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Recapitulation

• Master equation:
dpx
dt

=
∑

x′ (̸=x)

′
[Rxx′(λ)px′ −Rx′x(λ)px] = (Lλ p)x

• Detailed-balance (DB) condition:

Rxx′e(F−Ex′ )/kBT = Rx′xe
(F−Ex)/kBT

• Properties of the rates:
Rx′x

Rxx′
= e−Qx′x/kBT = e∆S(r)/kB

• Seifert’s identity:
Pλ(x)

Pλ̂(x̂)
= e(∆S(r)(x)+∆s)/kB = e∆iS(x)/kB

• Jarzynski’s equality:⟨
e−W/kBT

⟩
︸ ︷︷ ︸

non-eq.

= e−∆F/kBT︸ ︷︷ ︸
eq 2



Fluctuation-Response relation

Linear response:

• Perturbation of a DB system:

Ex(λ) = E(0)
x −

∑
α

λαA
α
x

• Unperturbed distribution: p(0)x = e(F
(0)−E(0)

x )/kBT

⟨Aα⟩(0) =
∑
x

Aα
x p

(0)
x

• Manipulation protocol: λ = (λ(t)), λ(t) small, ∀t, λ(t) = 0, t < 0

• Perturbed averages: define δAα
x = Aα

x − ⟨Aα⟩(0)

⟨δAα⟩p(t) =
∑
x

δAα
x px(t) ≃

∑
β

∫ t

0

dt′ χαβ(t− t′)λβ(t
′)

• χαβ(t− t′) = 0 for t′ > t (causality)
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Fluctuation-Response relation

Correlation functions:

• Cαβ(t− t′) =
∑

xx′ δAα
x δA

β
x′ P (0)(x, t;x′, t′)

• P (0)(x, t;x′, t′) = (exp ((t− t′)L0))xx′ p
(0)
x′

• Cαβ(t− t′) = Cαβ(t
′ − t) (assuming Aα to be time-inversion

invariant) (exercise!)
• Cαβ(0) =

⟨
δAα δAβ

⟩(0)
• limt→∞ Cαβ(t− t′) = 0

Fluctuation-Response relation:

χαβ(t) = − θ(t)

kBT

d

dt
Cαβ(t)
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Fluctuation-Response relation

Proof:

• Let λα(t) = λα δ(t− t′), then ⟨δAα⟩p(t) =
∑

β χαβ(t− t′)λβ

• Therefore

lim
t→t′+

p(t) = p∗ = p(0) +
∑
α

λα
∂Lλ

∂λα
p(0)

p(t) = exp
(
(t− t′)L0

)
p∗

• “Perturbed” equilibrium distribution Lλp
(λ) = 0:

p(λ)x = e(Fλ−E
(0)
x +

∑
α λαAα

x )/kBT

Thus
∂Lλ

∂λα

∣∣∣∣
λ=0

p(0) + L0
∂p(λ)

∂λα

∣∣∣∣
λ=0

= 0

which implies

∂Lλ

∂λα

∣∣∣∣
λ=0

p(0) = −L0
∂ log p(λ)

∂λα

∣∣∣∣
λ=0

p(0) = − 1

kBT
L0

(
Aα − ⟨Aα⟩(0)

)
p(0)
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Fluctuation-Response relation

• Thus, for t > t′,

χαβ(t− t′) = − 1

kBT

∑
x′x

δAα
x′
[
exp

(
(t− t′)L0

)
L0

]
x′x

δAβ
x p(0)x

=
1

kBT

∂

∂t′
Cαβ(t− t′) = − 1

kBT

∂

∂t
Cαβ(t− t′)

Therefore, ∀t,
1

kBT

d

dt
Cαβ(t) = χαβ(−t)− χαβ(t)

and by taking the Fourier transform, the fluctuation-response relation

Im χ̃αβ(ω) =
ω C̃αβ(ω)

2kBT

3



Non-equilibrium steady states (NESS)

DB requires that ∀x, y, z one has

RxyRyzRzx = RzyRyxRxz

If this does not obtain, ̸ ∃Ex : Rx′x/Rxx′ = e−(Ex′−Ex)/kBT

One can still quite generally have pss satisfying∑
x′

Rxx′pssx′ =
∑
x′

Rx′xp
ss
x

Assume that the transition is helped by one (or more!) reservoir:

∆S
(r)
xx′ = kB log

Rxx′

Rx′x

Then
P(x|x(0))
P(x̂|x̂(0))

=

tf−1∏
t=0

Rx(t+1)x(t)

