)] + (L —a) (sm ka+ — 2 08 ka> (35)



For large values of L, the amplitude of the wave function inside the hole is domi-
nated by the last term. We obtain therefore

| k? .
/% COS u—l—ﬁsm a; (36)

k2
~ qin? 2
~ sin” ka + g2 €08 ka. (37)

5=
RS
h

L

Notice that this amplitude reaches a maximum for Ka = (2m + 1)7/2 (even) and
Ka = mm (odd). These values correspond to the resonances. In the limit KL > 1,
the amplitude of the wave function beyond the hole is given by

2 2
K(L — K(L —
lim 20 22— (L=a) _j. 5 K(E—a) . ) (38)
Lo A2 cos? ka L—eo A2 sin’ka
Thus we obtain, for |x| > a and KL > 1,
1 .
uy(x) = +—=sinK(L — |x|). (39)
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3 Virtual levels (Problem 27)

The potential V(x) is given by

00, for x < 0;
_ 4
v {(h2o/2m)5(x — 1), forx>0. (40)

We look for the wavefunctions . (x) satisfying ¥, (x) = asin(kx) for x < ¢, and
acos(k (x —¢)) + bsin(k (x — £)) for x > £. We obtain the conditions

a = asin(kl);

b = a [cos(kt) + (Q/k) sin(k?))]. (41)



These equations obviously admit solutions for all positive values of k. Let us set
a = —sing(k), b = cos¢p(k), so that P (x) = sin(k(x — £) — ¢) for x > ¢. We then

have
sing(k) cos ¢(k) 42)
sin(kl)  cos(kl) + (Q/k) sin(kl)’ (

We obtain therefore the expression of ¢(k):

This implies

) - 1 _ Sil’lz(kg)

SO = TP e ) T 1+ (/K sk + (/KPS (k)
Therefore

() = 1
14 (Q/k) sin(2k€) + (Q/k)? sin?(k€)
When k? < (), these levels lie very close to the values of k for which sin(k¢) = 0.

The dependence of a(k) on k smoothens out as k increases. The phase shift of the
wavefunction upon crossing ¢ is given by 6 = ¢(k) — k¢. It satisfies the relation

(45)

Q sin?(k¢)

N0 = = 1 (Q0/2k) sin(2k0)"

(46)

Notice that when k is smaller than /2, the denominator on the rhs vanishes

when ok
sin(2k{) = -a 47)

This equation has solutions for 2k¢ close to (2n + 1) or to 2n7t. In the first case,
the numerator is close to 1 and about constant. Then tand goes through infinity,
but the actual value of the wave function changes smoothly. In the second case
there is a zero of tané very close to the point in which it diverges. This means
that the phase goes from, say, 71/2 to 7t in a very short range of k/. Here I plot
the amplitude |a(k)|* on the left y axis and the phase shift & on the right J axis. In
the plot I have redefined the determination of arctan in order to make it smooth.
A second plot shows the behavior of ]zx\z and ¢ close to the first resonance for
k¢ ~ 7t. Note that § goes through 71/2 exactly at the resonance (marked with “R”).
For larger values of k, 6 makes only small ripples away from 7.
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4 Dirac comb (Problem 29)
Problem

Given a periodic potential formed by a sequence of Dirac functions with a distance

a between them:

hZ

—+00

V(x)=—Q ) 4(x—na),

m

n=—oo

determine the energy bands for this potential.

Solution

Let us consider the fundamental solutions

U (x)
Let u(x) be given by

u(x) _ {A+u+(x) + A—u—(x)/

— eilkx‘

eika (A+u+(x—ﬂ) +A,u,(x—a)),

8

for0< x <a
fora < x < 2a.

(48)

(49)

(50)



At x = a, we have the boundary conditions

lim u(x) = lim u(x); (51)
x—at x—a~
lim u'(x) = lim u'(x) +2Qu(a). (52)
x—at X—a~
This implies
eiku(A+ —I—A,) — <A+eika —I—A,efika),‘ (53)

ke (A, — A ) =ik (A+eik” — A,e-ika) +20(A " 4 A_e k), (54)

We need to find non-vanishing solution to this homogeneous system. This can
only happen if the determinant vanishes. By evaluating the determinant we obtain
the equation

coska = coska + % sin ka. (55)

This equation allows for real values of x provided

cos ka + % sinka| < 1. (56)

