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Summary

• Master equation:

dpx
dt

=
∑

x′ (̸=x)

′
[Rxx′px′ −Rx′xpx]

• Detailed balance:
Rxx′

Rx′x
= e−Qxx′/kBT = e∆S

(r)

xx′/kB

• Seifert’s identity:

Pλ(x)

Pλ̂(x̂)
= e(∆S(r)(x)+∆s)/kB = e∆iS(x)/kB

• Integral fluctuation theorem:⟨
e−∆iS(x)/kB

⟩
= 1
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Jarzynski’s equality

• Start from equilibrium: px(t0) = peqx (λ0), px̂(t0) = peqxf
(λf):

Pλ(x)

Pλ̂(x̂)
= e−(Q(x)+Ff−Exf

−(F0−Ex0
))/kBT

= e−(Q(x)−∆E)/kBT e−∆F/kBT = eW(x)/kBT e−∆F/kBT

• Jarzynski’s equality:⟨
e−W/kBT

⟩
︸ ︷︷ ︸

non-eq.

= e−∆F/kBT︸ ︷︷ ︸
eq

• Examples:
• Quasi-static transformation: px(t) = peqx (λ(t)):⟨

e−W/kBT
⟩
≃ exp

[
− 1

kBT

∫
dt λ̇(t) ⟨∂λE⟩peq(λ(t))

]
= e−∆F/kBT

• Sudden transformation Ex(λi) −→ Ex(λf):⟨
e−W/kBT

⟩
=

∫
dx e−(EλF

(x)−Eλi
(x))/kBT e(Fλi

−Eλi
(x))/kBT

= e−(Fλf
−Fλi

)/kBT 3



Jarzynski’s equality

• Probability distribution of W :

Pλ(W ) =

∫
Dx Pλ(x) δ(W(x)−W )

• Relative entropy of Pλ(x) and Pλ̂(x̂):

DKL(Pλ∥Pλ̂) =

∫
Dx Pλ(x) log

Pλ(x)

Pλ̂(x̂)
=

∫
Dx Pλ(x)

W(x)−∆F

kBT

=

∫
dW Pλ(W )

W −∆F

kBT
=

∫
dW Pλ(W ) log

Pλ(W )

Pλ̂(−W )

=
1

kBT

⟨
Wdiss

⟩
• Let Pλ(W ) be close to a Gaussian:

Pλ(W ) ∝ exp

[
− (W − ⟨W⟩)2

2σ2
W

]
then ⟨

Wdiss
⟩
= ⟨W⟩ −∆F =

σ2
W

2kBT
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A Microcanonical Perspective

Cleuren et al., 2006
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E +W

W
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4



A Microcanonical Perspective

Cleuren et al., 2006

= e∆S/kB

P (W ) = P (−W ) =

P (W )
P (−W ) =

=
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Information: Maxwell’s Demon
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Information: Maxwell’s Demon
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Information: Szilárd’s Demon

27/4/2017 Information Processing and Thermodynamic Entropy (Stanford Encyclopedia of Philosophy)

https://plato.stanford.edu/entries/information-entropy/ 3/24

directly observable and open to exploitation. Earman and Norton (1998) includes a historical review of early
attempts to design such devices.

Smoluchowski (1914) is generally credited with having proposed the explanation that prevents their
operation. He replaced the demon by a physical device, in this case a gentle spring that presses the trapdoor
against the side of the partition. The combined spring and trapdoor is supposed to act as a valve. The trapdoor
is held shut if a molecule collides from the left, but is opened by a fast collision from the right, so that a
pressure difference develops. However, the spring is a system with its own kinetic and potential energy. The
collisions will transfer energy to the spring, making it oscillate. When the internal energy of the spring
matches the temperature of the gas, it is flapping back and forth, effectively randomly. It becomes as likely as
not to be spontaneously open when a molecule arrives from the left and to be swinging shut when a molecule
arrives from the right. This balance means pressure or temperature differences are no more likely to occur
than they would spontaneously if the hole was simply left open. If the internal energy of the spring is out of
equilibrium with the gas, it will be heated (or cooled) by the collisions with the molecules until equilibrium is
reached.

The trapdoor may appear to violate the second law over short periods, but the behaviour is such that it is not
violated in the long run. Smoluchowski suggested that a modified second law should express the inability of a
device to produce continuous, reliable reductions in entropy.

1.2 Szilard's engine

Smoluchowski also left the possibility open of an exception even to a modified second law:

As far as we know today, there is no automatic, permanently effective perpetual motion machine,
in spite of the molecular fluctuations, but such a device might, perhaps, function regularly if it
were appropriately operated by intelligent beings.

Szilard (1929) attempted to investigate this special case of intelligently operated devices by considering a
box containing only a single molecule. He argued that in order to achieve the entropy reduction, the
intelligent being must acquire knowledge of which fluctuation occurs and so must perform a measurement.
The second law would not be threatened provided there was a compensating cost to performing this
measurement, regardless of the character of the intelligent being.

The Szilard engine consists of a box, containing a single molecule, in thermal contact with a heat bath, and a
partition. Thermal contact transfers energy, through random fluctuations, back and forth between the
molecule and the heat bath. The molecule bounces randomly throughout the box with this thermal energy.