Rx(t)x(t+1)
= e∆S(r)(x)/kB
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Fluctuation theorem

Choose px(t0) = px(tf) = pssx

log
P(x)

P(x̂)
=
(
∆S(r)(x) + ∆SS

)
/kB

Total entropy production:

∆Stot = ∆S(r)(x) + ∆S

Summing over all paths x with a given value of ∆Stot yields the
fluctuation theorem:

p(∆Stot)

p(−∆Stot)
= e∆Stot/kB

Evans-Searles, 1994, Gallavotti and Cohen, 1995-6
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Comment

• The fluctuation theorem holds for finite times, starting from the
steady state

• Since ∆S is bounded, but ∆S(r) grows, we have for large tf
∆Stot ≃ ∆S(r)

• Large-deviation function ϕ(s):

p(∆Stot) ∝ e−tfϕ(∆Stot/(kBtf ))

Gallavotti-Cohen relation:

ϕ(s) = ϕ(−s)− s

• Generating function:

ψ(µ) = − 1

tf
log

∫
ds e−tf (ϕ(s)+µs)

s∗(µ) : ϕ′(s∗) = −µ ψ(µ) = ϕ(s∗) + µ s∗

• Symmetry relation: (Lebowitz and Spohn, 1999)

ψ(µ) = ψ(1− µ)
6



Equation for the generating function

• Define
Ψx(µ, t) =

∫
Dx Pss(x) δx(t)x e

−µStot(x)/kB

• Then
∂Ψx

∂t
=

∑
x′ (̸=x)

′
[
Rxx′

(
Rx′x

Rxx′

)µ

Ψx′ −Rx′xΨx

]
=
(
LLS
µ Ψ

)
x

• Now
LLS
µ = LLS

1−µ

†

• Thus LLS
1−µ and LLS

µ have the same spectrum
• But

Ψx(t) =
(
exp

(
tLLS

µ

)
Ψ(0)

)
x
∼ exp

(
tΛLS

max(µ)
)

• We have

ψ(µ) = − log ΛLS
max(µ) = − log ΛLS

max(1− µ) = ψ(1− µ)
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Housekeeping entropy production

Stationary system:

∆Sx′x/kB = log
Rx′x

Rxx′

= log
Rx′xp

ss
x

Rxx′pssx′︸ ︷︷ ︸
∆S(hk)/kB

− log
pssx
pssx′︸ ︷︷ ︸

∆S(ex)/kB

N.B.: If detailed balance is satisfied:

Rxx′pssx′ = Rx′xp
ss
x

then
∆S

(hk)
x′x = 0 ∀x, x′

8



Non-stationary system

Rewrite this section including Hatano-Sasa

∆S
(r)
xx′/kB = log

Rxx′

Rx′x
= log

Rxx′px′

Rx′xpx︸ ︷︷ ︸
∆Stot

xx′/kB

− log
px′

px︸ ︷︷ ︸
−∆Sxx′/kB⟨

Ṡtot
⟩
=
kB
2

∑
xx′

(Rxx′px′ −Rx′xpx)︸ ︷︷ ︸
Jxx′

log
Rxx′px′

Rx′xpx︸ ︷︷ ︸
Xxx′

Xxx′ = log
Rxx′pssx′

Rx′xpssx︸ ︷︷ ︸
X

(hk (ad.))

xx′

+ log
px′pssx
pxpssx′︸ ︷︷ ︸

X
(n.ad.)

xx′⟨
Ṡtot

⟩
=
kB
2

∑
xx′

Jxx′X
(ad.)
xx′︸ ︷︷ ︸

⟨Ṡ(hk)⟩≥0

+
1

2

∑
xx′

Jxx′X
(n.ad.)
xx′︸ ︷︷ ︸

⟨Ṡ(n.ad.)⟩≥0
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Average housekeeping heat

⟨
Ṡ(hk)

⟩
= kB

∑
x′ (̸=x)

′∑
x

Rx′x log
Rx′xp

ss
x

Rxx′pssx′

= kB
∑
x<x′

′
(Rx′xp

ss
x −Rxx′pssx′) log

Rx′xp
ss
x

Rxx′pssx′
≥ 0

We also have

Pss(x) e−∆S(hk)(x)/kB = Pss(x̂)

n∏
k=1

pssxk

pssxk−1

(
pssx0

pssxn

)
which implies the integral fluctuation theorem⟨

e−∆S(hk)/kB

⟩
= 1

One also has ⟨
e−∆S(n.ad)/kB

⟩
= 1
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Changing steady states

