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Motivation

- Fluctuation relations discussed so far are static
- There is analogy with classical thermodynamics (e.g., efficiency

of Carnot engines): optimal efficiency reached for infinitely slow
transformations

- Some old results for efficiency at maximum power:

1

Mmaxp =~ 1 — Th

CURZON AND AHLBORN, 1975

- Can we obtain results involving time, speed, power?



A toy model

Asymmetric random walk as a toy model of a molecular motor

- Position of the molecule: n € Z, z = nd

- Transition rates: Ry = Ry+1.

- Steps are tightly bound to ATP hydrolysis: Chemical ATP
imbalance: Apu

- There is an applied force f: Work against the force: —fd

- Thermodynamic consistency:

% _ o(Bu—fd)/keT _ Afks



Master equation

- Equation for p,, »_(t), n4: # steps in & direction:

d
&pruﬁnf (t) = R+pn+7l7n, (t)+R7pn+7n,71(t)_(R+ + Rf)pvur,n, (t)
- Solution: + steps are independent Poisson processes:
(Ryt)"+ (R-t)"- o~ (RatR)t

ny! n_!

Py (t) =
- Therefore
(n) = (ny) — {n_) = (R4 — R_)t = Jt
((n= () = (n4) + (n-) = (Ry + R-)t = 2Dt

- Mean rate of entropy production:

$ = kg (R+—R,)log% —JA



Large deviations

- For large values of ¢

Prnyn_ (t) = Cft“)(VJr,Vf)
where
ni
1% _
* t
and

w(vy,vo) :V_i_log;—-:—u++R++y_log;—_—y_+R_

- Uncertainty in n: since (n?) — (n)? o« t o (n) we can use the
Fano factor

. {n®)—(n)> 2D R,+R_ A
F%IECWJMCM(%B)
from which it follows -
F>=B
B |

- The Fano factor is directly observable...



Entropy production

- On the other hand we have for the relative uncertainty

. <n2> - <n>2 2D

€ =

my?>  J%
- Total entropy produced:
C =5t
- Therefore
S$i2D  JA2D A
2 __ M _ _
C€ = J2 = T = Acoth <2k]3> 2 QkB

- S, is harder to observe...

- The inequality is saturated close to equilibrium and close to the
stall force (f ~ Ap/d), when A — 0



Observables

- Markov chain X (t) € {z}, transition rates R = (Ry,)
- Observe for duration ¢: empirical density p = (p.)
T, 1 [t
_z — = = — dt/ 57- 0
p n t/o =X (t)
- We have (p,) = p2* if R is t-independent
- Empirical current: ng,r = #(@’ — x) n = (nge)

Ngg' — Ng'x

ja::r’ = 7

- Note that by probability conservation the current J must be
defined to satisfy > Juer = 0 V', by adding nz )z (1)
- Traffic: 1
Veap = ; (nxar/ + nx’x)
- We have
Jror = <u7mc’> = Rmx’pisl - Rx’xpfcs
T = (Taar) = Rowpy + RuraDy



Observables

- Distances: define (d2,,) with d2,, = —d%

g’

- Then one gets the generalized current

1
V= ; anw’d(;x’

asag’

- In particular: Fluctuating entropy production rate:

R:mc’ .
dgz/ = kB IOg R = Azx/ <‘_70> = Si

L)



Rate functions

For Markov processes, one cannot directly evaluate the Cramér
function for p in general

- Look at the joint pdf P(p,n t|R, po)

- Define the auxiliary rates R = (Rmz ), Ryy = Ngar [P, SUCH that
P =p*(R) and (nau) g = s

- Define 4, = > Rors

- Then

P(7,n,t|R, xq) . Ry
— " —exp| — Te (Vo — Az) + Ny lOg =
EI (Yo —a) + D i%

P(1,n,t|R, xo) — -

- By multiplying by P(7,n,t|R,z0)/P(p*t, Rp™t,t|R, xo) and
averaging over xo we get

P(r,n,t|R) A Ry
= a3 :v 7B ccx’]- =
P(psst,RpSS,t‘R = @9 ZT -7 )+Zn OgR

’
xx’ T

« Zajg P(T,’I’L,th7 330)179;0(750)
Zmo P(pssta Rpssa t|R7 xo)pwo (to)

(tends to const!)



