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Motivations

• What is Stochastic Thermodynamics (ST) and why are we
interested in it?

• What systems are of interest to ST?
• What is the relation between ST, and Statistical Mechanics on
one side and Thermodynamics on the other side?

• What is Information Thermodynamics and what is its relation to
ST?
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Stochastic Thermodynamics

Stochastic Thermodynamics is a thermodynamic theory
for mesoscopic, non-equilibrium physical systems
interacting with equilibrium thermal (and/or chemical)
reservoirs
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Stochastic Thermodynamics

Thermodynamic: ST aims at drawing a correspondence between a
mesoscopic stochastic dynamics and macroscopic
thermodynamics

Mesoscopic: ST deals with physical systems with typical energy
∼ kBT : colloidal particles, macromolecules, etc.

Non-equilibrium: One typically considers either manipulated
systems, or systems kept in steady states out of
equilibrium

Interacting: Systems evolve according to a stochastic dynamics
resulting from interactions with one (or more) thermal
reservoirs, which are represented by random noise

Equilibrium reservoirs: Thermal reservoirs relax very fast, so that
they can effectively be considered always at
equilibrium. This separation of timescales is key to the
simplicity of stochastic thermodynamics
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Thermodynamics of Information and ST

• Maxwell’s demon thought experiment showed how entropy is
related to the lack of knowledge on the system

• Maxwell, Boltzmann, Gibbs emphasized the link between
thermodynamical entropy and disorder of a physical systems

• Szilárd’s demon showed how information on a system can be
put to advantage to apparently “violate” the 2nd law

• Information on a system must be taken into account in the
entropy balance: The corresponding entropies are ∼ kB per DoF

• For mesoscopic systems ∆E ∼ kBT , ∆S ∼ kB, information is
thermodynamically relevant
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Stochastic dynamics

• Non-equilibrium systems require a dynamical description
• The systems are mesoscopic: Dynamics is stochastic
(non-deterministic)

• Stochastic dynamics is constrained by equilibrium statistical
mechanics requirements

• Energy and entropy balance is evaluated on the reservoirs
(ordinary thermodynamics)

• The resulting identities do not explicitly involve the dynamics

Disclaimer: I shall only consider classical systems
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Plan of the Course

1. Stochastic Thermodynamics: What is it and why is it useful?
2. Prerequisites: Thermodynamics, Statistical Mechanics,

Stochastic Dynamics, Information Theory
3. Basic concepts of Stochastic Thermodynamics (ST): Mesoscopic

systems, Work and Heat in ST, Fluctuating entropy
4. Fluctuation relations and their uses
5. Thermodynamic of Information: Entropy and Information

balance, Thermodynamic and computational reversibility,
Speed-accuracy tradeoffs

6. Experimental results
7. Ramification: Work extraction and population dynamics,

Statistical physics of adaptation, Historical (retrospective)
fitness

8. Conclusions and outlook
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Principles of Thermodynamics

First principle: ∆E = Q+W

• E: Internal energy (function of state)
• W : “mechanical” work (controlled energy
exchange)

• Q: “heat” (uncontrolled energy exchange)
• W and Q are functions of the process, not of the
state

Second principle: There is a function of state S(X) such that
∆S ≥ 0 for adiabatically isolated systems

• ∆S = Qrev/T

• ∆S = ∆iS +∆eS, ∆iS ≥ 0
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Reservoirs

Reservoirs are thermodynamic equilibrium systems
Energy vs. Entropy change in a reservoir:

∆E = T ∆S

Thermal reservoirs: ∆S = ∆E/T

Work reservoirs: ∆E ̸= 0, ∆S = 0, ⇒ T = ∞
Information reservoirs: ∆E = 0, ∆S ̸= 0, ⇒ T = 0

8



Reservoirs

S

T = 0

Info

T = ∞

E E

S

S

S

E

Work

T1

Heat

T2

Heat

A. Engel

9



Carnot’s Engine
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Statistical mechanics of equilibrium