Parameter-dependent steady state:

Rx′x(λ) −→ pssx (λ)

(Lλ p
ss(λ))x =

∑
x′ (̸=x)

′
[Rxx′(λ)pssx′(λ)−Rx′x(λ)p

ss
x (λ)] = 0

∆Sex = ∆Stot −∆S(hk)

Manipulating the steady state:

λ = λ(t) λ(0) = λ0 λ(tf) = λf

Pλ(x) = Pλ(x|x(0))pssx (λ0)
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The excess entropy production

ϕx(λ) = − log pss(x, λ)

∆S
(ex)
x′x (λ) = − (ϕx′(λ)− ϕx(λ))

∆S(ex)(x) =

n∑
k=1

∆S(ex)
xkxk−1

(λ(tk))

= −
n∑

k=1

[
ϕxk

(λ(tk))− ϕxk−1
(λ(tk))

]
= −ϕxf

(λ(tf)) +

n∑
k=0

[ϕxk
(λ(tk+1))− ϕxk

(λ(tk))]︸ ︷︷ ︸
A(x)

+ϕx0
(λ(t0))

= −∆ϕ+A(x)

A(tf ,x) =

n∑
k=0

[ϕxk
(λ(tk+1))− ϕxk

(λ(tk))] =

∫ tf

t0

dt λ̇(t) ∂λϕx(t)(λ(t))
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The Hatano-Sasa relation

Hatano and Sasa, 2001
Relation analogous to Jarzynski’s for manipulated steady states out
of equilibrium

• Manipulate λ: λ = (λ(t)), t ∈ [t0, tf ]

• Initial condition:
px(t0) = pssx (λ0)

• Then ⟨
e−A⟩ = 1
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Proof

Define
Ψx(t) =

∫
Dx δx(t),x e

−A(t,x) P(x)

Then

Ψx(t0) = pssx (λ0)

(Lλ)xx′ = Rxx′(λ)−
∑
y

Ryx δxx′

d

dt
Ψx(t) =

(
Lλ(t)Ψ

)
x
− λ̇∂λϕx(λ(t))Ψx(t)

Ansatz:
Ψx(t) = e−ϕx(λ(t)) = pssx (λ(t))

Then
d

dt
Ψx(t) =

(
Lλ(t)p

ss(λ(t))
)
x︸ ︷︷ ︸

=0

−λ̇∂λϕx(λ(t)) e−ϕx(λ(t))

⟨
e−A⟩ =∑

x

Ψx(t) =
∑
x

pssx (λ(t)) = 1
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Experimental test of the Hatano-Sasa relation

Trepagnier et al., 2004
A Brownian colloidal particle dragged at constant speed by an
optical tweezer

where !(x, ") ! "ln #ss(x; ") and "̇ ! d"!dt. The value of Y
depends on both what we do to the system, as specified by the
imposed time-dependence of the parameter "(t), and on how the
system responds, which is represented by the phase-space tra-
jectory x(t). Because our system is subject to thermal noise, each
repetition of the process yields a different Y value. Now, consider
a statistical ensemble of trajectories, obtained by repeatedly
varying the control parameter according to the same schedule
"(t). Under very general conditions, Hatano and Sasa have
shown that:

#e"Y$ $ 1, [3]

where the angular brackets denote an average over our ensemble
of repetitions of the process. By Jensen’s inequality (12), Eq. 3
implies that:

#Y$ % 0. [4]

Although the analysis of Hatano and Sasa (11) was carried out
in the specific context of a trapped Brownian particle subject to
a nonconservative force, it is evident from their derivation of
Eqs. 3 and 4 that they are more general and do not depend on
particular assumptions about the dynamics of the system.

Connecting their results to earlier work by Oono and Paniconi
(8), Hatano and Sasa (11) interpret Eq. 4 as a generalized second
law of thermodynamics that is applicable to transitions between
(equilibrium or nonequilibrium) stationary states. As explained
in greater detail in ref. 11, several observations support this
interpretation. First, Y ! 0 when the process is carried out
reversibly, suggesting that in the more general case the non-
negative value #Y$ provides a measure of the irreversibility of the
process. Second, for the system studied in ref. 11, Eq. 4 is
equivalent to a generalized Clausius inequality proposed within
Oono and Paniconi’s phenomenological steady-state thermody-
namic framework (8). Finally, Eqs. 3 and 4 reduce to known
results for transitions between equilibrium states in the appro-
priate limit (see Results and Discussion).