The partition is capable of being inserted into the box, dividing it into two separate volumes, and is also
capable of sliding, frictionlessly, along the box to the left or to the right. When the partition is inserted in the
box, collisions with the molecule exert a pressure on the partition. If the partition moves in the direction of
the pressure, it may be coupled to a pulley and the force used to lift a weight. If the partition moves against
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Information: Szilárd’s Demon
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Landauer bound

How can we reconcile Maxwell’s or Szilárd’s demons with the Second
Principle?

• The demon D is a physical system, initially isolated from S
• Measurement introduces correlations between D and S
• Correlations in D remain after the transformation
• Resetting the demon’s memory requires dissipation (Landauer,
1961)
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Landauer bound

Any logically irreversible manipulation of information,
such as the erasure of a bit or the merging of two
computation paths, must be accompanied by a
corresponding entropy increase in non-information bearing
degrees of freedom of the information processing
apparatus or its environment.

Bennett, 2003
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Information: Landauer’s Eraser
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2nd Law and Landauer’s principle out of equilibrium

Esposito and van den Broeck, 2011

• A ST system described by probability distribution p, equilibrium
distribution peq

• Define
I = DKL(p∥peq) =

(
Fnon−eq − F eq

)
/kBT

• Manipulate the system: p(0) −→ p(1) (peq(0) −→ peq(1)) then

⟨W ⟩ −∆F ≥ kBT∆I
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2nd Law and Landauer’s principle out of equilibrium

Esposito and van den Broeck, 2011
Proof:

• Master equation:
dpx
dt

=
∑

x′ ( ̸=x)

′
[Rxx′(t)px′(t)−Rxx′(t)px(t)]

• Heat and work:

Q̇ =
∑
x

Ex(t)
dpx
dt

; Ẇ =
∑
x

dEx

dt
px(t)

• Change in I :
dI

dt
=

∑
x

dpx
dt

log px︸ ︷︷ ︸
−Ṡ/kB

−
∑
x

dpx
dt

log peqx︸ ︷︷ ︸
Q̇/kBT

−
∑
x

px
d

dt
log peqx︸ ︷︷ ︸

−(Ḟ eq−Ẇ )/kBT

= −(Ṡ + Ṡ(r))/kB︸ ︷︷ ︸
−Ṡi/kB≤0

+
(
Ẇ − Ḟ eq

)
/kBT
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2nd Law and Landauer’s principle out of equilibrium

Esposito and van den Broeck, 2011

• Work extraction from non-equilibrium distribution:

p ̸= peq ⇒W −∆F eq ≥ −kBTDKL(p∥peq)

• Landauer’s principle: If ∆I ≥ 0 there is a minimal dissipation

W diss =W −∆F ≥ kBT ∆I
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Work-extraction protocol

U
(x
,
λ
)

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

eq

0

11



Work-extraction protocol
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Probability distribution of W

• Pλ̂(−W ) = Pλ(W ) e−(W−∆F )/kBT

• Pλ̂(−W
∗) = Pλ(W

∗) ⇒W ∗ = ∆F

• Need to find an overlap between Pλ(W ) and Pλ̂(−W )

• Properties of P (W )?
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Unfolding and refolding a RNA hairpin

Collin et al. 2005

relatively small, ~ TkB3 , in comparison with values in the range TkB5010 − often seen in 

single molecule pulling experiments, and application of the JE to more dissipative 

processes is not straightforward. In fact, sources of random noise introduce a systematic 

bias in the exponential average required by the JE, which can be comparable in 

magnitude but of different sign to the bias arising from the finite number of pulling 

repetitions 6,7,8.  These two sources of noise often lead to large statistical uncertainties in 

the free energies estimated with the JE, particularly when the process occurs far from 

equilibrium. We find that the slow convergence shown by the JE can be improved by 

using the CFT 9 , and that the latter constitutes a less error–sensitive and faster – 

convergence method to extract equilibrium free energies from non-equilibrium processes.  

In practice, as mentioned above, it is often difficult to extract unfolding free energies 

using quasi-static pulling rates (below a few pN-s-1) due to spatial drift in various 

components of the manipulation instrument.  Drift effects decrease noticeably for larger 

pulling speeds, making it possible to obtain more reliable experimental data and better 

statistics (doing a large number of pulls), but at the expense of a more irreversible 

unfolding process 

Trap bead

Tip bead

RNA/DNA
handles

RNA 
structure

Anti-Dig/Dig

SA/Biotin

Trap bead

Tip bead
Pipette

Dual beam 
Optical trap

Light lever 
Detector 

Chamber

Trap bead

Tip bead

Trap bead

Tip bead

RNA/DNA
handles

RNA 
structure

Anti-Dig/Dig

SA/Biotin

Trap bead

Tip bead
Pipette

Dual beam 
Optical trap

Light lever 
Detector 

Chamber

Trap bead

Tip bead
 

13



Unfolding and refolding a RNA hairpin

Collin et al. 2005
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Unfolding and refolding a RNA hairpin