• Equilibrium states are described by ensembles
• Canonical ensemble:

peqx = e(F−Ex)/kBT F = −kBT log
∑
x

e−Ex/kBT

• Entropy of an equilibrium ensemble (Gibbs’ formula)

S = −kB
∑
x

peqx log peqx

• Helmholtz’ free energy

F = ⟨E⟩peq − TS, ⟨E⟩peq =
∑
x

peqx Ex
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Stochastic dynamics

• System states x, energy Ex

• Transitions x′ −→ x: rate Rxx′ (due to coupling with reservoir (r)
at temperature T )

• Master equation for the occupation probability px(t):

dpx
dt

=
∑

x′ ( ̸=x)

′

Rxx′px′︸ ︷︷ ︸
inflow

−Rx′xpx︸ ︷︷ ︸
outflow


• Connection to equilibrium: We require the detailed-balance
condition: (DB)

Rxx′

Rx′x
=

peqx
peqx′

= e(Ex′−Ex)/kBT

• DB expresses microscopic reversibility: Jeq
x−→x′ = Jeq

x′−→x

• Starting from an arbitrary px(t=0) one has px(t) → peqx
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Shannon entropy

Shannon’s entropy is a measure of the information content of a
probability distribution function (pdf)

H(p) = −
∑
x

px log px

Properties:

• H(p) ≥ 0

• H(p) = 0 ⇔ px = δxx0
, ∃x0

• H(pXpY ) = H(pX) +H(pY )

• If X = {1, . . . , r}, H(pX) ≤ log r

Gibbs’ formula reads
S = kBH(peq)
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Relative entropy

The relative entropy (or Kullback-Leibler divergence) of two pdf’s p
and q is a measure of their difference

DKL(p∥q) =
∑
x

px log
px
qx

Properties:

• DKL(p∥q) ≥ 0

• DKL(p∥q) ̸= DKL(q∥p)
• DKL(p∥q) = 0 ⇔ px = qx, ∀x
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Relative entropy and equilibrium

S described by a pdf p, in contact with a reservoir at temperature T :

• Average energy ⟨E⟩p =
∑

x pxEx

• Shannon entropy H(p) = −
∑

x px log px

• Relative entropy wrt the equilibrium distribution:

DKL(p∥peq) =
∑
x

px log
px
peqx

=
−F eq + ⟨E⟩p

kBT
−H(p)

=
1

kBT

⟨E⟩p − kBTH(p)︸ ︷︷ ︸
Fnon−eq

−F eq


• Consequences:

• Minimum obtains for p = peq

• If ⟨E⟩p = ⟨E⟩peq , kBH(p) ≤ S
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Relative entropy and the approach to equilibrium

• Let S obey a Master Equation with rates R = (Rij) satisfying
detailed balance (DB) at temperature T

• Given p(t) = (px(t)), evaluate

D =
d

dt
DKL(p∥peq)

• We have

D =
∑
x

dpx
dt

log
px
peqx

=
∑
x

 ∑
x′ (̸=x)

′
(Rxx′px′ −Rx′xpx) log

px
peqx


=
∑
x<x′

′
(Rxx′px′ −Rx′xpx)

(
log

px
peqx

− log
px′

peqx′

)
=
∑
x<x′

′
Rxx′peqx′

(
px′

peqx′
− px

peqx

)(
log

px
peqx

− log
px′

peqx′

)
≤ 0

• ⇒ peq is the only stable fixed point

17



Mesoscopic systems

Deterministic

Fluctuating

System S, N ∼ 1

Reservoir (r), N → ∞

• Reservoir dynamics: very fast
• The system is manipulated via a parameter λ
• Details of the reservoir-system interaction are hidden under the
carpet

18



Work and Heat in Stochastic Dynamics

Manipulated system: DB is satisfied with Ex = Ex(λ(t)), ∀t

x3

E

t
t3t2t1

x0

x1

x2

Trajectory: x = ((x0, t0), (x1, t1), . . . , (xn, tn), tf)
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Work and Heat in Stochastic Dynamics

Manipulated system: DB is satisfied with Ex = Ex(λ(t)), ∀t

• Ex = Ex(λ), λ = λ(t) (“protocol”)
• Rx′x = Rx′x(λ) satisfying the DB
• Change of energy for the system:

Exf
(tf)− Ex0(t0) =

n∑
k=1

(
Exk

(tk)− Exk−1
(tk)

)
︸ ︷︷ ︸

heat=Q

+

n+1∑
k=1

∫ tk

tk−1

dt λ̇(t)
∂Exk−1

∂λ

∣∣∣∣
λ(t)︸ ︷︷ ︸

work=W

• Stochastic 1st law: ∆E = Q+W
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2nd Law in Stochastic Thermodynamics

• From DB:
Rxx′

Rx′x
= e−(Ex−Ex′ )/kBT = e−Qxx′/kBT = e∆S

(r)

xx′/kB

• Protocol λ = (λ(t)), R = (Rxx′(λ(t)))

• Probability of a trajectory x = ((x0, t0), (x1, t1), . . . , (xn, tn), tf):

Pλ(x) = e−
∫ tf
tn

dt γxn (t) Rxnxn−1
(λ(tn)) dtn︸ ︷︷ ︸
jump

e
−

∫ tn
tn−1

dt′′′ γxn−1
(t′′′)︸ ︷︷ ︸

dwell

· · ·

× e−
∫ t2
t1

dt′′ γx1
(t′′)Rx1x0(λ(t1)) dt1 e

−
∫ t1
t0

dt′ γx0
(t′)px0(t0)

γx(t) =
∑

x′ ( ̸=x)

′
Rx′x(λ(t)) escape rate
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2nd Law in Stochastic Thermodynamics

Time inversion:

• Reverse path x̂: x̂(t) = x(t̂), t̂ = t0 + (tf − t)

• Reverse protocol λ̂: λ̂(t) = λ(t̂)

x3

t̂f
t̂

t3t2t1

x0

x1

x2

t0 tf
t

E

t̂3 t̂2 t̂1 t̂0

• Probability of the reverse trajectory x̂ with the reverse protocol
λ̂:

Pλ̂(x̂) = e
−

∫ t̂f
t̂n

dt γ̂x̂n (t) · · ·Rx̂1x̂0
(λ̂(t̂1)) dt1e

−
∫ t̂1
t̂0

dt′ γ̂x̂0
(t′)

px̂0
(t̂0)
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2nd Law in Stochastic Thermodynamics

• Ratio Pλ(x)/Pλ̂(x̂): “dwell factors” cancel out

Pλ(x)

Pλ̂(x̂)
=

n∏
k=1

Rxk+1xk
(λ(tk))

Rxkxk+1
(λ(tk))

· px0(t0)

pxf
(tf)

= exp

[
− 1

kBT

n∑
k=1

Qxk+1xk
− log pxf

(tf) + log px0(t0)

]

• Conditioning on the starting and final states, we obtain Crooks’
relation:

Pλ(x|x0)

Pλ̂(x̂|x̂0=xf)
= exp

(
− 1

kBT

n∑
k=1

Qxk+1xk

)
= e∆S(r)(x)/kB
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2nd Law in Stochastic Thermodynamics

• Define the fluctuating entropy:

s = −kB log px

• Detailed fluctuation theorem (Seifert, 2005):
Pλ(x)

Pλ̂(x̂)
= e(∆S(r)(x)+∆s)/kB = e∆iS(x)/kB

• Integral fluctuation theorem: From

Pλ(x) e
−∆iS(x)/kB = Pλ̂(x̂)

we obtain ⟨
e−∆iS/kB

⟩
=

∫
Dx̂Pλ̂(x̂) = 1

• By Jensen’s inequality
⟨
ef
⟩
≥ e⟨f⟩:

⟨∆iS⟩ ≥ 0
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Summary

• There is some order even out of equilibrium…
• Fluctuation relations exhibit properties of microscopic
reversibility in a fluctuating environment

• We have focused on manipulated systems (obeying DB at all
times)

Next lecture:

• Uses and subtleties of the fluctuation relations
• Systems violating DB (non-equilibrium steady states)
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Thank you!
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