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Motivations

- What is Stochastic Thermodynamics (ST) and why are we

interested in it?

- What systems are of interest to ST?

- What is the relation between ST, and Statistical Mechanics on

one side and Thermodynamics on the other side?

- What is Information Thermodynamics and what is its relation to

ST?



Stochastic Thermodynamics

Stochastic Thermodynamics is a thermodynamic theory
for mesoscopic, non-equilibrium physical systems
interacting with equilibrium thermal (and/or chemical)
reservoirs



Stochastic Thermodynamics

Thermodynamic: ST aims at drawing a correspondence between a
mesoscopic stochastic dynamics and macroscopic
thermodynamics

Mesoscopic: ST deals with physical systems with typical energy
~ kT colloidal particles, macromolecules, etc.

Non-equilibrium: One typically considers either manipulated
systems, or systems kept in steady states out of
equilibrium

Interacting: Systems evolve according to a stochastic dynamics
resulting from interactions with one (or more) thermal
reservoirs, which are represented by random noise

Equilibrium reservoirs: Thermal reservoirs relax very fast, so that
they can effectively be considered always at
equilibrium. This separation of timescales is key to the
simplicity of stochastic thermodynamics
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Thermodynamics of Information and ST

- Maxwell's demon thought experiment showed how entropy is
related to the lack of knowledge on the system

- Maxwell, Boltzmann, Gibbs emphasized the link between
thermodynamical entropy and disorder of a physical systems

- Szilard's demon showed how information on a system can be
put to advantage to apparently “violate” the 2nd law

- Information on a system must be taken into account in the
entropy balance: The corresponding entropies are ~ kg per DoF

- For mesoscopic systems AFE ~ kgT, AS ~ kg, information is
thermodynamically relevant



Stochastic dynamics

- Non-equilibrium systems require a dynamical description
- The systems are mesoscopic: Dynamics is stochastic
(non-deterministic)

- Stochastic dynamics is constrained by equilibrium statistical
mechanics requirements

- Energy and entropy balance is evaluated on the reservoirs
(ordinary thermodynamics)

- The resulting identities do not explicitly involve the dynamics

Disclaimer: | shall only consider classical systems



Plan of the Course

1. Stochastic Thermodynamics: What is it and why is it useful?

2. Prerequisites: Thermodynamics, Statistical Mechanics,
Stochastic Dynamics, Information Theory

3. Basic concepts of Stochastic Thermodynamics (ST): Mesoscopic
systems, Work and Heat in ST, Fluctuating entropy

4. Fluctuation relations and their uses

5. Thermodynamic of Information: Entropy and Information
balance, Thermodynamic and computational reversibility,
Speed-accuracy tradeoffs

6. Experimental results

7. Ramification: Work extraction and population dynamics,
Statistical physics of adaptation, Historical (retrospective)
fitness

8. Conclusions and outlook



Principles of Thermodynamics

First principle: AE=Q + W
- E: Internal energy (function of state)
- W: “mechanical” work (controlled energy
exchange)
- @Q: “heat” (uncontrolled energy exchange)
- W and Q@ are functions of the process, not of the
state

Second principle: There is a function of state S(X) such that
AS > 0 for adiabatically isolated systems
- AS = Qrev/T
s AS=A{S+AS, AS >0



Reservoirs

Reservoirs are thermodynamic equilibrium systems
Energy vs. Entropy change in a reservoir:

AE=TAS

Thermal reservoirs: AS = AE/T
Work reservoirs: AE #0,AS =0,=T = oo
Information reservoirs: AE =0, AS#0,=17 =0
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Statistical mechanics of equilibrium

- Equilibrium states are described by ensembles

- Canonical ensemble:

p;q _ e(FfEm)/kBT - —kBT logze*Em/kBT

- Entropy of an equilibrium ensemble (Gibbs’ formula)
S =—kp szq log p3?
- Helmholtz' free energy

F= <E>peq =TS, <E>peq = Zpngw



Stochastic dynamics

- System states z, energy E,

- Transitions o/ — x: rate R, (due to coupling with reservoir (r)
at temperature T)

- Master equation for the occupation probability p,.(¢):

/!

d
Cf: = Z Rxm/pm/ *Rx’mpm

a’ (#x) inflow outflow

- Connection to equilibrium: We require the detailed-balance
condition: (DB)

eq
Rewr g — By —Ez)/knT

= —&q
Rx’x Py

- DB expresses microscopic reversibility: J¢4 = J

z—rx! T Ya'—zx

- Starting from an arbitrary p,(t=0) one has p,(t) — p4



Shannon entropy

Shannon’s entropy is a measure of the information content of a
probability distribution function (pdf)

H(p)=—) p:logp.