To test Hatano and Sasa’s predictions, we dragged a micro-
scopic bead through water by using a steerable harmonic optical
trap. Our protocol created nonequilibrium steady states that are
both experimentally tractable and theoretically understood. On
the experimental side, laser tweezers and similar optical devices
have proven to be ideal laboratory tools for probing nonequili-
brum statistical physics at microscopic length scales (13–17). In
the present work, this technology provided the means to pull the
bead and also to observe its motion at the level of thermal
fluctuations. On the theoretical side, treating the bead as a
Brownian particle and the optical trap as a harmonic potential,
we easily obtain an expression for the steady-state distribution,
#ss, which enters into the definition of Y in Eq. 2. We subse-
quently confirmed the validity of the theoretical predictions for
#ss of Mazonka and Jarzynski (18) by comparing them with the
experimentally measured distributions, and we found excellent
agreement (data not shown). We chose a system in which #ss is
known a priori. In fact, Hatano and Sasa’s relation for transitions
between steady states can be applied to any physical system in
which the stationary distribution #ss is known or can be extracted
from experiments. The first step in applying Hatano and Sasa’s
relation to more complicated systems (for example, in turbulence
or granular media) in which the steady-state distributions #ss are
not known, will be to obtain them experimentally.

Methods
For each experiment, micron-sized polystyrene beads (diameter,
10.06 &m; Bangs Laboratories, Carmel, IN) were dispensed and
diluted inside a microfluidics chamber, which was then sealed. A
single bead was then trapped in a harmonic potential created by

superposing the foci of two counterpropagating 834-nm laser
beams (19), and an ultra-fast steerable mirror (Nano MTA-2,
Mad City Labs, Madison, WI) was used to translate the trap. The
optical force f(t) exerted by the trap is equal in magnitude and
opposite in direction to the rate of change of the momentum of
light (19), which we measured directly by using position-sensitive
photodetectors (DL-10, United Detector Technology Sensors).
The position of the trap was calculated from the angular rotation
of the steerable mirror. Data were sampled at 10 kHz, with the
average over 10 data points saved to a disk. The following further
parameters characterized the experiments: the trap constant
'[pN!&m]; the number of switching repetitions N; the trap
velocities v1 and v2 (&m!s), corresponding to the initial and final
steady states, respectively; the switching time ( (s); and the value
of q ! '!)*[pN (&m!s)]. Values for the first experiment were as
follows: ' ! 4.25, n ! 3,924, v1 ! 8.12, v2 ! 12.15, ( ! 0.06, and
q ! 0.20. Values for the second experiment were as follows: ' !
4.51, n ! 3,163, v1 ! 9.93, v2 ! 13.56, ( ! 0.06, and q ! 0.21.
Values for the third experiment were as follows: ' ! 4.9, n !
3,603, v1 ! 7.53, v2 ! 10.20, ( ! 0.08, and q ! 0.23.

Results and Discussion
Nonequilibrium steady states were created by translating the
optical trap at constant speed (Fig. 1). After a relaxation time tR
% *!', where * is the friction coefficient of the bead in solution
and ' is the spring constant of the trap, the bead settled into a
steady state in which its position fluctuated around an average
displacement *v!' behind the minimum of the trap potential, so
that the average force exerted by the trap balanced the average
frictional force felt by the bead. This nonequilibrium steady state
was maintained by a continual transfer of energy: the trap
performed work on the bead at an average rate P! ! *v2, which
was dissipated as heat into the surrounding buffer.

We began our experimental trajectories in such a steady state,
with the trap moving at a speed v1, and we then changed the speed
from v1 to v2 over a time interval of duration (, after which we
continued to move the trap at speed v2 (Fig. 2a). Thus, the trap
speed v played the role of the parameter " in our earlier discussion.
Modeling the bead as an overdamped Brownian particle (18), the
steady-state distribution is #ss(x; v) & exp[")('x ' *v)2!2'], where
x is the bead displacement relative to the minimum of the trap and
) is the inverse temperature of the solution. Eq. 2 then gives us
Y ! ()*!')(0

( dt v̇(t) ['x(t) ' *v(t)], where x(t) specifies the motion
of the bead during a given realization of the process, and v(t) is the
(externally imposed) trap speed.

Fig. 1. Schematic representation of the experiment. Optically trapped bead
lags a distance x behind the center of the trap translating at velocity v.