Rate functions

- Thus
P(T,n,t|R) — o~ tw(7/t:n/t)

with

w (%, %) = % lz —(Vo — Ha)Tw + gnm, log Zm/

’
x rT

_

- Translate back into p, J, T-

|:j:vw’ + 7—a::r’ ( ja::r’ + 7—193’
log

w®IT)=D 2 2Ry

anen’

- 1) + Rm/pff,}



Contractions

The contraction principle:
- Given Py (z,y) < e (@)

P,(z) < ET™@) w(z) = minw(z,y)
y

“Any large deviation is done in the least unlikely of all the
unlikely ways! ” ELLIS, 1985

Thus, since Ty = —Twar and T = T We 0btain
w(p, ) = minw(p, T, T) = w(p, T, T°)
with
T = T2 + ARy RyruPubu
Gallavotti-Cohen symmetry:

agag’

wa’pz’
Rz/zﬁz

= —5i(T)/k



Bounds on current fluctuations

- Hard to get rid of p...

- Bound on the rate function: p — p®:

sz/ + xm/ ICE/ j;;/2
w(ﬁ’ ‘7) < w(pssvj) = Z Tz log \/

Jss,  Tss
:1::1:’ azae’

&’ <4z

VR + T - ga T

- The bound satisfies the symmetry

T + :
G, )=~ ) = = 3 e log 2T Jor _ _4(7) ks
<z avze’

Jss ss
Ol Do



Bounds on current fluctuations

- Remember that an upper bound on w means a lower bound on
the fluctuations

- Universal global bound (GINGRICH ET AL., 2016):

(\7196’ — jxm )2
473,

k() < 30 S

e <ap
- For the general current: choose J,,» = J53, 7%/ T, then

(._7 ja bb)

ka(ja) < 4ja,ss2

- Similar bounds hold for p



Examples

Jalii

Rate functions for currents j4 in a 4-state model with distances d
randomly chosen in [—1,1] (colored) and for the entropy production

(dashed black)

Inset: Distance from bound
GINGRICH ET AL., 2016
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Examples

Current fluctuations in the ASEP model with L = 15: o = 1.25,
8=05v=05d6d=15p=14g=0.5
(Exact solution in the steady state via a matrix technique)

GINGRICH ET AL, 2016
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Thermodynamic uncertainty relations

- Reading off the rate function: uncertainty for the current
J =X/t

«a a,s54)2
627<(X —-J t)>N 2D,
a (Jss,(xt)Q T Jssa?y

and thus, since AS; = Sit,

2S8.D,,
- Jss,oz2

> 2kp

ASiei

- AS; is hard to measure...



Thermodynamic uncertainty relations

- Molecular motors:

- Out-power: p°** = fo =3, fTuw duar
- In-power: p'™ = Apatp nate/t

- Entropy production:

- Efficiency:

out out

1
p P B fv ”

77: =

pin p011t+5i/T_fv+Si/T_ 1+]€BTU/(Df)
—

observable!

- Bound independent on microscopic details...



Kinesin
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Randomness parameter r = 2D /vd for kinesin as a function of
ATP-concentration (for a fixed force f = 3.59 pN)
SEIFERT, 2018 Data from VISSCHER ET AL., 1999



Kinesin

2D/vd

T]S. 1? o. 1 I 1 n i t
0 1 2 3 4 5 6 7
S [pN]

0.0

Randomness parameter r = 2D /vd for kinesin for fixed ATP

concentration 2mM
SEIFERT, 2018 Data from VISSCHER ET AL., 1999



Fluctuations of the first-passage time

- Current statistics: fix Tons, measure J (integrated current):

- First-passage time T fix Jyny, measure 7: J(T) = Jin

Integrated Current

(A7)

Sz%bs <|_7 > 2kB

5 (a7

> 2k

(T)

Time

P(JTobs)
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Fluctuations of the first-passage time

