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Information

- Entropy: Measure of uncertainty of a system?

- 2nd law: Objective? Subjective?

- Manipulation of information (e.g.,, computing): Does it require
dissipation?

- Physical bounds on efficiency of information handling?

Can Stochastic Thermodynamics help?



Entropy: Gibbs and Shannon
- Gibbs formula for the entropy:
S = —kp Zp"q log p°4

- Shannon: entropy of a probability distribution p:
H(p) =~ pzlogps
- Non-equilibrium entropy?

§*t = —kp ) pologps

- Objection: S™°% is constant for isolated Hamiltonian systems
- We assume it holds for systems in stochastic thermodynamics



Non-equilibrium free energy

- System with energy function E = (E,), arbitrary probability

distribution p = (p.,) in contact with a reservoir at temperature
T

- Non-equilibrium free energy

F(p) = (E), — ksTH(p) = (E), - TS

- Process transforming p from p(®) to p):

w > FpW) - F(p®) (*)



Proof of (*)

Derivation:

0< AS™ = AS® L AS

__9 _ L
= -7 +AS = = (-A(E) + W + T AS)

W > A(E) -~ TAS



Saturating the bound

- Define H(O: o(F @ =H)/kaT _ ;)0
FO = —kpTlog Y, e~ " /keT
- Perform the sudden transformation (1): E —s H(®. One has

Q=0

1

wh = A (E)poy = ZP&O) (H:(,;O) - Em)

x

- Perform a slow (reversible) transformation (2): H(©® —s HD),
with HD: eV =H)/keT = p) One has W@ = A (1) — Q,
and, from AStet =0

Q=TAS=T (S<1> . s<0>>



Saturating the bound

- Perform the sudden transformation (3): #() —s E. One has
@ =0and

W = A(E) 0 = > o (B, - HO-)

Therefore
WO LW L WO = (HO) (B + (HO) |~ (H) 0
T (5<1> . 5(0>) + (B — <H<1>>

= (B = TS = (B} 0 - TSO)

p



Szilard’'s demon revisited

Measurement:




Szilard’'s demon revisited

Manipulation:




Szilard’s demon revisited

Resetting:




The transformation

Initial state: X and Y are independent, P(X) = P4(X) = (p%9)
Measurement: Introduces correlations between X and Y

AF™ = —TAS = kpT (I(X : Y) — AH™(Y))
Jymeas <W> > AF >0

Manipulation: Relax X distribution to P®4(X):
Wextr 2 A}-man 2 _A}'meas 2 —k’BTI(X . Y)
Resetting: Relax Y distribution to P (Y):

A]:res = _kBTAHHleaS(Y)
W > AF

Thus

> w=>o0



Entropy changes in Y’

- If Y is a “clean slate”, HO)(Y)) = 0, then
ASS = ki (H™S(Y) — I(X : Y))

which could vanish
 In this case

W > AF' = —kgT AH™5(Y) > 0

(In Szilard's gas “experiment” —AH™®*(Y') = log 2)

- This is the gist of Landauer’'s bound: W > kgT log 2 for resetting
a bit

- One can set P(Y) = P*4(Y), so that AH™**(Y') =0



A different initial condition

Initial condition is same as final condition (no resetting):

Y

L




Information and work balance

- Thus in general, for a memory degree-of-freedom
Wmeas f jyres > kpTI(X :Y)

- Inequalities stem from a fluctuation relation for the fluctuating
work W and the fluctuating mutual information

Toy = —log(P(,y)/(P(2)py))):
<e—(W—AF)/kBT—I> -1 1)

- More generally, if feedback control is present, manipulation A
depends on measurement outcome y, and one has

<e—(W—AF)/kBT> s
where

7=2_ Pagy®
Y

where Py (y) is the probability of obtaining measurement
outcome y with manipulation A



Proof of (1)

- Assume z is measured at time ¢, 2(t,y) =z, and the outcome
is y, then the protocol A(y) is applied

- Crooks: e2S@w)/ke = Py (x )/Pk(y)( ), Vy

: P(wy y) = py\zm,P)\(y) (w) = Py|zm, /py

- Thus
py\acmpk(y) (x)

Pj‘(y) (i)py

oAS(@)/kp+T

ylem —
which implies

Z/Dumy —aS(@y)/kn= Z/Dma(y}



Exploiting information

Feedback manipulation of a Brownian particle:

TOYABE ET AL., 2010
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Exploiting information

Feedback manipulation of a Brownian particle:
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Exploiting information

Feedback manipulation of a Brownian particle:

TOYABE ET AL., 2010
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"Information is physical”

- A thermodynamical system handling information:

- Must possess several “computational” states
- These states are long lived
- Hence it is necessarily non-ergodic

- Computational states correspond to ergodic components of the
phase space of the system

- Each is a macroscopic state, with its internal energy, entropy, etc.
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A toy model

L2r age Computational states g

U(z)

0 I |
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

+ Heat bath d-o-f

We have to distinguish the degrees-of-freedom:

I: Computational degrees-of-freedom: Here, X € {0,1}

II: Microscopic degrees-of-freedom: Phase-space variables in each
ergodic component

I1l: Heat-bath degrees-of-freedom: At equilibrium at the
temperature T



The different faces of reversibility

Thermodynamic reversibility: On the whole system (I+11+111)

Logical (computational) reversibility: Connected to entropy change
inl

Heat transfer to the bath: Connected to changes in the entropy of

[+11

- Thermodynamics implies that the total entropy production
AS™in |+lI+1ll is non-negative

- Transformations are thermodynamically reversible if and only if
AStet =0
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The different faces of reversibility

- In Stochastic thermodynamics we deal with probability
distributions P (in general non-equilibrium)

- A probability distribution P can be converted into another
distribution P’ with heat absorption @ if and only if

AS + ASW = AS*t >0
where AS is the change in the system’s entropy:
AS = kg (H(P') — H(P))

- As a corollary
W > AF

- The process P —s P’ is thermodynamically reversible (i.e., the
initial state of the system and the reservoir can be restored) if
and only if AStt =0
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The different faces of reversibility

Computational (or logical) reversibility:

- Let X € {0,1}"™ be a collection of bits,and X — X’ a
computation
- The computation is computationally reversible if X is a
one-valued function of X/, VX’
- Examples:
- NOT (=) is reversible: 2/ = - = = = -2’
- ERASE () is not reversible: | 1 =,0=0
- One-bit Boolean functions are not reversible: e.g., AND, OR, XOR...
- Two-bits mappings such as EXCHANGE can be reversible
- Given a (deterministic) computation X’ = ¢(X), ¢ is
computationally reversible if and only if the Shannon entropy of
any pdf P(X) is equal to P(¢(X))
- Computationally irreversible transformations reduce the entropy
of P(X)



The different faces of reversibility

Reversible erasure
- Heat emission upon erasure of a bit (Landauer bound):
—Q > kgTlog 2
- Let us look at Szilard’s engine: W > kgT log 2:




Computational and thermodynamical irreversibility

Any logically irreversible manipulation of information,
such as the erasure of a bit or the merging of two
computation paths, must be accompanied by a
corresponding entropy increase in non-information bearing
degrees of freedom of the information processing
apparatus or its environment.

BENNETT, 2003
But the process can still be thermodynamically reversible if

At = —% +ASO A5 =9



High-precision test of Landauer’s principle

JUN ET AL, 2014
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High-precision test of Landauer’s principle

JUN ET AL, 2014

time

INEQS!
RSS!

p: probability of ending in the right well (p = 1: full erasure)



High-precision test of Landauer’s principle

JUN ET AL, 2014

- Fluctuating work:
W(x) :/ dt A(#)O\U (z(t), A(t)) discretized
0

- Asymptotic work:

W(r) W(o0) 1
T kel 7

Asym W a X2
p=1 071 139 82
p=0.5 0.05 148 75




High-precision test of Landauer’s principle

JUN ET AL, 2014
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High-precision test of Landauer’s principle

=

(W) / KT

In 2 ..... p — 1
- |||| ittt i i Ill|p =0.5
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Scaled cycle time 1

(W) /KT

JUN ET AL., 2014

Inverse time 1/1



Summary

- Computation d-o-f contribute as well to the entropy balance

- There is a subtle link between computational and
thermodynamical reversibility

- There is dissipation in information handling at finite speed:
Speed-dissipation tradeoff?

Next: Information handling in biological systems
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Mandal-Jarzynski and Barato-Seifert

Bla bla bla
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Thank you!
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