Trepagnier et al. PNAS " October 19, 2004 " vol. 101 " no. 42 " 15039
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S

pss(x; v) ∝ exp[−(κx+ γv)2/(2κ kBT )]
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Experimental test of the Hatano-Sasa relation

Trepagnier et al., 2004

We used three distinct nonlinear transitions, and for each type,
we repeated the experiment N times. Our three experiments
differed by the switching protocol and the initial and final steady
states (Fig. 2a). In the first experiment, a quarter-sine wave
protocol was used to vary the trap speed: v(t) ! v1 " (v2 #
v1)sin(!t!2"). For the second and third experiments, we used an
inverted three-quarters sine wave: v(t) ! v1 # (v2 # v1)sin(3!t!
2"). During each repetition, we recorded both the trap position
and the time-dependent optical force on the sphere, and we used
these signals to compute the Y value for each of N transitions.
From these signals, the value Yn was evaluated for each realiza-
tion. To compare with predictions, let $Y% and Ye ! #ln $e#Y%
denote the ordinary and exponential averages of the observed Y
values. In Fig. 2 b–d, we show for each experiment the distri-
bution of the N observed values Yn (blue histogram), as well as
the averages Ye and $Y% computed from these values (green and
black bars, respectively).

Two features are immediately apparent in Fig. 2 and Table 1.

The first feature is the good agreement with the theoretical
predictions (Eqs. 3 and 4). As shown in Fig. 2 b–d, the expo-
nential averages of all three experiments are equal to zero, within
estimated statistical error, confirming the strongest prediction of
Hatano and Sasa (11). Second, in each of the three experiments,
the error bars reveal greater statistical uncertainty in Ye than in
$Y%, although these quantities were computed from the same
data. This discrepancy is typical of averages of highly nonlinear
functions: if the distribution of Y values is significantly wider than
unity, then Y values that are several standard deviations below
the mean contribute disproportionately to the average of e#Y,
resulting in poor convergence (20–24).

Having shown that, for our system, the Y values satisfy Eqs. 3
and 4, we will now clarify their physical meaning and their
correspondence to predictions for isothermal transitions be-
tween equilibrium states. When the stationary states corre-
sponding to fixed values of # are equilibrium states (at a common
temperature $#1), represented by Boltzmann–Gibbs distribu-
tions %ss & e#$H(x,#), then a direct evaluation of Eq. 2 gives Y !
$(W # 'F), where W is the work performed on the system during
the process and 'F is the free energy difference between the
initial and final equilibrium states. In this limit, Hatano and
Sasa’s results reduce to the nonequilibrium work relation (25–
27) and the Clausius inequality (Eq. 1):

$e#$W% & e#$'F, $W% ' 'F. [5]

We can develop corresponding predictions for transitions
between nonequilibrium steady states by recasting Hatano and
Sasa’s result in terms of more familiar quantities. After incor-
porating the expression for the Gaussian steady-state distribu-
tion %ss into Eq. 2 and performing some simple algebra, we
obtain the following:

Y &
1
q "'P!

2 ( #
0

"

dt v̇ f$, [6]

where 'P! ! )(v2
2 ( v1

2) is the difference between the initial and
final steady-state average dissipation rates, and q ! *!$) is a
constant with the dimensions of power, constructed from pa-
rameters characterizing the bead, trap, and surrounding water.
During a transition, the instantaneous power that the moving
trap delivers to the bead is the fluctuating quantity P(t) ! v(t)f(t).
The net change in the power delivered to the bead is 'P !
'vP " 'f P, where 'vP ! *dtv̇f is the contribution to 'P from
increments of the trap speed, and 'f P ! *dtv̇f is the contribution
from fluctuations in the force f acting on the bead. By using Eq.
6 to rewrite Eqs. 3 and 4 as follows:

$e'vP/q% & e'P! /2q, $'vP% + 'P! !2, [7]

we see a strong resemblance to the nonequilibrium work relation
and the Clausius inequality (Eqs. 5). First, P! !2 ! )v2!2 can be
viewed as a ‘‘state function,’’ roughly analogous to the free
energy F for equilibrium states. Next, the constant q ! *!$)

Fig. 2. Trap-velocity profiles (a) and steady-state transitions producing low
(b), medium (c) and high (d) dissipation. Each Y value distribution, shown in
blue, is plotted with its ordinary average $Y% (black bar) as well as the Hatano
and Sasa exponentiated average, #ln $e#Y% ! Ye (green bar). The bar heights
are arbitrary, but their finite widths represent statistical errors, estimated with
the bootstrap method, such that each green and black bar extends one
standard deviation on either side of the computed value of Ye and $Y%,
respectively.

