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Information

• Entropy: Measure of uncertainty of a system?
• 2nd law: Objective? Subjective?
• Manipulation of information (e.g., computing): Does it require
dissipation?

• Physical bounds on efficiency of information handling?

Can Stochastic Thermodynamics help?
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Entropy: Gibbs and Shannon

• Gibbs formula for the entropy:

Seq = −kB
∑
x

peq log peq

• Shannon: entropy of a probability distribution p:

H(p) = −
∑
x

px log px

• Non-equilibrium entropy?

Sn.eq. = −kB
∑
x

px log px

• Objection: Sn.eq. is constant for isolated Hamiltonian systems
• We assume it holds for systems in stochastic thermodynamics
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Non-equilibrium free energy

• System with energy function E = (Ex), arbitrary probability
distribution p = (px) in contact with a reservoir at temperature
T

• Non-equilibrium free energy

F(p) = ⟨E⟩p − kBTH(p) = ⟨E⟩p − TS

• Process transforming p from p(0) to p(1):

W ≥ F(p(1))−F(p(0)) (*)
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Proof of (*)

Derivation:

0 ≤ ∆Stot = ∆S(r) +∆S

= −Q

T
+∆S =

1

T
(−∆ ⟨E⟩+W + T ∆S)

W ≥ ∆ ⟨E⟩ − T ∆S
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Saturating the bound

• Define H(0): e(F (0)−H(0)
x )/kBT = p

(0)
x ,

F (0) = −kBT log
∑

x e
−H(0)

x /kBT

• Perform the sudden transformation (1): E −→ H(0). One has
Q = 0,

W (1) = ∆ ⟨E⟩p(0) =
∑
x

p(0)x

(
H(0)

x − Ex

)
• Perform a slow (reversible) transformation (2): H(0) −→ H(1),
with H(1): e(F (1)−H(1)

x )/kBT = p
(1)
x . One has W (2) = ∆ ⟨H⟩ −Q,

and, from ∆Stot = 0

Q = T ∆S = T
(
S(1) − S(0)

)
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Saturating the bound

• Perform the sudden transformation (3): H(1) −→ E. One has
Q = 0 and

W (3) = ∆ ⟨E⟩p(1) =
∑
x

p(1)x

(
Ex −H(1)x

)
Therefore

W (1) +W (2) +W (3) =
⟨
H(0)

⟩
p(0)

− ⟨E⟩p(0) +
⟨
H(1)

⟩
p(1)

−
⟨
H0

⟩
p(0)

− T
(
S(1) − S(0)

)
+ ⟨E⟩p(1) −

⟨
H(1)

⟩
p(1)

= ⟨E⟩p(1) − TS(1) −
(
⟨E⟩p(0) − TS(0)

)
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Szilárd’s demon revisited

Measurement:
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Szilárd’s demon revisited

Manipulation:

R

X

Y

L R

L

R

X

Y

L R

L

7



Szilárd’s demon revisited

Resetting:
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The transformation

Initial state: X and Y are independent, P (X) = P eq(X) = (peqx )

Measurement: Introduces correlations between X and Y

∆Fmeas = −T ∆S = kBT (I(X : Y )−∆Hmeas(Y ))

Wmeas = ⟨W⟩ ≥ ∆F ≥ 0

Manipulation: Relax X distribution to P eq(X):

W extr ≥ ∆Fman ≥ −∆Fmeas ≥ −kBTI(X : Y )

Resetting: Relax Y distribution to P (0)(Y ):

∆F res = −kBT∆Hmeas(Y )

W res ≥ ∆F

Thus ∑
W ≥ 0
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Entropy changes in Y

• If Y is a “clean slate”, H(0)(Y ) = 0, then

∆Smeas = kB (Hmeas(Y )− I(X : Y ))

which could vanish
• In this case

W ≥ ∆F res = −kBT ∆Hmeas(Y ) ≥ 0

(In Szilard’s gas “experiment” −∆Hmeas(Y ) = log 2)
• This is the gist of Landauer’s bound: W ≥ kBT log 2 for resetting
a bit

• One can set P (Y ) = P eq(Y ), so that ∆Hmeas(Y ) = 0
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A different initial condition

Initial condition is same as final condition (no resetting):
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Information and work balance

• Thus in general, for a memory degree-of-freedom

Wmeas +W res ≥ kBTI(X : Y )

• Inequalities stem from a fluctuation relation for the fluctuating
work W and the fluctuating mutual information
Ixy = − log(P(x, y)/(P(x)py))):⟨

e−(W−∆F )/kBT−I
⟩
= 1 (†)

• More generally, if feedback control is present, manipulation λ

depends on measurement outcome y, and one has⟨
e−(W−∆F )/kBT

⟩
= γ

where
γ =

∑
y

Pλ̂(y)(y)

where Pλ(y) is the probability of obtaining measurement
outcome y with manipulation λ
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Proof of (†)

• Assume x is measured at time tm, x(tm) = xm and the outcome
is y, then the protocol λ(y) is applied