Collin et al. 2005
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P (W ) for isothermal expansion

x

v

V

• Ideal gas N particles, temperature T
• V −→ 2V ⇒ ∆F = T ∆S = NkBT log 2

• But: If v ≫ c (speed of sound) ⇒ no collisions ⇒W ≃ 0?
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A N = 1 ideal gas

Lua and Grosberg, 2005

x

L+vPt

v vP

L

L

x

t

position

piston

t1 t2t'1 τ

slope vP

slope v-2vP

initial slope v

piston

• Set kBT,m = 1 for simplicity⟨
e−W

⟩
=

∫ L

0

dx

∫ +∞

−∞
dv e−v2/2 e−wτ (x,v)

/∫ L

0

dx

∫ +∞

−∞
dv e−v2/2
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A N = 1 ideal gas

Lua and Grosberg, 2005

x

L+vPt

v vP

L

L
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position

piston

t1 t2t'1 τ

slope vP

slope v-2vP

initial slope v

piston

m, τ, kBT = 1

v′ = 2vp − 1

w(n) =
1

2

(
v(n)

2
− v(n−1)2

)
= 2vp

(
vp − v(n−1)

)
W (v, n) = 2n2v2p − 2nvvp
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A N = 1 ideal gas

Lua and Grosberg, 2005
Fast moving piston:

vp ≫ 1, L≫ vp ⇒ n = 0, 1

v(W ) = vp − W

2vp
, x > L− (v − vp) = L+

W

2vp

P (W ) ≃ P0 δ(W )− W

4vpL

e−(vp−W/2vp)
2/2

√
2πvp︸ ︷︷ ︸

P (W |W<0,W>−4Lvp)

P (W<0) ≃ 1√
2πLv2p

e−v2
p/2

⟨
e−W

⟩
≃ 1 +

vp
L

= e∆S/kB (τ = 1)

⟨W ⟩ ≃ − 4√
2πLv2p

e−v2
p/2 = −4P (W<0)
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Collective coordinates

• Exploring equilibrium free-energy landscapes: Collective
coordinateMx (e.g., RNA hairpin opening)

• We wish to evaluate the free-energy landscape ofM :

F (0)(M) = −kBT log
∑
x

δ(M −Mx) e
−E(0)

x /kBT

• Equilibrium probability distribution forM :

P eq(M) = e−(F
(0)(M)−F (0))/kBT

• Manipulation via a potential which depends onM (e.g.,
harmonic potential):

U(Mx, λ) −→ Ex(λ) = E(0)
x − U(Mx, λ)
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Work probability distribution

Evolution operator Lλ (e.g., master equation):

dpx
dt

=
(
Lλ(t) p

)
x

Lλ p
eq(λ) = 0

Work:
W = −

∫ t

0

dt′ λ̇(t′) ∂λU
(
Mx(t′), λ(t

′)
)

Φx(W, t): Joint probability of x and of the accumulated workW :

∂Φx(W, t)

∂t
=

(
Lλ(t)Φ

)
x
+ λ̇(t)∂λU(Mx, λ(t))

∂Φ

∂W

17



The generating function

Define
Ψx(µ, t) =

∫
dW e−W/kBT Φx(W, t)

Then
∂Ψx

∂t
=

(
Lλ(t)Ψ

)
x
− λ̇(t)

kBT
∂λU(Mx, λ(t))Ψx

Thus one obtains

Ψx = e(Fλ(0)−Ex(λ(t)))/kBT

= peqx (λ(t)) e−(Fλ(t)−Fλ(0))/kBT (1)∑
x

Ψx(t) =
⟨
e−W/kBT

⟩
= e−(Fλ(t)−Fλ(0))/kBT
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Proof of (1)

Define
ψx(t) = e(Fλ(0)−Ex(λ(t)))/kBT

Then ψ(x, t) satisfies

ψx(0) = peqx (λ(0)) = Ψx(−1/kBT, 0)

∂tψx = − λ̇

kBT
∂λEx(λ(t))ψx(t)

=
(
Lλ(t) ψx(x, λ(t))

)
x︸ ︷︷ ︸

=0

− λ̇

kBT
∂λEx(λ(t))ψx(t)

Thus
ψx(t) = Ψx(t)
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The basic identity

Multiply (1) by δ(M −Mx) and sum over x:⟨
δ(M −Mx) e

−W/kBT
⟩

=
∑
x

δ(M −Mx) e
(Fλ0

−Ex(λ(t)))/kBT

= exp
[
−
(
F (0)(M)− U(M,λ(t))− F (0)

]]
Multiply both sides by eU(M,λ(t))/kBT :

eU(M,λ(t))/kBT
⟨
δ(M −Mx) e

−W/kBT
⟩
= e(F

(0)(M)−F (0))/kBT

Crooks 1999, Hummer and Szabo 2001
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Summary

• We have discussed systems satisfying detailed balance (with
time-dependent energy) at all times

• Fluctuation relations allow to obtain equilibrium properties
from non-equilibrium measurements

• The fluctuation relations are dominated by tails of work or
entropy-production distribution

• Reliably sampling the tails requires good control of the statistics
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Thank you!
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