Thus the edges of the bands are given by the condition

cos ka + % sinka = +1. (57)
Case (+1): We have
k
% sinka = 1 — coska = 2 sin’ ?a, (58)
and . .
. . _ka a
sinka = 2sin & Cos . (59)
Thus we obtain . o
. ka a
sin —- = 0, or T tan > (60)

The conditions correspond respectively to

kz—a = m, and k = cot k—a. (61)

Case (—1): We have

Q k
A sinka = — (1 + coska) = —2 cos? 761’ (62)
and therefore ' a ‘
a a
cos 5 = 0, or il cot - (63)
The conditions correspond respectively to
ka k ka
5 = (2m+ 1), and a- " tan Ex (64)



This allows to solve the equation graphically.

ka/2

The spectrum can be obtained by expressing k as a function of the quasi-
momentum x. We have indeed

n2k2
where o
ka = cos” ! <COS ka + A sin ka) . (66)

Thus xa € [0, 7t]. We can plot ka as a function of k over the intervals in which the
condition (57) is satisfied.
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5 Periodic square barriers

We consider a periodic potential of period ¢ + L, defined by

_J0 if0<&<L;
V&»_{WHMMY,ﬁL§§§L+& (67)

10



where

L+7¢

where | x| denotes the fractional part of x. We consider wavefunctions ¢ (x) that
have the form

€:<L+€>{ d J (68)

ikx b —ikx f < x <
lpk(x):{ae + be ™, or)<x </ (69)

we =0 4 Be*(=0  for ¢ < x < 0+ L.
Here « is expressed as a function of k and ) by
k=102 — k2. (70)

It is imaginary when k > Q. In the region ({ + L) < x < (2¢ + L), the wave
function will have the form a’ e*(*~¢=L)  p e=ik(x=(=L) ‘were (a',b') are related to

(a,b) by /
£)-"()

where T is a certain matrix. By imposing the continuity of i, and its first derivative
at the discontinuities of V, we obtain the expression of T:

T=A'-B-B;' A, (72)

where

ike —ike
e’ e
okl —'ké) ; (73)
ike™t, —jke™!

(
Ao = Gc —1ik>; 7
<eKKL’ - _KL>; (75)
(L ! ) 76)
We obtain therefore

1 (T, T
T=—_ 77
2kx <T21, Tn)’ 77)

Ty = e [i(k* — x?) sinh(xL) + 2kx cosh(xL)],
Ty = —ie ¥ (k2 + x?) sinh(xL),

with

Ty = ie™ (k* + %) sinh(xL), 7%)
Top = e ¥ [—i(k? — «?) sinh (kL) + 2k« cosh(xL)] .
One can check that
detT =1; (79)
TrT = lec [2kx cos(k€) cosh(xL) + (k* — k*) sin(k¢) sinh(xL)] . (80)

11



For k > ), let us define x = Vk* — 2. We then obtain again det T = 1 and

TrT = kliK [2kk cos(kt) cos(xL) — (k* + ) sin(k¢) sin(xL)] . (81)
We are looking for the eigenvalues A+ of T that satisfy
Ay = eiK(L+£), (82)

where K (the quasi-momentum) is real. Since detT = 1, the eigenvalues can be
either real (and then one will larger than one, and the other smaller than one,
leading to a non-normalizable wavefunction) or complex, with modulus equal to
one. This will obtain (and the wavefunction will be extended) if the discriminant
of the secular equation of T is negative, i.e., if Tr T satisfies the inequality

Tr T| < 2. (83)

Thus the band edges k* are given by the conditions
TrT(k*) = £2. (84)

Deep in the wells, i.e., when k < (), we can set ¥ ~ () and we obtain
TrT~ % (2k cos(k?) cosh(QL) + Q sin(kf) sinh(QL)) . (85)
For OOL < 1 the right-hand side yields
1

TrT ~ p (2k cos(kt) + O*Lsin(k¢)), (86)

which compares with the result (57) obtained for the Dirac comb, taking into
account the difference of notation.

For k > Q we have ¥ ~ k, and therefore Tr T ~ 2(cos?(k() — sin?(k()) =
2 cos(2kl), and the forbidden bands appear close to the values of k such that 2k¢ =
(2n+1)m/2.

0 m 27 37 4m 571 6m 7w
Kt

References

[1] S. Fliigge, Practical Quantum Mechanics (Berlin: Springer, 1974).

12