• Crooks: e∆S(x;y)/kB = Pλ(y)(x)/Pλ̂(y)(x̂), ∀y
• P(x, y) = py|xmPλ(y)(x) eI = py|xm

/py

• Thus
e∆S(x)/kB+Iy|xm =

py|xm
Pλ(y)(x)

Pλ̂(y)(x̂)py

which implies∑
y

∫
Dx P(x, y) e−∆S(x,y)/kB−I =

∑
y

∫
Dx Pλ̂(y)(x̂)py = 1
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Exploiting information

Feedback manipulation of a Brownian particle:
Toyabe et al., 2010
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Exploiting information

Feedback manipulation of a Brownian particle:
Toyabe et al., 2010
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Exploiting information

Feedback manipulation of a Brownian particle:
Toyabe et al., 2010
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”Information is physical”

• A thermodynamical system handling information:
• Must possess several “computational” states
• These states are long lived
• Hence it is necessarily non-ergodic

• Computational states correspond to ergodic components of the
phase space of the system

• Each is a macroscopic state, with its internal energy, entropy, etc.
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A toy model

"0"

+ Heat bath d-o-f

d-o-f

Microscopic

Computational states "1"

0
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U
(x
)

x

1

0.8

0.6

0.4

0.2

1.2

We have to distinguish the degrees-of-freedom:

I: Computational degrees-of-freedom: Here, X ∈ {0, 1}
II: Microscopic degrees-of-freedom: Phase-space variables in each

ergodic component
III: Heat-bath degrees-of-freedom: At equilibrium at the

temperature T
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The different faces of reversibility

Thermodynamic reversibility: On the whole system (I+II+III)
Logical (computational) reversibility: Connected to entropy change

in I
Heat transfer to the bath: Connected to changes in the entropy of

I+II

• Thermodynamics implies that the total entropy production
∆Stot in I+II+III is non-negative

• Transformations are thermodynamically reversible if and only if
∆Stot = 0
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The different faces of reversibility

• In Stochastic thermodynamics we deal with probability
distributions P (in general non-equilibrium)

• A probability distribution P can be converted into another
distribution P ′ with heat absorption Q if and only if

∆S +∆S(r) = ∆Stot ≥ 0

where ∆S is the change in the system’s entropy:

∆S = kB (H(P ′)−H(P ))

• As a corollary
W ≥ ∆F

• The process P −→ P ′ is thermodynamically reversible (i.e., the
initial state of the system and the reservoir can be restored) if
and only if ∆Stot = 0
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The different faces of reversibility

Computational (or logical) reversibility:

• Let X ∈ {0, 1}n be a collection of bits, and X −→ X ′ a
computation

• The computation is computationally reversible if X is a
one-valued function of X ′, ∀X ′

• Examples:
• NOT (¬) is reversible: x′ = ¬x ⇒ x = ¬x′

• ERASE (↓) is not reversible: ↓ 1 =↓ 0 = 0

• One-bit Boolean functions are not reversible: e.g., AND, OR, XOR…
• Two-bits mappings such as EXCHANGE can be reversible

• Given a (deterministic) computation X ′ = ϕ(X), ϕ is
computationally reversible if and only if the Shannon entropy of
any pdf P (X) is equal to P (ϕ(X))

• Computationally irreversible transformations reduce the entropy
of P (X)
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The different faces of reversibility

Reversible erasure

• Heat emission upon erasure of a bit (Landauer bound):

−Q ≥ kBT log 2

• Let us look at Szilard’s engine: W ≥ kBT log 2:
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Computational and thermodynamical irreversibility

Any logically irreversible manipulation of information,
such as the erasure of a bit or the merging of two
computation paths, must be accompanied by a
corresponding entropy increase in non-information bearing
degrees of freedom of the information processing
apparatus or its environment.

Bennett, 2003
But the process can still be thermodynamically reversible if

∆Stot = −Q

T
+∆S(I) +∆S(II) = 0
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High-precision test of Landauer’s principle

Jun et al., 2014
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High-precision test of Landauer’s principle

Jun et al., 2014

p: probability of ending in the right well (p = 1: full erasure)
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High-precision test of Landauer’s principle

Jun et al., 2014

• Fluctuating work:

W(x) =

∫ τ

0

dt λ̇(t)∂λU(x(t), λ(t)) discretized

• Asymptotic work:

W (τ)

kBT
=

W (∞)

kBT
+ aτ−1

Asym W a χ2

p = 1 0.71 1.39 8.2
p = 0.5 0.05 1.48 7.5
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High-precision test of Landauer’s principle

Jun et al., 2014
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High-precision test of Landauer’s principle

Jun et al., 2014
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Summary

• Computation d-o-f contribute as well to the entropy balance
• There is a subtle link between computational and
thermodynamical reversibility

• There is dissipation in information handling at finite speed:
Speed-dissipation tradeoff?

Next: Information handling in biological systems
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Mandal-Jarzynski and Barato-Seifert

Bla bla bla
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Thank you!
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