Properties:
* H(p) =20
° H(p) =0 & Pz = 6wx07 HZ‘0
* H(pxpy) = H(px) + H(py)
- IfFX ={1,...,r}, H(px) < logr

Gibbs' formula reads
S = kBH(peq)
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Relative entropy

The relative entropy (or Kullback-Leibler divergence) of two pdf’'s p

and ¢ is a measure of their difference

DxwL(pllq) = Zpl log =

Properties:

* Dk (pllg) >0
* Dxui(pllg) # Dxr(qllp)
[

+ Dxr(pllg) =0 < pr = ¢, YV



Relative entropy and equilibrium

S described by a pdf p, in contact with a reservoir at temperature T

* Average energy (E), = >, p.E.
- Shannon entropy H(p) = — ", p. log p,
- Relative entropy wrt the equilibrium distribution:

—F™ + (E)

DxL(pllp*®) me log 22, =~ H®)

=— | (E), — ksTH(p) —F
—_———
JFnon—eq

- Consequences:

- Minimum obtains for p = p°¢
I (E), = (E) e, ks H(p) < S
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Relative entropy and the approach to equilibrium

- Let S obey a Master Equation with rates R = (R;;) satisfying
detailed balance (DB) at temperature T
- Given p(t) = (p(t)), evaluate

D= —DKL(pllpeq)

dt
- We have
P Dz b B
T log peq_:l = Z Z (R’LJ,’pJ,’ = R:C'ch.’lf) log p;q
x ’ x| (#2) ‘
Dz Dz
= Z Iw’pw — Ry xpz) (log eq log eq)
aZar Pz Py
Pz Pz D
= Z RTT/pI, ( = eq> (log = — log eq) <0
r<z’ 93' Dz Pz pa:’

- = p®is the only stable fixed point



Mesoscopic systems

System S, N ~ 1
Fluctuating

- Reservoir dynamics: very fast

- The system is manipulated via a parameter A
- Details of the reservoir-system interaction are hidden under the
carpet



Work and Heat in Stochastic Dynamics

Manipulated system: DB is satisfied with E, = E,(\(t)), Vt

gl----- o I

Trajectory: @ = ((xo,t0), (z1,t1), ..., (Tn,tn), tr)
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Work and Heat in Stochastic Dynamics

Manipulated system: DB is satisfied with E, = E,(\(t)), Vt

- E, = E,(\), A= \(t) (“protocol”)
* R,z = Ry, () satisfying the DB
- Change of energy for the system:

n

Exf(tf) - Ero(to) = Z (Emk (tk) - Erk—l(tk))
k=1

heat=0Q

N )
+ Z/ dt A(t) a””)’i*
k=1"tk—1 A(t)

work=w

- Stochastic 1st law: AE = Q4+ W
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2nd Law in Stochastic Thermodynamics

- From DB:
Ry

-+ Protocol A = (A(1)), R = (Razar (A(2)))

- Probability of a trajectory @ = ((xo, o), (x1,t1), .-, (Tn,tn), te):

— o~ (Bo=By)/kpT _ =Quur/knT _ easg,/kB

4’ Va4 (t///) o

Pala) = e i 0O R, (A(tn)) dty ¢ T
jump dwell
% o 2t vay (t/l)Rxlxo(/\(tl)) dt, e” Ji& dt’ vz (t’)pwO (to)
/
Y2(t)= > Ruwa(A(t))  escape rate
o (o)
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2nd Law in Stochastic Thermodynamics

Time inversion:

—~
>
=

- Reverse path @: &(t) =«
- Reverse protocol A: A(¢)
E

- Probability of the reverse trajectory & with the reverse protocol
X

it o a2
Px(ﬂ?)ze ‘/tndt’Y%(t)"'Rilig()‘(t ))dtle fto trYU(t)p:io(tO)
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2nd Law in Stochastic Thermodynamics

+ Ratio Px(x)/Ps(z): “dwell factors” cancel out

- Conditioning on the starting and final states, we obtain Crooks’

relation:

Px(z|xo) _ASY (@) ks
,Pj\(ii'lz@o:l'f) kBT Z QTk+1Tk =€
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2nd Law in Stochastic Thermodynamics

- Define the fluctuating entropy:

s = —kplogp,

- Detailed fluctuation theorem (SEIFERT, 2005):

Pa(x) — o(A5O (@) +As) ks _ (AiS(@)/kp
Ps ()

- Integral fluctuation theorem: From

Pa(x) e~ 2@/ ke — Ps (&)

(et _ /W
>e

- By Jensen’s inequality (e/)

we obtain

(AiS) >0
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Summary

- There is some order even out of equilibrium...

- Fluctuation relations exhibit properties of microscopic
reversibility in a fluctuating environment

- We have focused on manipulated systems (obeying DB at all
times)

Next lecture:

- Uses and subtleties of the fluctuation relations
- Systems violating DB (non-equilibrium steady states)

21



Thank you!
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