- Large-deviation functions: for the current J = j Tobs

P(J|Tobs) < e~ Tobsw (T /Tons)

P(A) = lim

Tobs—>00 obs

log (e 7) = —min (Aj + w(j))
J
- Define ¢ (A) s /() >0, 9_(A) : ¢p'(A) <0
- For the first-passage time T = | Jin,| ¢: distinguish Jin, > 0 (+)
from Jipe < 0 (=)

e_Jt}1r¢+(T/Jthr)’ (+)

F(T|Jinr) <
(T Jenr) {esz-¢(7—/‘]“"|), (-)

log <e_”T>

=— lim
gi (M) Jinr—Eo00 Jthr
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Results

- Large-deviation function for ¢t = T/ |Jin:|:

oult)=tw(i=7)  oa0) ='W

- Heuristic argument: For large J the most likely first-passage
time is just given by the condition J(7) = Jinr

- Now for any large J
P(T=tJ) = / Da 6(T — t J) P(a)

= /dJ (T —tJ) o~ Tw(J/T) ~ o= Jtw(1/t)



Results

- Generating function: by saddle-point integration
g+ (1) = —min (ut + ¢(t))

YY) = —min (0] +¢+(7))

- Denote by j* the value of j corresponding to minimum and set
t* =1/5* then, eg,

9+ (W1 (V) = = [= (A" +wi (7)) 7 + o1 (t7)]

e (F) e ()] -



Results

= —min(I(j) + \j)
J

Dictionary: I — w GINGRICH AND HOROWITZ, 2017



Implications

- Since Vj one has

a2
o) < U8 ks = tna )
we have (t— (1)?
P4(t) < Tsi/kB
- By evaluating the variance via
Jthr
AT?) =
(AT = Fan

we obtain a bound for the Fano factor:

(AT)? _ 2kgp
Ty — &

16



Implications

Toy model for an assisted isomerization: R = E* = P, E = E*

fuel
k 12

.therm
k 12

.therm
ki

—

® Ji=5
Jor = 25

A Jur =100
v Jine = 200

@ Jur =50
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Sketch of a proof

- Basic results can be derived in the simple asymmetric random
walk
dpn
a =Rippn1+ R puy1— (R + R_)p, = (Ep)n
- F,(t): probability of reaching n for the first time on ¢ if starting
from 0 at time 0

- Then, if ¢’ is the last time the walker visited the origin,

pa(t) = Sond(t) + /0 “d Elt — ) pot)

and, defining ¥(\, 1) = (e=>)
CU1) = () T )
$(A) = Rie* + R_e™ — (Ry + R_)

(In general, a matrix equation...)



Sketch of a proof

- Taking the Laplace transform wrt time:

. P ()
F, = =
(1) Po(1)
B(), :/ dt e U\ 1) = o
A= | M= —s
Now
e—ngi(#) ~ <e_“7—> = F(/t|n) = ﬁn(,u‘)
and "
~ 10 dz o & _ _—A\*n
pn(ﬂ') - ~/7ioo Tm € \I/(Z,,M) =&
where

PA*) = p



Evaluation of large-deviation functions

- Large fluctuations are rare: How to evaluate their probability?

- In Statistical Mechanics one uses biased ensembles:

p;‘: = e(AF—AEm)/kBTp;q AF = —kpT <e—AEx/kBT>eq

hard!

- In dynamics one typically has biased Liouvillians £,, that to not
conserve normalization:

etﬁllq] ~ eftw(iu')\ll*
- One can exploit lack of normalization to evaluate ¥ (u)

GIARDINA ET AL., 2006



The setting

We consider a Markov chain in discrete time:

T = (L0, 1y s Tty...)