Table 1. Ordinary and exponential averages of the observed Y values for the
three experiments

*trap [pN!,m] ", ms
q ! *!$),
pN ,m!s N $Y% + SE* #ln $e#Y% + SE*

4.25 60 0.20 3,924 2.184 + 0.032 #0.173 + 0.162
4.90 80 0.23 3,603 3.444 + 0.042 #0.094 + 0.267
4.51 60 0.21 3,163 7.377 + 0.062 "0.318 + 0.838

*The statistical errors of both averages were estimated with the bootstrap method (29) because a distribution of
Boltzmann-weighted averages is not Gaussian.

15040 % www.pnas.org!cgi!doi!10.1073!pnas.0406405101 Trepagnier et al.
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Characterizing active systems

• In a system at equilibrium at temperature T one has the
Fluctuation-Response relation

Im χ̃(ω) =
ω C̃(ω)

2kBT

• In an active system there is a non-vanishing entropy-production
rate, given on average by

Ṡtot =
1

2

∑
x ̸=x′

Jx′x log
Rx′x

Rxx′

• We thus have two possible strategies for checking if a system is
active:

1. By checking the Fluctuation-Response relation (which requires
measuring the response)

2. By evaluating the entropy production

16



Non-equilibrium FR relation

Prost et al., 2009

• Small variations δλ of the control parameter around λ(0)
• Up to 2nd order in δλ

⟨∂λαϕ(tf)⟩ =
∑
β

∫ tf

t0

dt δλ̇β(t)
⟨
∂λαϕ(tf) ∂λβ

ϕ(t)
⟩

• But

⟨∂λα
ϕ(tf)⟩ ≃

⟨
∂λα

ϕ(λ(0))
⟩
+
∑
β

⟨
∂λα

∂λβ
ϕ(λ(0))

⟩
δλβ(tf)

• Integrating by parts one obtains the FR relation:

⟨∂λα
ϕ(tf)⟩ =

∑
β

∫ tf

t0

dt′ χαβ(tf − t′) δλβ(t
′)

with

χαβ(t− t′) =
d

dt

⟨
∂λα

ϕx(t)(λ
(0)) ∂λβ

ϕx(t′)(λ
(0))
⟩
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The Hair-Cell bundles
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The Hair-Cell bundles
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The Hair-Cell bundles
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The Hair-Cell bundles
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The Hair-Cell bundles
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Non-equilibrium FR relation in the Hair-Cell bundle

Dinis et al., 2012
Dynamical system: x: hair-bundle deflection, y: force due to active
process, ω0: spontaneous oscillation frequency

d

dt

(
x

y

)
=

(
−r ω0

−ω0 −r

)
︸ ︷︷ ︸

A

(
x

y

)
+

(
fx
0

)
+

(
ηx
ηy

)

Conjugate variables (X,Y ):(
X

Y

)
=
(
A−1

)T
Σ−1

A︸︷︷︸
ss correlation

(
x

y

)

y is not directly observable…
Recast dynamics in terms of x and z = yω0 − rx such that when
fx = 0

dx

dt
= z + ηx
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Non-equilibrium FR relation in the Hair-Cell bundle

Dinis et al., 2012
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Non-equilibrium FR relation in the Hair-Cell bundle

Dinis et al., 2012

• Black: denoising of z
• Red: estimation of C̃xz(ω)

• Blue: estimation of y by max prob
θ = ωC̃XX(ω)

2χ̃′′
XX(ω) = 1
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Entropy production in the steady state

• Total entropy production:

∆Stot = ∆S(r) +∆S

• By Gallavotti-Cohen, Seifert etc.:

∆Stot = −
∫

Dx

[
Q(x)

T
+ kB

(
log pssx(T ) − log pssx(0)

)]
Pss(x),

• Thus
Pss(x)

Pss(x̂)
= e−(Q(x)/kBT+log pss

xf
−log pss

x0
) = e∆Stot(x),

• Therefore

∆Stot = kB

∫
Dx Pss(x) log

Pss(x)

Pss(x̂)
= kBDKL(Pss(x)∥Pss(x̂))

Statistics on Pss(x) is hard to obtain…
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Arrow of time in the Hair-Cell bundle

Roldán et al., 2018
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Summary

• Fluctuation relations in systems without DB
• Generalization of link dissipation-irreversibility
• Generalization of FR relations
• Generalization to manipulated NESS

Questions:

• When do we decide if a system is active?
• What about feedback? (Demons!)
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Thank you!
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