Master equation:

t+1 ZUa:a:’pa: (‘Cp)

Observables:

- Empirical frequencies:

T-1
5mmt
t=0

- Currents:

J(T) = dl’t+11‘t

ZUM =1Vzx

19



Large-deviation functions

For large values of T

J .
P (T :j) = (6 (doyar_y +  +doymo —3T))

“+ioco
:/ A T

oo 2mi
where
— — I8 — 1 AJ
B == lm_ —log (V)
Therefore

20



Biased dynamics

Define

'z — e)\dm/w U.L/.L
U () = Gy )

then W satisfies

d ~
-V, = ez Uy = Y

and we expect
U, (T) ~e TN ws

€T



Birth-death process

Define
Y = ZUx’x U;/x = x’x/'}/ac
w/

then
TL
(e A)yz = Z UalmT,llyfol o UalflIgﬂny
T

LT =155

Define a population of L clones undergoing a birth-death process:

At each time step:

+ Cloning step: p,(T + 3) = 72 p=(t) by reproducing (or killing)
copies of x: population goes from L to (L + G)

- Displacement: p,(t+1) = 3", U’ .pu(t + 3)

- Population control: clone all individuals with rate
M, =L/(L+Q)

Then
log (My-My_y -+~ My) = T ()

22
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Results: TASEP
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Results: TASEP

0.1

02+

03

04

0.5

Ues)

-0.6—

-0.7

08+

09+

L1 . 1 . 1 . 1 . 1

Dictionary: u(A) — —¥(\), p=0.5
There is absolute irreversibility (no GC symmetry)
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Results: Lorenz gas

24



Results: Lorenz gas

025
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n)

0.1

0.05—

Two values of external field E = (E,0) with E = 1,2 and different
noise intensities
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Summary

- Several results involving fluctuations, dissipation, and speed
- Largely independent of system details
- It is essential to maintain thermodynamic consistency

Aspect not discussed in these lectures:

- Quantum systems
- Complex reaction networks

- Generalizations (evolution, finance,...)

... to be continued...

25



Thank you!



References i

[@ F Curzon and B. Ahlborn.
Efficiency of a Carnot engine at maximum power output.
American Journal of Physics, 43(1):22-24, 1975.

[ R.S. Ells.
Entropy, Large Deviations and Statistical Mechanics.
Springer, Berlin, 1985.

@ J. P Garrahan.
Simple bounds on fluctuations and uncertainty relations for
first-passage times of counting observables.
Physical Review E, 95(3):032134, 2017.

ﬁ C. Giardina, J. Kurchan, and L. Peliti.
Direct evaluation of large-deviation functions.
Physical Review Letters, 96:120603, Mar 2006.



References ii

[@ T.R. Gingrich and ). M. Horowitz.
Fundamental bounds on first passage time fluctuations for
currents.
Physical Review Letters, 119(17):170601, 2017.

[@ T R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England.
Dissipation bounds all steady-state current fluctuations.
Physical Review Letters, 116(12):120601, 2016.

[@ C. Maes and K. Netocny.
Canonical structure of dynamical fluctuations in mesoscopic
nonequilibrium steady states.
EPL (Europhysics Letters), 82(3):30003, 2008.



References iii

[@ P Pietzonka, A. C. Barato, and U. Seifert.
Affinity-and topology-dependent bound on current
fluctuations.
Journal of Physics A: Mathematical and Theoretical,
49(34):34LT01, 2016.

ﬁ P. Pietzonka, A. C. Barato, and U. Seifert.
Universal bounds on current fluctuations.
Physical Review E, 93(5):052145, 2016.

[W P Pietzonka, F. Ritort, and U. Seifert.
Finite-time generalization of the thermodynamic uncertainty
relation.
Physical Review E, 96(1):012101, 2017.



References iv

ﬁ K. Proesmans, L. Peliti, and D. Lacoste.
A case study of thermodynamic bounds for chemical kinetics.
arXiv:1804.00859, 2018.

@ U. Seifert.
Stochastic thermodynamics: From principles to the cost of
precision.
Physica A, 2017.
https://doi.org/101016/j.phys.201710.024.

A H. Touchette.
The large deviation approach to statistical mechanics.
Physics Reports, 478(1-3):1-69, 20009.

[@ K. Visscher, M. J. Schnitzer, and S. M. Block.
Single kinesin molecules studied with a molecular force clamp.
Nature, 400(6740):184, 1999.



	Motivation
	Large deviations for Markov processes
	Fluctuations of the first-passage time
	Evaluating large-deviation functions
	Summary
	Appendix

